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Abstract

Econophysics describes the application of tools from statistical physics to the study of problems

in economics such as correlations in stock prices or the distribution of wealth in society.

We present an analysis of financial data from stocks that belong to the London Stock Ex-

change, FTSE100, using the concept of random matrix theory and minimal spanning trees.

This reveals a division of the stocks in industrial sub-sectors, mostly in good agreement with

empirically derived groupings, but also indicating possible refinements, important for the use

in portfolio optimisation. A similar analysis of market indices of different countries shows that

despite globalisation strong regional geographical correlations still exist.

The general observation that the distribution of wealth in society takes the form of power-

laws is reproduced by various physical models, based on the analogy with collisions of particles

or Langevin type equations. We briefly review this and point to still existing difficulties in

explaining the details of the distribution.

Keywords: statistical physics, econophysics, random matrix theory, minimal spanning trees,

wealth distributions.
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Chapter 1

Introduction

“I think the next century will be the century of complexity.” (Stephen Hawking)

Econophysics describes the application of Physics concepts to the study of economics and

financial topics. This field had a big boom in the last decade when physicists started to look at

open problems in economics and with the large amount of financial data available started to see

many differences between the economic theory and empirical results.

Econophysics can be divided in two main areas:

• The first area and probably the main one, is related to the study of stock markets [1, 2].

• The second area is related to the study of wealth or income distributions in society. [3, 4].

The manipulation of Physics concepts in economics started more than 100 years ago when

Bachelier, in his doctoral thesis, Théorie de la spéculation [5], was the first to formalise the

concept of random walks, predating the work of Einstein on Brownian motion.

1.1 Stock Markets

The area of study of stock markets has a big impact, because many physicist try to apply their

techniques to predict market oscillations or crashes, or to get better ways to filter data and

construct better portfolios of stocks, where the risk will be lower and the return higher.

An important issue is the huge amount of data that appeared from electronic formats. Nowa-

days it is possible to access 1 minute variations of prices of stocks in the market, which was

impossible some decades ago. In Figure 1.1 we can see an example of the daily evolution of the

price, Pi(t) of a company in time, in this case the bank HSBC (tick symbol HSBA) that belongs

to the main index of the London Stock Exchange, FTSE100. With the study of the distribution

of returns of the price of a stock, some empirical results didn’t match some laws used by the
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economics community [6, 7, 8]. The returns are defined as: Ri(t) = ln Pi(t)− ln Pi(t−1) (Figure

1.2) and we use the logarithmic return for two reasons: first there is a common belief that the

price of stocks, Pi(t) increase exponentially, in time, on average; second is related with the fact

that the difference between two consecutive prices is very small, so:

Ri(t) = ln

(

Pi(t)

Pi(t − 1)

)

= ln

(

1 +
Pi(t) − Pi(t − 1)

Pi(t − 1)

)

≈ Pi(t) − Pi(t − 1)

Pi(t − 1)
(1.1)

i.e. the log-return has approximately the same value as the quotient return. The distribution of

returns generally does not follow a Gaussian, but as we can see from Figure 1.3 the tails of the

distribution are more enhanced than a Gaussian distribution. The strength of the tails depends

on the time scale at which returns are evaluated and scaling behaviour can be found for different

time scales [1]. Figures 1.2 and 1.3 are one example of the large study that we did for all the

stocks in our database.
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Figure 1.1: Daily evolution of the price of the company HSBC (bank with the tick symbol

HSBA) in time.

An important issue is thus to redevelop financial tools that were developed from Gaussian

statistics, but now based on non-Gaussian statistics.

An important method frequently used for the study of time series in the stock market is

Random Matrix Theory. Random Matrix Theory was previously used in Nuclear Physics to

study the statistical behaviour of energy levels of nuclear reactions [9]. According to quantum

mechanics, the energy levels are given by the eigenvalues of a Hermitian operator, the Hamil-

tonian which was postulated to have independent random elements. However, analysis of the
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Figure 1.2: Daily return of price of company HSBC (bank with the tick symbol HSBA) as a

function of time.

-0.2 -0.1 0 0.1 0.2
R(t)

0.01

0.1

1

10

100

P 
( 

R
(t

) 
) 

Figure 1.3: Normalised distribution of daily returns of price of company HSBC (bank with the

tick symbol HSBA) represented as black circles. The solid and broken lines represent fits to a

Gaussian and T-student distribution, respectively. The plot is in a log-linear scale. Note that

the data cannot be adequately represented by the Gaussian.
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eigenvalues of real data showed deviations from the spectra of fully random matrices, thus in-

dicating non-random properties, useful for an understanding of the interactions between nuclei.

This approach is nowadays applied to the study of correlations of time series of returns in the

stock market (Section 2.2), where physicists try to find the non-random properties of the ma-

trix of correlations [10, 11, 12]. With the prediction of the eigensystem of a random matrix,

compared with the eigensystem of the matrix of real data of stocks, we can see eigenvalues far

from the prediction spectrum, that have a lot of information about the market [13, 14], as the

index of the market, or the clustering in industrial sector in markets. The index of the market

can be calculated as the simple mean of the prices of all the stocks that belong to the market

or the weighted mean, where some stocks contribute more to the index, related with the size of

the company. The industrial sectors can be different for different classifications, but normally

the industrial sector means which kind of business the company is included in.

To visualise the hierarchical structure of financial markets, Mantegna defined a distance

between stocks (Section 2.4.1), using the correlations between them [15]. Using this distance,

he constructed a network of stocks (Minimal Spanning Tree, Section 2.4), where nodes are

stocks and links are the distances between them. An example of a network of companies is

represented in Figure 1.4. The relations between companies show the formation of clusters of

sectors, as we can see that same symbols in Figure 1.4, are linked together. The 100 most highly

capitalised companies in the UK that comprise the London Stock Exchange FTSE100, represent

approximately 80% of the UK market. From these 100 stocks, we study the time series of the

daily closing price of 67 stocks that have been in the index continuously over a period of almost

9 years, starting in 2nd August 1996 until 27th June 2005. This equals 2322 trading days per

stock. The legend for the symbols and industrial sectors for the data of London Stock Exchange,

FTSE100 and for the World Indices data is explained in Appendix B. The tree represented in

Figure 1.4 is just one example of the many trees that we already produced in our work.

Properties of the trees, like topology for different time scales [16, 17], degree distribution of

the nodes [18, 19, 20, 21, 22], time evolution of moments of the distances of the trees [20, 21,

23, 24, 25, 26, 27], spread of nodes in the tree (Section 2.4.2) [20, 24, 25], robustness of the tree

(Section 2.4.3) [20, 21, 22, 24, 25, 26, 28], topology before and after financial crashes [26] and

others were studied for different kinds of data [29, 30].

1.2 Wealth Distributions

The area of study of wealth distributions is another important aspect of economics now looked

at by physicists, which is not only related with the study of wealth or income distributions in

societies [3], but also with the size of companies in a country [31], or the GDP (Gross Domestic
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Figure 1.4: MST of 67 stocks of the main index of the London Stock Exchange (FTSE100)

computed from the time series of returns for each stock. For this tree we use the full time series

of 2322 daily prices from 2nd August 1996 until 27th June 2005. A division in clusters can be

seen from the figure where one sector (grey ◦) is the backbone of the tree and many sectors are

linked with this one. The classification of the sectors is presented in Appendix B.

Product) of countries [32]. The study of wealth distributions has attracted great interest since

the work of the socio-economist Vilfredo Pareto, who wrote a book about economical politics,

100 years ago [33], studying a large amount of economical data (Table 1.1), he suggested that

the distribution of wealth from different cities and countries follow a power law distribution with

similar exponents α (between 1 and 2), known nowadays as Pareto’s index:

P (w) ∼ w−(1+α), for large w. (1.2)

The power law distribution is also known as Pareto’s Law and sketches of both probability

distribution and cumulative distribution are shown in Figures 1.5 and 1.6, respectively. The

cumulative distribution of wealth is known as the probability that the wealth takes on a value

equal of bigger than w:

C(>w) ∼ w−α, for large w. (1.3)

This work of Pareto was the first empirical study of wealth distributions, but over the last

decade many physicists studied an extensive amount of data from different countries, summarised

in Table 1.2.
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P (w)

w

Figure 1.5: Sketch of the distribution of income according to Pareto. For large values of income

this follows a power law.

log w

log C(>w)

Figure 1.6: Sketch of the cumulative distribution of income. In this log− log plot the power-law

regime results in a straight line with slope −α.

Apart from the study of the empirical data, physicist are very interested in modelling wealth

distributions [34]. A detailed review of some models and open problems in the study of wealth

distribution [35] was published by us in a chapter of an Econophysics book [4]. Models used in

biological systems like Lotka-Volterra models, were used by physicists to explain the economic

trade relations in communities [36]. Gas models of collisions were transformed into economic
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Table 1.1: Table, taken from Pareto’s book [33], showing the exponent α for a number of different

data sets. Note that his is only a small extract of all the data that Pareto analysed.

Country Year α Country Year α

England 1843 1.50 Perouse, village 1.69

1879-80 1.35 Perouse, campagne 1.37

Prussia 1852 1.89 a 1.32

1876 1.72 Italian villages 1.45

1881 1.73 Basle 1887 1.24

1886 1.68 Paris 1.57

1890 1.60 Augsburg 1471 1.43

1894 1.60 1498 1.47

Saxony 1880 1.58 1512 1.26

1886 1.51 1526 1.13

Florence 1.41 Peru end of 18th century 1.79

aSome of the Italian main cities: Ancone, Arezzo, Parma and Pisa

models where agents substitute molecules, money substitutes energy and trade substitutes colli-

sions [37, 38]. A model of dynamical network of families [39], where each node is one family and

links between nodes means family relations, were used to implement money exchange between

different families due to payments of new links (like weddings), payments to the society (to rear

a child), distributions of money from nodes that will disappear (inheritance). The appeal in

using all these models is that they are simple models, with an analytical solution, few parame-

ters and the final result for some parameters can fit the real data of wealth distributions. But

there is still parts of the distribution of wealth that are not explained completely. For example,

the power law distribution of the wealth just appear for the upper 5-10% of the society. The

other part of the society is normally defined to have a log-normal or Gibbs distribution (Table

1.2). But even the power law in the end of the distribution seems to have more than one Pareto

exponent. As we can see from Table 1.2 when the distribution of wealth is just related with the

top billionaires, the exponent is low, compared with the top richest of the society in the other

studies. A model able to explain an exponent for the rich members of the society and other

exponent for the billionaires that normally appear on the list of World Top Richest (like Forbes

[40]) is our goal for this project, in the future, in terms of wealth distributions.
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Table 1.2: Table of empirical data. In column Source: S.H. - Size of Houses; I. - Income; I.T. -

Income Tax; Inhe. T. - Inheritance Tax; W. - Wealth. In column Distributions: Par. - Pareto

tail; LN - Log-normal; Exp. - Exponential; D. Par. - Double Pareto Log-normal; G. - Gamma.
Country Source Distributions Pareto Exponents Ref.

Egypt S.H. (14thB.C.)a Par. α = 1.59 ± 0.19 [41]

Japan I.T. (1992) Par. α = 2.057 ± 0.005 [42, 43, 44]

I. (1998) Par. α = 1.98

I.T. (1998) Par. α = 2.05

I. / I.T. (1998) Par. α = 2.06

I. (1887-2000) LN / Par. α ∼ 2.0b

U.S.A. I.T. (1997) Par. α = 1.6 [45]

Japan I.T. (2000) Par. α = 2.0

U.S.A. I. (1998) Exp. / Par. α = 1.7 ± 0.1 [46, 47, 48]

U.K. Inhe. T. (1996) Exp. / Par. α = 1.9

Italy I. (1977-2002) LN / Par. α ∼ 2.09 − 3.45 [49]

I. (1987) LN / Par. α = 2.09 ± 0.002

I. (1993) LN / Par. α = 2.74 ± 0.002

I. (1998) LN / Par. α = 2.76 ± 0.002

Australia I. (1993-97) Par. α ∼ 2.2 − 2.6 [50]

U.S.A. I. (1997) D. Par.c α = 22.43 / β = 1.43 [51]

Canada I. (1996) D. Par. α = 4.16 / β = 0.79

Sri-Lanka I. (1981) D. Par. α = 2.09 / β = 3.09

Bohemia I. (1933) D. Par. α = 2.15 / β = 8.40

U.S.A. 1980 G. / Par. α = 2.2 [52]

1989 G. / Par. α = 1.63

2001 G. / Par.

U.K. 1996 Par. α = 1.85

1998-99 Par. α = 1.85

U.S.A. I. (1992) Exp. / LN d [53]

U.K. I. (1992-2002) Exp. / LN

India W. (2002-2004)e Par. α ∼ 0.81 − 0.92 [54]

I. (1997) Par. α = 1.51

U.S.A. W. (1996)f Par. α = 1.36 [55, 56, 57]

W. (1997)g Par. α = 1.35

U.K. W. (1970) Par.

W. (1997)h Par. α = 1.06

Sweden W. (1965) Par. α = 1.66

France W. (1994) Par. α = 1.83

U.K. Inhe. T. (2001) Par. α = 1.78 [39]

Portugal I.T. (1998-2000) Par. α ∼ 2.30 − 2.46 [58]

aRelated to the size of houses found in an archaeological study.
bThis value is an average Pareto exponent.
cα and β are Pareto exponents for the richest and poorest part, respectively.
dBoth distributions are a good fit of the data.
e125 wealthiest individuals in India.
f400 wealthiest people, by Forbes.
gTop wealthiest people, by Forbes.
hTop wealthiest people, by Sunday Times.



Chapter 2

Methods

The computational part of our work concerns the analysis of financial data. Nowadays, we can

find much financial data on the Internet [59], but there is a big problem with this: parts of

data are missing, so in the beginning of our work, before uploading the data to a database, we

have to check what we can use and what we cannot. Which days are missing, which stocks are

missing, even the format of the data that we download from the Internet needs to be converted

in a different format for our database.

We create a MySQL database [60], where we upload all our data. After uploading the data

we have to classify the data, for example, if we have data from stocks of the London Stock

Exchange, and we just have the tick symbol of each company we will need to check the sector

or industry to which one belongs. But there is more than one classification, so we have to

test different classifications and see which one is more powerful for our study. With the term

powerful we mean the classification that will show the better visualisation of clusters of sectors

in the Minimal Spanning Tree, for example.

In this chapter, we will discuss the methods used until now.

2.1 Analysing returns

As we already said in the Introduction, some economists assume the returns to be Gaussian

distributed, but we saw in Figure 1.3 that the tails of the distribution are “fatter” than a

Gaussian distribution. To fit the Gaussian distribution we computed the mean (µ) and standard

deviation (σ) of the returns and plotted the probability distribution function:

P (x) =
1

σ
√

2π
exp

(

−(x − µ)2

2σ2

)

(2.1)

But we can fit distributions with fat tails, like the T-student or Tsallis distribution [61]

to the distribution of returns and see if the tails are better fitted with this. The probability

9
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distribution function of a T-student is given as:

Pk(x) = Nk
1

√

2πσ2
k

e
−x2/2σ2

k

k (2.2)

where Nk is a normalisation factor:

Nk =
Γ(k)√

kΓ
(

k − 1
2

) (2.3)

and Γ(k) = (k− 1)! is the Gamma function. The factor σk = σ
√

(k − 3/2)/k is related with the

effective standard deviation of the distribution (σ) and with the degree of distribution (k). The

function ez
k is an approximation of the exponential function called k-exponential:

ez
k = (1 − z/k)−k (2.4)

and in the limit k → ∞ this function reduces to the ordinary exponential function. The proba-

bility distribution function can be written as:

Pk(x) =
Γ(k)

Γ
(

k − 1
2

)

1

σ
√

π(2k − 3)

[

1 +
x2

σ2(2k − 3)

]−k

(2.5)

The parameter k is related with the Tsallis parameter q by k = 1/(q − 1). The computation

of the parameters of T-student distribution is explained in Appendix A. For all the stocks of

the London Stock Exchange that we studied, the minimum value of k is 1.7 and the maximum

9.0, but most of the values are in the [2, 4] interval, which means values of q in the [1.25, 1.5]

interval, that is around the values found by Tsallis [62] (1.40, 1.37 and 1.38) for 1−, 2− and 3−
minutes return, respectively, for the NYSE in 2001. For example the value of k found for HSBC

company is ∼ 2.90 (the one used in the T-student distribution in Figure 1.3).

Our study is based on the assumption that the returns of the stock price carry more informa-

tion than random noise. To check this, we will compute the correlation between returns of stock

prices and analyse the correlation matrix. The main idea of our work is to find the underlying

correlation matrix of stock returns.

2.2 The correlation of stock prices

The correlation coefficient, ρij between stocks i and j is given by:

ρij =
〈RiRj〉 − 〈Ri〉〈Rj〉

√

(

〈R2
i 〉 − 〈Ri〉2

)

(

〈R2
j 〉 − 〈Rj〉2

)

(2.6)

where Ri is the vector of the time series of log-returns, Ri(t) = ln Pi(t) − ln Pi(t − 1) and Pi(t)

is the daily closure price of stock i at day t. The notation 〈· · ·〉 means an average over time
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1
T

∑t+T−1
t′=t · · ·, where t is the first day and T is the length of our time series. We can normalise

the time series of returns for each stock by subtracting the mean and dividing by the standard

deviation:

R̃i =
Ri− < Ri >

√

〈R2
i 〉 − 〈Ri〉2

(2.7)

The correlation coefficient is then given by: ρij = 〈R̃iR̃j〉.
This coefficient can vary between −1 ≤ ρij ≤ 1, where −1 means completely anti-correlated

stocks and +1 completely correlated stocks. If ρij = 0 the stocks i and j are uncorrelated.

The coefficients form a symmetric N × N matrix with diagonal elements equal to unity. The

correlation matrix with elements ρij can be represented as:

C =
1

T
GGT (2.8)

where G is an N × T matrix with elements R̃i(t) and GT denotes the transpose of G.

The distribution of correlation coefficients is an important aspect of our study because can

show how the stocks from a portfolio are related with each other. If we compare the distribution

of real data with the one made from random data (Figure 3.1), conclusions about the non-

randomness of the market can be done. We can also study the moments of this distribution, as

the mean [20, 25]:

ρ =
2

N(N − 1)

∑

i<j

ρij (2.9)

the variance:

λ2 =
2

N(N − 1)

∑

i<j

(ρij − ρ)2, (2.10)

the skewness:

λ3 =
2

N(N − 1)λ
3/2
2

∑

i<j

(ρij − ρ)3, (2.11)

and the kurtosis:

λ4 =
2

N(N − 1)λ2
2

∑

i<j

(ρij − ρ)4. (2.12)

Just the elements of the upper triangle of the matrix are used to compute the matrix, because

it’s a symmetric matrix with diagonal elements equal to unity. If we divide our time series

in small windows and we move these windows in small steps, we create different correlation

matrices, and if we compute the moments of each matrix, we can study these moments in time.
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2.3 A Random Matrix Theory based analysis of stock correla-

tions

Studying the eigensystem of the correlation matrix, we can see some financial information in

the eigenvalues of the matrix and in the respective eigenvectors. We know that comparing the

spectrum of eigenvalues of correlation matrix with the spectrum of eigenvalues of a random

matrix, we can extract information about the market and about the sectors that constitute the

market. A random matrix is defined by [63]:

C′ =
1

T
G′G′T (2.13)

where G′ is a N × T matrix with columns of time series with zero mean and unit variance, that

are uncorrelated, the spectrum of eigenvalues can be calculated analytically. In the limit N → ∞
and T → ∞, where Q = T/N is fixed and bigger than 1, the probability density function of

eigenvalues of the random matrix is:

PRM (λ) =
Q

2π

√

(λmax − λ)(λ − λmin)

λ
(2.14)

where

λmax
min =

(

1 ± 1√
Q

)2

(2.15)

limits the interval where the probability density function is different from zero. The PRM (λ)

for Q = 34.6 (T = 2321 and N = 67 are the values for our London Stock Exchange data) is

shown in Figure 2.1 and it’s compared with the distribution of eigenvalues of a correlation matrix

computed from shuffled time series of original data of stocks from the London Stock Exchange.

If we compare the results of a correlation matrix constructed with real time series, with

the random matrix (Figure 3.3) we can see that the highest eigenvalues of the real matrix are

much higher than the highest eigenvalue of random matrix. The largest eigenvalue represents

something that is common to all stocks. If we analyse the respective eigenvector, all the stocks

have the same sign (Figure 3.4), so all participate in the same way.

The largest eigenvalue and its corresponding eigenvector can be interpreted as the collective

response of the market to any external factors, so it can be compared with the market index

[13, 14]. A way to prove this is to see the correlation between the index of the market and the

projection of the time series in the eigenvector related with the largest eigenvalue (Figure 3.5).

The projection is given by:

RN (t) =

N
∑

i=1

uN
i Ri(t) (2.16)

where RN (t) is the return of the portfolio of N stocks, defined by the eigenvector uN and we

call it market mode.
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Figure 2.1: Spectrum of the eigenvalues of random correlation matrix, computed using 2.14

with Q = 34.6, in bold compared with the normalised distribution of eigenvalues of a correlation

matrix computed from shuffled time series, that should be similar to random time series but

with the same distribution as the original time series of returns.

If we filter the real time series, extracting the market mode from every stock, we get a new

correlation matrix with the residuals Cres [14]. A way to filter the market mode is to use the

one-factor model or Capital Asset Pricing model [64], where the return of the price can be

expressed as:

Ri(t) = αi + βiR
N (t) + ǫi(t) (2.17)

The first term is the mean of the returns, the second term is the influence of the market index

and the last term is the residual. If we fit every time series (Ri(t) for every i) to the time series

of market mode (RN (t)) using the least square regression, we can get the values of parameters

α and β:

αi = < Ri > −βi < RN >

βi =
cov(Ri, R

N )

σ2
RN

(2.18)

where σRN is the standard deviation of the market mode and cov() is the covariance.

The residuals are given by:

ǫi(t) = Ri(t) − αi − βiR
N (t) (2.19)

and we can compute the matrix of residuals with these new time series.
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If we analyse the spectrum of eigenvalues of the new filtered matrix, some eigenvalues con-

tinue to be far outside the range obtained from equation 2.14 . These are the eigenvalues that

represent different sectors. Our main work is to try to understand a way to filter this informa-

tion, to end up with a time series of random information. Our approach is to use a multifactor

model, where we not just use a market mode, but also a sector mode [65, 66]. This sector

mode is defined for each sector in our portfolio and is related with the highest eigenvalue of the

correlation matrix of the stocks of only one sector, similar to what we did for the whole market.

Our multifactor model can be represented as:

Ri(t) = αi + βiR
N (t) +

NS
∑

j=1

γijR
Sj(t) + ǫi(t) (2.20)

where j represent the index of the sector presented in the portfolio. The new term has the

sector mode RSj (t) and a parameter γij that is only different from zero if the stock belongs to

the sector j. As we did before, we can now filter our time series by subtracting the market and

sector modes:

ǫi(t) = Ri(t) − αi − βiR
N (t) −

NS
∑

j=1

γijR
Sj(t) (2.21)

We use least square fitting to find the values of the parameters:

αi = < Ri > −βi < RN > −γij < RSj >

βi =
cov(Ri, R

N ) − γijcov(RSj , RN )

σ2
RN

γi =
cov(Ri, R

Sj )σ2
RN − cov(Ri, R

N )cov(RSj , RN )

σ2
RSj

σ2
RN −

[

cov(RSj , RN )
]2 (2.22)

We will need to check if this model is enough to represent the returns of the stocks, or if

there are other terms, like for example a term of correlations between stocks of different sectors.

2.4 Minimal Spanning Trees

Another way to study the correlation of stocks is to create a matrix of distances between stocks

from the correlation coefficients. With this matrix of distances we can create a tree where

nodes are stocks and links are the distance between the stocks. If two stocks are correlated, the

distance between them is small. The tree that we use to study these properties is the Minimal

Spanning Tree (MST).
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2.4.1 Distances

The metric distance, introduced by Mantegna [15], is determined from the Euclidean distance

between vectors, dij = |R̃i − R̃j |. Because |R̃i| = 1 it follows that:

d2
ij = |R̃i − R̃j |2 = |R̃i|2 + |R̃j |2 − 2R̃i · R̃j = 2 − 2ρij (2.23)

This relates the distance of two stocks to their correlation coefficient:

dij =
√

2(1 − ρij) (2.24)

This distance varies between 0 ≤ dij ≤ 2 where small values imply strong correlations between

stocks. Following the procedure of Mantegna [15], this distance matrix is now used to construct

a network with the essential information of the market.

This network (MST) has N − 1 links connecting N nodes. The nodes represent stocks and

the links are chosen such that the sum of all distances (normalised tree length) is minimal. We

perform this computation using Prim’s algorithm [67]. The Prim’s algorithm is given by:

• Choose the minimum distance between a pair of stocks and construct a link between them;

• Choose the next minimum distance between a pair of stocks, where one of the stocks

already has a link but the other does not have any links. If the conditions are respected

construct a link between them, if not, choose the next minimum distance where this is

obeyed;

• Continue to choose pairs of stocks to link, with the conditions to verify until we reach

N − 1 links.

With the information of which stocks are connected to one another, we use the Pajek software

to visualise these links [68]. The Pajek software uses the Kamada-Kawai algorithm [69] to display

the links and nodes. This algorithm introduce a dynamic system in which every two nodes are

connected by a “spring” with the respective distance between two stocks. The optimal layout of

vertices is when the total spring energy is minimal. As we saw in Figure 1.4 of the Introduction,

a MST of stock data is almost organised in clusters of different industrial sectors of the market.

The main idea for using MST, apart of the visualisation of links between companies, is to

filter data. From the N × (N − 1)/2 correlation coefficients we are only left with N − 1 points,

which we believe are the most important coefficients of the correlation matrix.

To see better this clustering property we developed a new kind of tree, where the stocks, if

they belong to the same sector and are linked together, emerge in one big node. The sizes of

the final nodes are proportional to the number of stocks that they contain, as shown in Figure

2.2.
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Pajek

Figure 2.2: New visualisation of the clusters of the MST of figure 1.4. The meaning of the

symbols is explained in Appendix B.

As we did for the correlations, we study the distribution of distances in the tree and the

main moments, as the mean or normalised tree length:

L =
1

N − 1

∑

dij∈Θ

dij (2.25)

where Θ represents the MST. The other moments are the variance:

ν2 =
1

N − 1

∑

dij∈Θ

(dij − L)2, (2.26)

the skewness:

ν3 =
1

(N − 1)ν
3/2
2

∑

dij∈Θ

(dij − L)3, (2.27)

and the kurtosis:

ν4 =
1

(N − 1)ν2
2

∑

dij∈Θ

(dij − L)4. (2.28)

Again we can divide our time series in small windows and move those windows in small steps,

creating different MST. If we compute the moments of each MST, we can study these moments

in time.
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2.4.2 Mean Occupation Layer

Changes in the density, or spread, of the MST can be examined through calculation of the mean

occupation layer, as defined by Onnela et al. [20]:

l(t, vc) =
1

N

N
∑

i=1

L(vt
i), (2.29)

where L(vt
i) denotes the level of a node, or vertex, vt

i in relation to the central node, whose level

is defined as zero. The central node can be defined as the node with the highest number of links

or as the node with the highest sum of correlations of its links. Both criteria produce similar

results. The mean occupation layer can then be calculated using either a fixed central node for

all windows, or with a continuously updated node.

2.4.3 Single and Multi Step Survival Rates

Finally, the robustness of links over time can be examined by calculating survival ratios of links,

or edges in successive MST. The single-step survival ratio is the fraction of links found in two

consecutive MST in common at times t and t − 1 and is defined by Onnela et al. [20] as:

σ(t) =
1

N − 1
|E(t) ∩ E(t − 1)| (2.30)

where E(t) is the set of edges of the MST at time t, ∩ is the intersection operator, and | · · · |
gives the number of elements in the set. A multi-step survival ratio can be used to study the

longer-term evolution [20]:

σ(t, k) =
1

N − 1
|E(t) ∩ E(t − 1) · · ·E(t − k + 1) ∩ E(t − k)| (2.31)

in which only the connections that continue for the entire period without any interruption are

counted.
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Chapter 3

Results

The data that we have in our database is daily prices from stocks of the main index of the

London Stock Exchange, FTSE100; weekly price from indices all around the world; daily price

from stocks of the main index in Euronext Lisbon, PSI20; daily prices of more than 6000 stocks

all over the world; Forbes’ list of top richest individuals in World from 1996 to 2006. In this

section, the results presented are from the daily prices of stocks of the London Stock Exchange,

FTSE100 and from weekly price of world indices.

3.1 The correlations of stock prices

The distribution of coefficients of the correlation matrix constructed from the time series of

stocks of the FTSE100, is shown in Figure 3.1 and compared with the distribution of coefficients

of a correlation matrix of shuffled time series. The results of the shuffle time series are similar

with the one for random time series, because the correlation in time of different companies is

destroyed. As expected for a random matrix, the distribution of the coefficients for the shuffle

time series is symmetric and with zero mean, different from the original time series, where the

distribution is asymmetric with non-zero mean. But the distribution depends on the length T

of the time series and depends on external aspects that affect the market as we can see in Figure

3.2. If we divide our time series in small windows and we move these windows in time, we will

get different matrices of correlations and different distributions of the coefficients. We do this in

order to see the market changes. We choose to divide the time series in windows of size 500 days

and move them day by day, so we will get 1822 (2322−500) different matrices. In Figure 3.2 we

can see the moments of the distribution of coefficients in time where the mean and variance are

highly correlated (0.779), the skewness and kurtosis are also highly correlated and the mean and

skewness are anti-correlated. This implies that when the mean correlation increases, usually

after some negative event in market, the variance increases. Thus the dispersion of values

19
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of the correlation coefficient is higher. The skewness is almost always positive, which means

that the distribution is asymmetric, but after a negative event the skewness decreases, and the

distribution of the correlation coefficients becomes more symmetric.

0 0.2 0.4 0.6 0.8
ρ

ij

0

5

10

15

20

P 
( 

ρ ij )
 

Figure 3.1: Distribution of coefficients of correlations between 67 stocks of the FTSE100, the

main index of the London Stock Exchange. The time series of each stock have 2322 days,

resulting in 2321 returns. The solid line represents the distribution for the original time series

and the broken line represents the distribution for the time series after been shuffled. The

shuffled time series work like random time series but with the same distribution of returns as

the original one.

3.2 Random Matrix Theory

Comparing the probability density functions of eigenvalues of random matrix, PRM (λ) with the

real correlation matrix, Preal(λ) we can see that some eigenvalues are way out of the spectrum

of the random matrix (Figure 3.3). We can regard this as the information of the market that is

not random. All the eigenvalues that are outside the region defined by random matrix theory

contain information that can be revealed when we look closer at the respective eigenvectors.

The elements of the eigenvector related with the largest eigenvalue are represented in Figure 3.4

and as we can see, they all have the same sign. Comparing the market mode constructed from

this eigenvector (equation 2.16) with the real index of the FTSE100, we can see a very high

correlation of 0.95 (Figure 3.5).
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Figure 3.2: Mean (eq. 2.9), variance (eq. 2.10), skewness (eq. 2.11) and kurtosis (eq. 2.12) of the

correlation coefficients of the matrix constructed from time series of 67 stocks of the FTSE100.

We use time windows of length T = 500 days and window step length parameter δT = 1 day.
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Figure 3.3: Empirical spectrum of the eigenvalues of correlation matrix constructed from time

series of 67 stocks of the FTSE100, compared with the analytical spectrum of the random matrix,

equation 2.14 (bold curve).
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Figure 3.4: Elements of the highest eigenvector of the real correlation matrix constructed from

time series of 67 stocks of the FTSE100.
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Figure 3.5: Returns of the portfolio of 67 stocks of FTSE100 using the definition of equation

2.16 against the real index of FTSE100 in time. The correlation between them is high, 0.95.

Analysing the eigensystem of the residual matrix (Cres) we conclude that the eigenvector of

the highest eigenvalue (Figure 3.6) is the same as the second eigenvector of the original matrix.
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So, we conclude that we are able to filter the influence of the market from our time series. This

eigenvector has information about the sectors. Stocks from the same sector that have different

signs are not clustered together when we see them in the MST (Figure 1.4), but if they have the

same sign they form a cluster. We can see that these companies belong to different sub-sectors

(Appendix B).
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Figure 3.6: Elements of the highest eigenvector of the correlation matrix of residuals (Cres)

constructed from filtered time series of 67 stocks of the FTSE100.

The correlation between the sector mode and the real index, FTSE100 is different for different

sectors. For example, Financial has a large correlation of 0.882, but Health Care have a negative

correlation of −0.673, as we can see in Figures 3.7 and 3.8.

3.3 Minimal Spanning Trees

3.3.1 Distances

To see how the results of the MST are similar with the results from the correlation matrix, we

compute the moments of the distances of the tree in time and compare with the same moments

for the correlation coefficient (Figure 3.9). As expected from equation 2.24, when the mean

correlation increases, the mean distance decreases and vice versa. Here, the mean and the

variance of the distances of the tree are anti-correlated but the skewness and the mean continue

to be anti-correlated. This means that after some negative event impacts the market, the tree

shrinks, so the mean distance decreases [26], the variance increases implying a higher dispersion
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Figure 3.7: Returns of the portfolio of the stocks of FTSE100 that belong to Financial Sector

using the definition of equation 2.16 against the real index of FTSE100 in time. The correlation

between them is high, 0.882.
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Figure 3.8: Returns of the portfolio of the stocks of FTSE100 that belong to Health Care Sector

using the definition of equation 2.16 against the real index of FTSE100 in time. They are

anticorrelated with a value of −0.673.
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of the values of distance and the skewness, that is almost always negative, increases showing

that the distribution of the distances of the MST gets more symmetric.
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Figure 3.9: Mean (eq. 2.25), variance (eq. 2.26), skewness (eq. 2.27) and kurtosis (eq. 2.28)

of the distances of the MST constructed from time series of 67 stocks of the FTSE100. We use

time windows of length T = 500 days and window step length parameter δT = 1 day.

A MST visualisation for our study of the world indices is shown in Figure 3.10. The clusters

which we observe appear to be organized principally according to a geographical criterion. With

the highest number of links, France can be considered the central node. Closely connected to

France are a number of the more developed European countries. We can also identify several

branches which form the major subsets of the MST and these can then be broken down into clus-

ters. The Netherlands heads a branch that includes clusters of additional European countries.

The U.S.A. links a cluster of North and South American countries to France via Germany. Aus-

tralia heads a branch with several groupings: all the Asian-Pacific countries form two clusters,

one of more developed and the other of less advanced countries. Most of the Central and East

European (CEE) countries, that joined the E.U. in 2004, form a cluster. Jordan, which appears

in a European clustering, is an apparent anomaly. This is likely due to the fact that Jordan is

the last node connected to the network and has correlations with other countries close to zero,

which means a relatively high minimum distance. We can conclude that Jordan is an outlier of

our study that does not have any close relation to any of the other countries represented here.
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Figure 3.10: MST of 53 countries computed from the time series of returns for each country

market index. For this tree we use the full time series of 475 weekly prices from 8th January

1997 until 1st February 2006. The classification is presented in Appendix B.

3.3.2 Mean Occupation Layer

The mean occupation layer can be calculated using either a fixed central node for all windows,

i.e., France, or with a continuously updated node. In Figure 3.11 the results are shown for

France as the fixed central node (black line), the dynamic maximum vertex degree node (black

dots) and the dynamic highest correlation vertex (gray line). The three sets of calculations are

roughly consistent. The mean occupation layer fluctuates over time as changes in the MST

occur due to market forces. There is, however, a broad downward trend in the mean occupation

layer, indicating that the MST over time is becoming more compact.

3.3.3 Single and Multi Step Survival Rates

Figure 3.12 presents the single-step survival ratios for the MST of country indices. The average

is about 0.85, indicating that a large majority of links between markets survives from one

window to the next. As might be expected, the ratio increases with increases in window length.

Figure 3.13 shows the multi-step survival ratio. In both cases we used T = 52 weeks and

δT = 1 week. Here, as might be expected, the connections disappear quite rapidly, but a small

proportion of links remains intact, creating a stable base for construction of the MST. Again

the evidence here is of importance for the construction of portfolios, indicating that while most
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Figure 3.11: Plot of mean occupation layer as function of time for the country indices (T = 52

weeks and window step length δT = 4 weeks). Black line shows static central vertex (France),

black dots uses dynamic central vertex based on maximum number of links, while gray line

shows dynamic central vertex based on maximum correlation value.

linkages disappear in the relatively short to medium term there are islands of stability where

the dynamics are consistent. The behavior of these two measures is similar to what has been

observed for individual stocks within a single equity market [20]. These results may understate

the stability of the global system of markets since some of the linkage shifts appear to take place

within relatively coherent geographical groups.
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Figure 3.12: Single-step survival ratio as function of time, for the country indices data. Window

length T = 52 weeks and window step length δT = 1 week.
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Figure 3.13: Multi-step survival ratio as function of the number of weeks in a log-log scale, for

the country indices data. Window length T = 52 weeks and window step length δT = 1 week.



Chapter 4

Forward Plan

Future work can be divided in four main parts:

• Analytical study of moments and other parameters using the one-factor model and the

multifactor model. Multifactor model with intra-sector and inter-sector terms. One term

is just related with the correlations between stocks of the same sector and the other with the

correlations of stocks from different sectors. Explaining the correlation between moments

of correlations and distances in the MST and the MST arrangement in clusters. Derive the

equation for the spectrum of eigenvalues of the correlation matrix for multifactor models.

• Study of large amount of data of daily stock prices from different markets. How these

stocks will cluster is the main propose of this study. In our studies we saw that stocks

from the same market (London Stock Exchange, FTSE100) clustered together in terms of

industrial sectors, and that indices from different countries cluster in terms of geographical

distance. Now we want to now if the geographical distance is more important that the

industrial classification.

• Simulation of stock prices using a new model, based on our studies of multifactor models,

for the return of the price of a stock. We want to create a new stochastic model for the

returns and compare the results with our empirical data.

• Simulation of a wealth distribution model, with dynamical networks, with few parameters,

that will mimic the real results of a Pareto’s Law with an exponent between 1.5 and 2.5.

This model should be able to get a distribution of wealth with double Pareto tail, as

we can see in many different results of empirical data, a Pareto exponent for the richest

individuals, and another exponent for the few very rich that normally appear in the top

richest list, like Forbes.
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Table 4.1: Gantt chart.
Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr

07 07 07 07 07 07 07 07 07 08 08 08 08

Analytical study of one-factor and multifactor models

Explain correlation between moments of correlations

Spectrum of eigenvalues of correlation matrix

Parameters of the MSTs

Stocks from different markets

MST analysis

Random Matrix Theory analysis

Simulation of a model of returns of stocks

Development and implementation of a new model

Simulations of the model

Simulations of a new Wealth Model

Writing Thesis



Appendix A

Computation of parameters of

T-student distribution

To compute the parameters of a T-student distribution we have to take in account the fact that

some moments of the distribution might not exist, because they diverge, so we use fractional

moments to avoid problems. If we consider:

< SF∓1 >=
1

T

T
∑

t=1

|R(t)|F∓1 (A-1)

as a fractional moment of the distribution of the returns R(t) because F is a fractional number,

and we compute the rate of the moments as:

rF =
< SF−1 >

< SF+1 >
=

1

(2k − 3)σ2

[

(k − 1)
2

F

]

− 1

(2k − 3)σ2
(A-2)

for different exponents in the interval: 2
3 < F < 1, we can see that rF = a 1

F + b is a linear

function of the parameters, so we can take the values of σ and k from the linear regression:

k =
2a − b

2a
(A-3)

and

σ2 =
1

a + b
(A-4)
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Appendix B

Classification and legend for the

industrial sectors of FTSE100 and

the world indices

The classification used for the industrial sectors of FTSE100 is the new classification adopted

by FTSE since the beginning of 2006, the Industry Classification Benchmark [70] created by

Dow Jones Indexes and FTSE. This classification is divided into 10 Industries, 18 Supersec-

tors, 39 Sectors and 104 Subsectors. Our portfolio is composed of 10 industries and 28 sectors:

Oil & Gas (Oil & Gas Producers), Basic Materials (Chemicals, Mining), Industrials (Construc-

tion & Materials, Aerospace & Defence, General Industrials, Industrial Transportation, Support

Services), Consumer Goods (Beverages, Food Producers, Household Goods, Tobacco), Health

Care (Health Care Equipment & Services, Pharmaceuticals & Biotechnology), Consumer Ser-

vices (Food & Drug Retailers, General Retailers, Media, Travel & Leisure), Telecommunications

(Fixed Line Telecommunications, Mobile Telecommunications), Utilities (Electricity, Gas Water

& Multiutilities), Financials (Banks, Nonlife Insurance, Life Insurance, Real Estate, General

Financial, Equity Investment Instruments, Nonequity Investment Instruments) and Technology

(Software & Computer Services). We represent each industry by a symbol: Oil & Gas (�), Basic

Materials (△), Industrials (�), Consumer Goods (grey �), Health Care (�), Consumer Services

(N), Telecommunications (♦), Utilities (•), Financials (grey ◦) and Technology (◦).
The coding for the world indices is: Europe, grey circles (grey ◦); North America, white

diamonds (♦); South America, grey squares (grey �); Asian-Pacific area, black triangles (N);

and “other” (Israel, Jordan, Turkey, South Africa), white squares (�).
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Appendix C

List of Publications and

Presentations

Publications

• “A Review of Empirical Studies and Models of Income Distributions in Society”, P. Rich-

mond, S. Hutzler, R. Coelho and P. Repetowicz, in “Econophysics and Sociophysics:

Trends and Perspectives”, eds. Chakrabarti et al., Wiley-VCH (2006)

• “Comments on recent studies of the dynamics and distribution of money”, Peter Richmond,

Przemek Repetowicz, Stefan Hutzler and Ricardo Coelho, Physica A 370 (2006) 43-48,

[Proceedings of the International Conference “Econophysics Colloquium”]

• “Sector analysis for a FTSE portfolio of stocks”, R. Coelho, S. Hutzler, P. Repetowicz and

P. Richmond, Physica A 373 (2007) 615-626

• “The Evolution of Interdependence in World Equity Markets - Evidence from Minimum

Spanning Trees”, Ricardo Coelho, Claire G. Gilmore, Brian Lucey, Peter Richmond and

Stefan Hutzler, Physica A 376 (2007) 455-466

Presentations

• “Dynamics of correlations from a FTSE100 portfolio”, Poster presentation in “Physics of

socio-economic Systems (AKSOE)”, Dresden 26th-31st March 2006

• “Minimal Spanning Trees (MST) analysis of random time series from different distribu-

tions”, Oral presentation in COST P10 Workshop “Network dynamics: From structure to

function”, 23rd September 2006, Vienna

35



36

• “Estudo de Mercados Financeiros: Reais vs. Aleatórios”, Oral presentation in Seminário

do Centro de F́ısica do Porto, 6th September 2006
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