
PY2005: Thermodynamics

Notes by Chris Blair

These notes cover the Senior Freshman course given by
Dr. Graham Cross in Michaelmas Term 2007, except
for lecture 12 on phase changes.

Some Multivariate Calculus

Functions relating (for example) pressure, volume and temperature occur frequently in thermo-
dynamics. Hence we need some results from the calculus of many variables.

Consider a function F (x, y, z) = 0, where x = x(y, z) and y = y(x, z), then

dx =

(
∂x

∂y

)
z

dy +

(
∂x

∂z

)
y

dz

dy =

(
∂y

∂x

)
z

dx+

(
∂y

∂z

)
x

dz

and subbing the latter into the former gives

dx =

(
∂x

∂y

)
z

(
∂y

∂x

)
z

dx+

[(
∂x

∂y

)
z

(
∂y

∂z

)
x

+

(
∂x

∂z

)
y

]
dz

Now let x, z be independent. Then for dz = 0, dx is arbitrary, so

dx =

(
∂x

∂y

)
z

(
∂y

∂x

)
z

dx

⇒
(
∂x

∂y

)
z

=

(
∂y

∂x

)−1

z

the inverse relation.
Now let dx = 0, so

0 =

[(
∂x

∂y

)
z

(
∂y

∂z

)
x

+

(
∂x

∂z

)
y

]
dz

⇒ −
(
∂x

∂z

)
y

=

(
∂x

∂y

)
z

(
∂y

∂z

)
x

⇒ −1 =

(
∂x

∂y

)
z

(
∂z

∂x

)
y

(
∂y

∂z

)
x

the cyclical relation.
Finally, consider a function f(x, y). In differential form

df =

(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

dy
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As this is the differential of a mathematical function, this is known as an exact differential. For

such functions we have ∂2f
∂x∂y = ∂2f

∂y∂x . Now consider some arbitrary differential

df = X(x, y)dx+ Y (x, y)dy

A necessary and sufficient condition for df to be exact is then(
∂X

∂y

)
x

=

(
∂Y

∂x

)
y

such that ∂2f
∂x∂y = ∂2f

∂y∂x .

Temperature

We begin our study of thermodynamics with some basic definitions that lead us to the idea of
temperature.

Definition: (System, Surroundings, Boundary) In our study of thermodynamics we concern
ourselves with a particular part of the universe we will call a system. The rest of the universe
is known as the surroundings, separated by a boundary which may allow the exchange of energy
and matter. We shall restrict ourselves to the study of closed systems, in which only energy may
be transferred.

Definition: (Equilibrium State, State Variables) An equilibrium state is one in which all the
bulk physical properties of the system are uniform throughout the system and do not change with
time. An equilibrium state is specified by two independent variables known as state variables.

Definition: (Thermal Equilibrium) If two thermodynamic systems are left in thermal contact
with each other, and after some time the two systems are in an equilibrium state with no further
changes occurring, then the systems are said to be in thermal equilibrium with each other.

Law: (Zeroth Law Of Thermodynamics) If each of two thermodynamic systems are in thermal
equilibrium with a third, they are in thermal equilibrium with each other.

Definition: (Temperature) The temperature of a system is a property that determines whether
or not that system is in thermal equilibrium with other systems.

Definition: (Equations of State) An equation of state of a system is a relationship between the
two independent state variables and the temperature, of the form f(X,Y, T ) = 0 where X and
Y are the two state variables.

e.g. for an ideal gas, the equilibrium state is described by the independent variables P and
V (pressure and volume), using the ideal gas equation

PV = nRT

Temperature Scales: We measure temperature using thermometric properties of a system.
These are measurable properties that vary with temperature, eg as X = cTX where X is the
thermometric property, c is a constant and TX is the temperature as measured using X. We fix
c by choosing some fixed and easily reproducible point TX and assigning to it a particular value.

2



e.g. the conventional choice is the triple point of water, which is assigned Ttp = 273.16, and

then c =
Xtp

273.16 , giving the following expression for temperature as:

TX = 273.16
X

Xtp

Note that this implies a zero of temperature on the X scale, which may not actually occur owing
to the particular properties of X. Also, the use of this formula for temperature is limited by X
being practically measurable.

Of particular interest is the gas scale, which uses the pressure of a gas as the thermometric
property X. As the quantity of gas used goes to zero, it is found that all gases give the same
value for temperature of a given system. We thus define the gas scale:

T = 273.16 lim
Ptp→0

P

Ptp
K

where K, or kelvin, is the unit of temperature. The constant 273.16 was chosen so as to ensure
there were exactly 100K between the melting and boiling points of water.

Work

In thermodynamics we are interested in the changes in state functions that occur when a system
changes from one equilibrium state to another, and the work done by or on the system during
these changes.

Definition: (Process) A process is the method or mechanism by which a system changes from
one equilibrium state to another.

Definition: (Quasistatic Process) A quasistatic process is a process which is a succession of
equilibrium states.

Definition: (Reversible Process) A reversible process is a quasistatic process where no dissipa-
tive forces are present.

Example: (Reversible and Irreversible) Consider the standard gas and piston system:

�

V1V2

If we move the piston in slowly, such that the changes in volume from V1 to V2 are infinitesimal,
then the equation of state PV = nRT holds at every point during the process - hence it is
reversible. If we suddenly push the piston from V1 to V2 turbulence and temperature gradients
are set up, and the process is irreversible even though the end points (P1, V1) and (P2, V2) are
the same as before.

Sign Convention for Work: When the surroundings do work on the system, the work is
positive. When the system does work on its surroundings the work is negative.
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Example: (Work) Consider the same system as in the previous example, and the effect of
moving the piston a distance dx outwards. The force on the gas is F = PA (with A being area
of the piston’s face), and the work done is

dW = −PAdx = −P dV

⇒W = −
∫ V2

V1

P dV

Note that work is path dependent, and hence is an inexact differential. We write it in infinitesimal
form as d̄W .

Definition: (Intensive and Extensive Variables) An intensive variable is size independent (e.g.
pressure, force). An extensive variable is size dependent (e.g. volume, length). The expression
for work always involves one of each kind, that is: d̄W = intensive d(extensive).

Definition: (Configuration Work) For reversible processes we have d̄W = Y1dX1 + Y2dX2 . . .
- for intensive variable Yi and extensive variable Xi. This is known as the configuration work.
(X1, X2 . . .) is known as the system configuration.

Irreversible processes cannot be expressed in terms of states variables (usually - in some
special cases irreversible processes do allow for work to be defined using sate variables). We
instead have (say) d̄W = −PdV+ dissipative work. This leads to:

Total Work = Configuration Work + Dissipative Work

Heat

The First Law of Thermodynamics relates work, heat and internal energy. It was discovered
empirically, on the basis of experiments by Joule who found that the amount of work needed
to raise the temperature of a thermally isolated system was independent of how the work was
carried out.

Definition: (Adiabatic Process) An adiabatic process is one in which the temperature of the
system is independent of the surroundings (i.e. the system is thermally isolated).

Law: (First Law Of Thermodynamics) If a thermally isolated system is brought from one
equilibrium state to another (i.e. in an adiabatic process), the work necessary to achieve this
change is independent of the process used.

Definition: (Internal Energy) Adiabatic work is path and process independent, and depends
only on the endpoints of a system in equilibrium, implying the existence of a state function U of
the system such that Wadiabatic = U2 − U1. This U is called the internal energy of the system.

Law: (First Law Of Thermodynamics) For forms of work other than adiabatic work, it is clear
that W 6= Wadiabatic = U2 − U1. So that energy is conserved, some other energy exchange
must take place - this exchange is the flow of heat into or out of the system, and leads to the
mathematical statement of the First Law:

∆U = W +Q

or infinitesimally,
dU = d̄W +d̄Q
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Definition: (Heat) Heat is the non-mechanical exchange of energy between the system and the
surroundings, denoted by Q or infinitesimally as d̄Q.

Sign Convention for Heat: The heat Q is positive for heat entering the system, and negative
for heat leaving the system.

Definition: (Heat Capacity) Consider a reversible flow of heat Q into a system, with a corre-
sponding temperature change ∆T . We define the heat capacity C to be:

C = lim
∆T→0

Q

∆T
=
d̄Q

dT

This is an extrinsic property of the system. We can define an intrinsic version known as the
specific heat capacity as

c =
1

m

d̄Q

dT

where m is the mass of the system. Note that the expression d̄Q
dT should not be considered a

derivative, and also that heat capacity is path dependent.

Example: (Heat Capacity at Constant Volume for Ideal Gas) For an ideal gas and from the
first law we have dU = −PdV +d̄Q, but here dV = 0, hence dU = d̄Q. This gives us our definition
for heat capacity at constant volume:

CV = lim
∆T→0

Q

∆T
=
d̄Q

dT
=

(
∂U

∂T

)
V

Definition: (Enthalpy) The enthalpy H is defined as:

H = U + PV

Example: (Heat Capacity at Constant Pressure for Ideal Gas) Consider the enthalpy H, then
dH = dU + PdV + V dP . Subbing in for dU from the first law, we get dH = d̄Q+ V dP , and for
a constant pressure process dH = d̄Q. Hence the heat capacity at constant pressure is:

CP =

(
∂H

∂T

)
P

Difference of Heat Capacities, Ideal Gas: From the first law

dU = d̄W +d̄Q

⇒ d̄Q = CvdT + PdV

and then differentiating with respect to T at constant pressure:(
d̄Q

dT

)
P

= Cp = Cv + P

(
∂V

∂T

)
P

⇒ Cp = Cv + nR

using the ideal gas law.
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Adiabatic Gas Expansion: From the first law

d̄Q = 0 = dU + PdV

⇒ 0 = CvdT + PdV

⇒
∫
Cv

dT

T
= −nR

∫
dV

V

using the ideal gas law. Integrating gives:

Cv lnT = −nR lnV + constant

⇒ lnT = −Cp − Cv
Cv

lnV + constant

and we define the ratio of heat capacities to be γ =
Cp

Cv
> 1, so

lnT = −(γ − 1) lnV + constant

⇒ T = constant× V 1−γ

So for an adiabatic gas expansion
TV γ−1 = constant

and
PV γ = constant

Engines

Early study of thermodynamics was a result of the development of the steam engine and the
need to understand and improve their operation.

Definition: (Heat Engine) A heat engine is a device that in general:

1. Receives heat Q2 at a high temperature

2. Does some mechanical work on its surroundings

3. Rejects heat Q1 at a lower temperature

The net heat flow is then
Q = Q2 −Q1

A cyclic heat engine is a heat engine that operates in a cycle. We then have:

∆U = 0 = −W +Q

⇒W = Q

with the minus sign due the fact that the system is doing work on the surroundings.

Definition: (Thermal Efficiency of Heat Engine) The thermal efficiency of a heat engine is
defined as the ratio of output work to input heat:

η =
W

Q2
=
Q2 −Q1

Q2
= 1− Q1

Q2

Carnot Cycle: Any cyclic process bounded by two isotherms and two adiabatics is a Carnot
cycle. Consider such a process, ABCDA. It operates as a heat engine as follows:
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• A→ B: reversible isothermal process. The system does work W2 and heat Q2 flows in, at
temperature T2.

• B → C: reversible adiabatic process. The system cools from T2 to T1, and does work W ′.

• C → D: reversible isothermal process. The system does work W1 and heat Q1 flows out,
at temperature T1.

• D → A: reversible adiabatic process. The system warms from T1 to T2, and does work
W ′′.

Example: (Carnot Cycle for Ideal Gas) Consider first the isotherms:

• A→ B: ∆U = 0 = W2 +Q2

⇒ Q2 = −
(
−
∫ B

A

PdV
)

= nRT2

∫ B

A

dV

V
= nRT2 ln

(
VB
VA

)
• C → D: Similarly,

Q1 = −W1 = nRT1 ln

(
VC
VD

)
In the first case the system does work and gains heat, while in the second it is worked on and
loses heat.

In the case of the adiabatic parts of the cycle, we have TV γ−1 =constant, so:

T2V
γ−1
B = T1V

γ−1
C

T2V
γ−1
A = T1V

γ−1
D

⇒ VB
VA

=
VC
VD

⇒ Q2

Q1
=
T2

T1

Hence,

η =
W

Q2
=
Q2 −Q1

Q2
=
T2 − T1

T2
= 1− T1

T2

Definition: (Coefficient of Performance for Carnot Refrigerator) For a Carnot refrigerator
(just a Carnot cycle performed in the opposite direction) we have the coefficient of performance
c defined as the ratio of extracted heat to input work:

c =
Q1

W
=

Q1

Q2 −Q1
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Second Law Of Thermodynamics

The Second Law of Thermodynamics imposes limits on the behaviour and efficiency of heat
engines.

Law: (Second Law of Thermodynamics) It is impossible to construct a device that, operating in
a cycle, will produce no effect other than the extraction of heat from a single body at a uniform
temperature and the performance of an equivalent amount of work. (Kelvin-Plank)

or equivalently,
It is impossible to construct a device that, operating in a cycle, produces no effect other than

the transfer of heat from a colder to a hotter body. (Clausius)

Proof of Equivalence of the Kelvin-Plank and Clausius statements: Suppose the
Kelvin-Plank statement untrue. Then it is possible to have an engine E which takes heat Q1

from a hot body and delivers work W = Q1. Let this engine drive a refrigerator R (such that W
is sufficient to drive one cycle of R), which extracts heat Q2 from a cold body.

?Q1

W-

6Q2

6
Q1 + Q2

E R

Cold Body

Hot Body

The composite system E + R then takes heat Q2 from the cold body and delivers heat
Q2 +Q1 −Q1 = Q2 to the hot body, thus violating the Clausius statement of the second law.

Now suppose the Clausius statement untrue. Then we can have a refrigeratorR which extracts
heat Q2 from a cold body and delivers the same heat Q2 to a hot body in one cycle. Let us then
construct an engine E operating between the two bodies such that in one cycle it extracts heat
Q1 from the hot body, and delivers heat Q2 to the cold body, doing work W = Q1 −Q2.

6Q2

6

W = Q1 − Q2-

?Q2
Q2

?Q1

R E

Cold Body

Hot Body

The composite system E + R then takes heat Q1 − Q2 from the hot body, and delivers the
same amount of work, thus violating the Kelvin-Plank statement of the Second Law. Hence the
two statements are equivalent.

Carnot’s Theorem: No engine operating between two reservoirs can be more efficient than a
Carnot engine operating between those two reservoirs.
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To prove Carnot’s theorem, suppose that there exists an engine E′ with efficiency η′ > ηc.
This engine extracts heat Q′1 from the hot reservoir, performs work W ′ and delivers heat Q′2 =
Q′1 −W ′ to the cold reservoir. Let us also have a Carnot engine C, efficiency ηc, between the
two reservoirs, performing the same amount of work and delivering heat Q2 = Q1 −W to the
cold reservoir.

?Q
′
1

?

W ′- W-

?Q2 = Q1 −WQ′
2

?Q1

E′ C

Cold Reservoir

Hot Reservoir

If η′ > ηc, then
W ′

Q′1
>
W

Q1

⇒ Q1 > Q′1

as W = W ′. Now, we can also drive the Carnot engine backwards as a refrigerator, extracting
heat Q2 = Q1−W from the cold reservoir and delivering heat Q1 to the hot reservoir. This acts
with the engine E′ as a composite system shown below:

?Q
′
1

?

W-

6Q2 = Q1 −W
Q′

2
= Q′

1
−W

6Q1

E′ C

Cold Reservoir

Hot Reservoir

The composite system E′ + C extracts positive heat Q1 − Q′1 from the cold reservoir and
delivers the same heat to the hot reservoir, with no external work required. This violates the
Clausius statement of the Second Law, and implies that our assumption η′ > ηc is incorrect.
Hence,

η ≤ ηC
with equality if Q′1 = Q1.

Corollary to Carnot’s Theorem: All Carnot engines operating between the same two
reservoirs have the same efficiency.

This is proved using a similar argument to before, and letting each of the Carnot engines
drive the other backwards as a refrigerator, to show that η′c ≤ ηc and ηc ≤ η′c, proving that
ηc = η′c.
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Entropy

One of the most important concepts in thermodynamics is that of entropy.

Definition: (Thermodynamic Temperature) For any material, we can define an absolute tem-
perature by:

|Q2|
|Q1|

=
T2

T1

where T = Aφ(θ), with A being some constant of proportionality and φ(θ) being some function,
possibly unknown, of a thermometric property θ.

Clausius Inequality: Consider some cyclic process, acting on a working substance whose
state is unchanged at the end of the cycle, and suppose its initial temperature is T1. We consider
the changes to the substance being ultimately due to a principal external reservoir at T̃ , and
consider the process as being composed of many small Carnot cycles operating between auxillary
reservoirs at T̃ and the substance at temperatures Ti. For instance, a Carnot cycle operates
between an auxillary reservoir at T̃ and the substance at T1 to raise the temperature to T2, by

supplying heat δQ1. This takes heat T̃
T1
δQ1 from the T̃ reservoir (from the definition of absolute

temperature) and does work δW1.

For the entire process, we have dU = 0, Q =
∑
i
T̃
Ti
δQi and W =

∑
i δWi. From the first law,

0 = Q−W ⇒W = Q

and the composite system of all the auxillary reservoirs has the effect of extracting heat from
just one reservoir (the principal external one) and performing an equivalent amount of work.
This violates the Second Law, unless both W and Q are negative (work is done on the system
and the same quantity of heat flows out) or zero. Hence we have that

W = Q ≤ 0

or

T̃
∑
i

δQi
Ti
≤ 0

and in the infinitesimal limit, ∮
d̄Q

T
≤ 0

which is the Clausius inequality. Equality holds in the reversible case (as in that case we could
take our cycle in the opposite direction to obtain the reverse form of the inequality).

Entropy: In a reversible process, we have
∮
d̄Qr

T = 0, hence the integral
∫
d̄Qr

T is path indepen-
dent. It follows that there must be a state function S such that

∆S = Sb − Sa =

∫ b

a

d̄Qr
T

We call S the entropy, defined by:

dS =
d̄Qr
T

Principle of Increasing Entropy: Consider some cyclic process consisting of an irreversible
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path from a to b followed by a reversible path from b to a again. We have∮
d̄Q

T
≤ 0

⇒
∫ b

a

d̄Q

T
+

∫ a

b

d̄Qr
T
≤ 0

⇒
∫ b

a

d̄Q

T
≤ −

∫ a

b

d̄Qr
T

=

∫ b

a

d̄Qr
T

= Sb − Sa = ∆S

So for an infinitesimal part of a process

d̄Q

T
≤ dS

with equality if the process is reversible. Hence in an infinitesimal irreversible process there is a
definite entropy change dS. If the system is thermally isolated then d̄Q = 0. Hence

dS ≥ 0

So for an isolated system, the entropy either increases or remains constant. It follows that an
isolated system has maximum entropy when in equilibrium. The entropy of a non-isolated system
can decrease, but it is always found that the entropy of the surroundings increase by at least the
same amount.

Example: (Entropy in Different Processes)

• Reversible adiabatic processes: d̄Q = 0 and so dS = 0. Hence these are isentropic processes.

• Reversible isothermal processes:

∆S = Sb − Sa =

∫ b

a

dS =

∫ b

a

d̄Qr
T

=
1

T

∫ b

a

d̄Qr =
Qr
T

• Carnot cycle: ∫ B

A

TdS =

∫ B

A

T
d̄Q2

T
=

∫ B

A

d̄Q2 = Q2

so ∮
TdS = Q2 −Q1 = Q

On a T -S diagram, a Carnot cycle takes the shape of a rectangle.

• Irreversible processes: Since entropy is a state function, changes to it only depend on the
end points. Hence, to calculate the entropy change due to an irreversible process, we can
instead construct a reversible process with the same end points, and use it to work out the
entropy change.

e.g. Irreversible heat flow from large reservoir at temperature T2 into a small system at
temperature T1, under finite temperature difference. We consider the final state for the
system, and assume this state was reached by a reversible isobaric process, then

∆S1 = ST2
− ST1

=

∫ T2

T1

dS =

∫ T2

T1

d̄Qr
T

=

∫ T2

T1

CP dT

T
= CP ln

T2

T1
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assuming CP is relatively constant over the temperature range. Now we consider the final
state for the reservoir. The heat flow in the actual irreversible process is Q = CP (T2−T1).
We instead consider a reversible isothermal process, but involving the same quantity of
heat, then

∆S2 = − Q
T2

= −CP (T2 − T1)

T2

Hence,

∆S = ∆S1 + ∆S2 = CP

(
ln
T2

T1
− T2 − T1

T2

)
≥ 0

e.g. Free gas expansion. An equivalent reversible process is an isothermal reversible ex-
pansion involving a piston being pushed out slowly by the gas. This results in the system
doing work while absorbing the same quantity of heat. From the first law,

d̄Q = dU + PdV = PdV

⇒ dS =
P

T
dV = nR

dV

V

as TdS = d̄Qr. Hence,

∆S = nR ln
V2

V1

Maxwell Relations

In this section we will use the central equation of thermodynamics to derive the Maxwell relations.

Central Equation of Thermodynamics: From the first law, dU = d̄Q + d̄W . Consider a
reversible infinitesimal process, then

d̄Qr = TdS , d̄W = −PdV

and hence
TdS = dU + PdV

which is the Central Equation of Thermodynamics, and which holds for any process.

Definition: (Helmholtz Free Energy) The Helmholtz free energy F is defined as

F = U − TS

Definition: (Gibbs Free Energy) The Gibbs free energy G is defined as

G = H − TS

Derivation of the Maxwell Relations:

• From the central equation, we have dU = TdS − PdV . This suggests that we have U =
U(S, V ), giving

dU =

(
∂U

∂S

)
V

dS +

(
∂U

∂V

)
S

dV
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⇒
(
∂U

∂S

)
V

= T and

(
∂U

∂V

)
S

= −P

Now, for the differential form of U to be exact we must have(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

• We have that the enthalpy H = U + PV , so dH = dU + PdV + V dP

⇒ dH = TdS + V dP

using the central equation. This implies that H = H(S, P ), so

dH =

(
∂H

∂S

)
P

dS +

(
∂H

∂P

)
S

dP

⇒
(
∂H

∂S

)
P

= T and

(
∂H

∂P

)
S

= V

and for the differential form of H to be exact,(
∂T

∂P

)
S

=

(
∂V

∂S

)
P

• We have that the Helmholtz free energy F = U − TS, so dF = dU − TdS − SdT

⇒ dF = −PdV − SdT

using the central equation. This implies that F = F (V, T ), so

dF =

(
∂F

∂V

)
T

dV +

(
∂F

∂T

)
V

dT

⇒
(
∂F

∂V

)
T

= −P and

(
∂F

∂T

)
V

= −S

and for the differential form of F to be exact,(
∂P

∂T

)
V

=

(
∂S

∂T

)
V

• We have that the Gibbs function G = H − TS, so dG = dH − TdS − SdT

⇒ dG = V dP − SdT

using the central equation and definition of the enthalpy. This implies that G = G(P, T ),
so

dG =

(
∂G

∂P

)
T

dP +

(
∂G

∂T

)
P

dT

⇒
(
∂G

∂P

)
T

= V and

(
∂G

∂T

)
P

= −S

and for the differential form of G to be exact,(
∂V

∂T

)
P

= −
(
∂S

∂P

)
T
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Maxwell Relations: Thus we have:(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

,

(
∂T

∂P

)
S

=

(
∂V

∂S

)
P(

∂V

∂T

)
P

= −
(
∂S

∂P

)
T

,

(
∂P

∂T

)
V

=

(
∂S

∂V

)
T

the Maxwell relations. These can be remembered using the following:

−S
P V

T

To construct each Maxwell relation, start at some point and go clockwise around three letters to
obtain the left hand side. If you have both P and S, include a minus sign. Then move on one
letter and count back anti-clockwise three letters, inserting a minus sign if you have both P and
S.

Definition: (Thermodynamic Potentials) The internal energy, enthalpy, Helmholtz free energy
and Gibbs free energy are known as the thermodynamic potentials. From our derivaton of the
Maxwell relations we see that they have natural or characteristic variables as follows:

Thermodynamic Potential Natural Variables
U S, V
H S, P
F T, V
G T, P

A complete thermodynamic description of a substance requires two independent equations:
the equation of the state (e.g. a PV T surface) and the energy equation (eg. UV T surface;
see later). However if a thermodynamic potential is known as a function of its characteristic
variables then we have a full thermodynamic description, e.g. for F = F (T, V ) the equation of
state is derived from

(
∂F
∂V

)
T

= −P . The relationships of this form between the potentials and
the state variables P , V etc. can be thought of as being similar to the relationship between the
potentials and fields in electromagnetic theory.

Some Heat Capacity Results

We can now derive some useful expressions involving the heat capacities at constant volume and
pressure.

Constant Volume Heat Capacity: From the central equation, we have dU = TdS − PdV ,
so for an isochoric process dU = TdS = d̄Qr. Hence,

Cv =
d̄Qr
dT

=

(
∂U

∂T

)
V

=

(
∂U

∂S

)
V

(
∂S

∂T

)
V

⇒ Cv = T

(
∂S

∂T

)
V
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Constant Pressure Heat Capacity: For a reversible isobaric process, dH = TdS = d̄Qr,
using our derivation of the second Maxwell relation. Hence,

Cp =
d̄Qr
dT

=

(
∂H

∂T

)
P

=

(
∂H

∂S

)
P

(
∂S

∂T

)
P

⇒ Cp = T

(
∂S

∂T

)
P

Difference in Heat Capacities: For an ideal gas we had Cp = Cv + nR. We will now derive
a similar relationship for a general PV T system. Let S = S(T, V ), then

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV

We now divide by dT at constant pressure and multiply across by T :

T

(
∂S

∂T

)
P

= T

(
∂S

∂T

)
V

+ T

(
∂S

∂V

)
T

(
∂V

∂T

)
P

⇒ Cp = Cv + T

(
∂S

∂V

)
T

(
∂V

∂T

)
P

⇒ Cp = Cv + T

(
∂P

∂T

)
V

(
∂V

∂T

)
P

using a Maxwell relation, and we now use the cyclic relation(
∂P

∂T

)
V

(
∂V

∂P

)
T

(
∂T

∂V

)
P

= −1

to obtain

Cp = Cv − T
(
∂P

∂V

)
T

(
∂V

∂T

)2

P

We can relate this to the volume thermal expansivity β = 1
V

(
∂V
∂T

)
P

and the bulk modulus

κ = −V
(
∂P
∂V

)
T

:

Cp = Cv + Tβ2κV

Heat Capacity Derivatives: We have Cv = T
(
∂S
∂T

)
V

⇒
(
∂Cv
∂V

)
T

= T

(
∂

∂V

)
T

(
∂S

∂T

)
V

= T

(
∂

∂T

)
V

(
∂S

∂V

)
T

= T

(
∂

∂T

)
V

(
∂P

∂T

)
V

using a Maxwell relation. Hence, (
∂Cv
∂V

)
T

= T

(
∂2P

∂T 2

)
V

which can be thought of as the limiting value of heat absorption per unit temperature change as
a function of the particular constant volume system.
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Similarly, we can derive (
∂Cp
∂P

)
T

= −T
(
∂2V

∂T 2

)
P

Ratio of Heat Capacities: Now,

Cp
Cv

=

(
∂S
∂T

)
P(

∂S
∂T

)
V

and we have the cyclic relations:(
∂S

∂T

)
P

(
∂P

∂S

)
T

(
∂T

∂P

)
S

= −1⇒
(
∂S

∂T

)
P

= −
(
∂S

∂P

)
T

(
∂P

∂T

)
S(

∂S

∂T

)
V

(
∂V

∂S

)
T

(
∂T

∂V

)
S

= −1⇒
(
∂S

∂T

)
V

= −
(
∂S

∂V

)
T

(
∂V

∂T

)
S

so
Cp
Cv

=

(
∂S
∂P

)
T

(
∂P
∂T

)
S(

∂S
∂V

)
T

(
∂V
∂T

)
S

⇒ Cp
Cv

=

(
∂V
∂S

)
T

(
∂S
∂P

)
T(

∂V
∂T

)
S

(
∂T
∂P

)
S

⇒ Cp
Cv

=

(
∂V
∂P

)
T(

∂V
∂P

)
S

=
κT
κS

using the isothermal and adiabatic compressibilities:

κT = − 1

V

(
∂V

∂P

)
T

κS = − 1

V

(
∂V

∂P

)
S

TdS Equations: The TdS equations are:

• TdS = CvdT + T
(
∂P
∂T

)
V
dV

• TdS = CpdT − T
(
∂V
∂T

)
P
dP

• TdS = Cv
(
∂T
∂P

)
V
dP + Cp

(
∂T
∂V

)
P
dV

To derive the first, we start with Cv = T
(
∂S
∂T

)
V

and write S = S(T, V ) in infinitesimal form:

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV

⇒ dS =
Cv
T
dT +

(
∂P

∂T

)
V

dV

using a Maxwell relation, and so

TdS = CvdT + T

(
∂P

∂T

)
V

dV

16



To derive the second, we start with Cp = T
(
∂S
∂T

)
P

and write S = S(T, P ) in infinitesimal form:

dS =

(
∂S

∂T

)
P

dT +

(
∂S

∂P

)
T

dP

⇒ dS =
Cp
T
dT −

(
∂V

∂T

)
P

dP

using a Maxwell relation, and so

TdS = CpdT − T
(
∂V

∂T

)
P

dP

To derive the third, we start with S = S(P, V ):

dS =

(
∂S

∂P

)
V

dP +

(
∂S

∂V

)
P

dV

⇒ dS =

(
∂S

∂T

)
V

(
∂T

∂P

)
V

dP +

(
∂S

∂T

)
V

(
∂T

∂V

)
P

dV

⇒ TdS = Cv

(
∂T

∂P

)
V

dP + Cp

(
∂T

∂V

)
P

dV

using our heat capacity definitions.

Other Thermodynamic Results

We here produce some thermodynamic results using the central equation, Maxwell’s relations
and the thermodynamic potentials U , H, F and G.

The Energy Equation: From the central equation,

dU = TdS − PdV

⇒
(
∂U

∂V

)
T

= T

(
∂S

∂V

)
T

− P

⇒
(
∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P

using a Maxwell relation. This is the energy equation. For an ideal gas, we find that
(
∂U
∂V

)
T

= 0,
hence for an ideal gas U = U(T ) (whereas for other materials U = U(T, V )).

Entropy of an Ideal Gas: For an ideal gas, U = U(T ) and so Cv =
(
∂U
∂T

)
V

= dU
dT . Then we

have
TdS = dU + PdV

⇒ TdS = CvdT + PdV

In molar terms, Pv = RT and so

Tds = cvdT +
RT

v
dv
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⇒ ds = cv
dT

T
+R

dv

v

⇒ s = cv lnT +R ln v + s0

the ideal gas entropy per mole.

Enthalpy of a Chemical Reaction: Consider some chemical reaction, producing a volume
change ∆V , absorbing heat Q and pushing piston with external pressure P0. Then from the first
law,

∆U = Q− P0∆V

⇒ Q = ∆U + P0∆V = ∆U + ∆(PV )

as P = P0 = constant. Hence,
Q = ∆H

Work Done When No Net Temperature Change: Consider work performed by a system
in thermal contact with its surroundings (at temperature T0), but with the temperature of the
system the same at the endpoints. For all such processes,

∆S + ∆S0 ≥ 0

and for the surroundings

∆S0 = − Q
T0

⇒ ∆S − Q

T0
≥ 0

⇒ Q− T0∆S ≤ 0

⇒ ∆U +W − T0∆S ≤ 0

from the first law, and so
∆(U − TS) +W ≤ 0

⇒W ≤ −∆F

hence the maximum work attainable for a system in thermal contact with a reservoir is minus
the change in the Helmholtz potential.

Conditions For Equilibrium

We finish by briefly discussing some conditions for thermodynamic equilibrium.

Conditions for Equilibrium and Helmholtz Free Energy: Consider a constant volume
system in thermal contact with a heat bath, which may undergo some irreversible process in-
volving heat flow Q. To analyse this system, we instead consider a fully isothermal, isochoric
process with the same endpoints. We have

∆S + ∆S0 ≥ 0

and for the heat bath

∆S0 = − Q
T0

18



⇒ ∆S − Q

T0
≥ 0

⇒ Q− T0∆S ≤ 0

⇒ ∆U − T0∆S ≤ 0

from the first law (dV = 0), and so
∆(U − TS) ≤ 0

⇒ ∆F ≤ 0

Hence the condition for thermodynamic equilibrium in a system in thermal contact with a heat
reservoir and at constant volume is for F to be a minimum. This has the effect of maximising
the entropy for the system and its surroundings.

Example: (Lattice Point Defects) Consider a crystal lattice of atoms. Given sufficient thermal
energy an atom in the lattice will break free and either fill a vacancy elsewhere or become an
interstitial (i.e. free) atom. Vacancies and interstitials are examples of point defects in the
lattice. From the first law, one would expect the point defect population to be zero, as vacancies
and interstitials cost extra energy, so having none minimises U . However, if the crystal is in
thermal contact with a heat bath we instead must maximise the entropy of the entire system.
For F = U − TS, the internal energy increases with each point defect, but so does the entropy.
For increasing temperature, the TS term dominates, leading to large point defect populations
and (eventually) melting.

Example: (Surface Tension) Consider a pipette attached to a reservoir of incompressible liquid
at temperature T0. A drop forms at the end of the pipette, with radius r and surface tension σ.
From statics, the pressure inside the drop P is related to the external pressure P0 by

P = P0 +
2σ

r

Hence at equilibrium, the reservoir must be put under pressure P when the drop is experiencing
pressure P0. Now consider an isothermal, reversible expansion of the drop from r to r+ dr. The
volume change is then

dV = 4πr2dr

and hence

dW = (P − P0)dV =
2σ

r
4πr2dr

⇒ dW = 8πσrdr

and this is clearly the change dF in the free energy of the entire system, from W = −∆F . Now,
for the reservoir, with per unit volume free energy f0, we have

dFres = −f0dV = −4πf0r
2dr

and as
dFtotal = dFres + dFdrop

we have

dFdrop =

(
∂Fdrop

∂r

)
T

= 4πf0r
2dr + 8πσrdr

19



and upon integrating

Fdrop =
4

3
πr3f0 + 4πr2σ

showing that F is minimised by a spherical drop.

Conditions for Equilibrium and Gibbs Free Energy: Consider a constant pressure system
in thermal contact with a heat bath, which may undergo some irreversible process involving heat
flow Q. To analyse this system, we instead consider a fully isobaric, isochoric process with the
same endpoints. We have

∆S + ∆S0 ≥ 0

and for the heat bath

∆S0 = − Q
T0

⇒ ∆S − Q

T0
≥ 0

⇒ Q− T0∆S ≤ 0

⇒ ∆U + P0∆V − T0∆S ≤ 0

from the first law, and as ∆P = ∆T = 0 we have

∆U + ∆(PV )−∆(TS) ≤ 0

∆(U + PV − TS) ≤ 0

⇒ ∆G ≤ 0

Hence the condition for thermodynamic equilibrium in a system in thermal contact with a heat
reservoir and at constant pressure is for G to be a minimum.

Now, as we must have ∆G ≤ 0 or

∆H − T0∆S ≤ 0

for the process to proceed we can consider the different possibilites for the signs of ∆H and ∆S:
if ∆H > 0 and ∆S < 0 the process cannot occur; if ∆H < 0 and ∆S > 0 the process may
occur; if both have the same sign then they balance, with the dominant term dependent on the
magnitude of T0.

As G = T − TS and F = U − TS then G = F + PV and so

∆G = ∆F + ∆(PV )

it follows that G and F are interchangable for systems where ∆(PV ) ≈ 0, i.e. often for solid
systems, but not for gas systems.
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Summary of Equilibrium Conditions:

System Condition

Totally isolated S a maximum

Thermally isolated, constant P H a minimum

Thermally isolated, constant V U a minimum

Connected to heat bath, constant V F a minimum

Connected to heat bath, constant P G a minimum

Note that all these conditions in the end amount to maximising the entropy for the system
and surroundings.
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