Revision notes for Part III Supersymmetry

Even though the sound of it is something quite atrocious...

- from “Supercalifragilisticexpialidocious,” Mary Poppins

Notes by Chris Blair, May 2011

1 Supersummary

Basic definitions/identities:
N = nuy = dlag (1, —1, —1, —1)

0 1 - s
g = (_1 O) =% o= —c" €ap = —g%b

wa = EQﬂwﬁ wa = 5aﬁwﬁ ¢X = waXa 1;)2 = 1/_1@)_(@

0-':0'4 - (]L 017 027 03) (5-#)6.!& - (I[7 _017 _027 _03)

(o) = ;L (0"5" — ") ()% = %(5HUV R
tr (0"0”) =20 olty(,)7 = 26767
W) =va (W) =9°
W) =x¢  Wo")" = xo"

098 — —%@ﬂﬁ(ee) 6,05 — +%gaﬂ(99)

Some results: .
((‘)0“0_)(00”6’_) = 517””(09)(0_5)

1
(9)(0x) = —5(00)(Vx)
1
(0)(xn) = =5 (00"7) (x0u¥)
Yot'x = —xo"'y
Yotatx = 0" 5"
Super-Poincare algebra for N' =1 SUSY:

[P1 P =00 (M, P7] = (PR — Py (MM, M) = (MM 4 MY — MPoq” — M)
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Qo M™] = (") 0Qs Q% M™] = (3"5Q°  [Qu, Pl = [Q%, P,) =
{Qa, Q" = {Qs @} =0 {Qa,Qa} = 2001 P,
Qs T =0 [Qa, Bl = Qa Q4 Bl = —Qa
Extended SUSY:

{Q£7QBB} = 2‘755Pu5§ {Qﬁ’Qg} = SaﬁZAB {Qaa, QBB} = 5@/3(ZT)AB
Superfields:

S(x#,04,0%) = o + 0 +0x + (00)M + (00)N + (05”0)V,, + (00)0X + (00)0p + (00)(60) D

. - 0 u A O 0 oot 0
5S—Z(€Q+€Q)S Qa— ’L% O, 9 % Qa ’lae +0 a
Da = 0a + iag‘dﬁa@u Dd = —(()d - ieo‘ogdf)u
{D,,Ds} = —2ic%.0,  others zero
Yy = at +ifo"0 Dyyt =

Chiral superfield:

Da®d =0 =+ 200 + (00)F +i(06"8)0,0 — — (00)9,1p0"0 — i(e@)(éé)aﬂ@

V2
Vector superfield:
V(r,0,0) = VT(x,H,é)
V(2,0,0) = C +ify —ifx + = (99)(1\/[ +iN) — 5 (60)(M
L (00)8 (A _ %6“8,»() T (@00 ( i — —U“@ux) + Lonyo0) (D - %auaﬂc)
AT

Vs V4i(A

—iN) + 05"0V,

D s e 2N
Vivz(x,0,8) = (00"8)V, +i(00)0X — i(FF)0N + = (09)(55)1}

D- and F-terms:
(99)(55)D(m) (00)F (x)

Field strength:



Lagrangian:

_ T .2q; ) .
L= Z ol e VCI%‘D + (W(®)

o he) + (F(@) (W)

o+ h.c.) + gv‘D

Non-abelian vector superfields:
V,=VT* D=D"T* X\=\T"
P —s o—2iAq A = AOT@ Q20V _y 20V _ —2iNlq 2V 2ilg
W, =——(DD) (e_quDae2qv) W, — egiqATWaequ

W = —ida(y) + 0.D"(y) + (0"0)aFl (y) + (00)0* ;DX (y)

Fa, = 0,V,8 =0Vl 4+ qf VIV DA = 9\ 4 qVA [

1 o ]' a Na -\ a Na ]' auy ma
T (EWEW| 4 he) = SDUDT NG DA — L FE,
1 a a a a q2 a a
Lp=5D"D" + gl D*T% on  Vplp) = ) (1,72 0n) (D115 0q)

Supersymmetry breaking:

Qal0) #0  Q4l0) #0

2
> (Qu@l + QLQa) = 4E = broken SUSY: Eyq > 0, unbroken SUSY: Eyye = 0

F-term breaking:
(F) #0=(0p) = (0F) =0 (6¢)) #0

ow
Vi = |%|2 = |F|* = Vi > 0 forF — term breaking

O’Raifeartaigh model:
K=0l0, W =gd (02— m?) + Mdyd,

D-term breaking:
(D) #0=(6A) = (D) #0

Supertrace:
StrM? = (=125 + 1)m? =0
j

MSSM:



vector SU(3)c x SU(2), x U(1)y spin-1/2 spin-1

G (8,1,0) gluino g gluon g
w (1,3,0) wino w W-boson W#
B (1,1,0) bino b hypercharge boson B*
chiral spin-0 spin-1/2
Q; = UL (3,2,1/6) squarks NL quarks k
dri dp y
Vri UL VLi
L, = g (1,2,-1/2) sleptons r leptons r
erLi €ri €ri
;R (3,1,-2/3) antisquark ufg antiquark i,z
dir (3,1,1/3) antisquark c?fR antiquark d;g
CiR (1,1,1) slepton €5 lepton é;r
Hy HY HY
H, = (1,2,-1/2) Higgs Higgsino | _
Hy Hy Hy
Hf Hy Hy
Hy, = 2 (1,2,1/2) Higgs 2 Higgsino | _
H3 Hy H3

Wrp = (Yu)ijQiHstig; — (YD>ijQiH1JRj — (Yg)iLiH éjp + pHi Hy

1 ; 1 7 nd,
Wee = §AijkLiLjékR + Njr LiQjdy + ki Li Ha + §>\;/jkﬂiRdedkR

R-parity:
R = (—1)3B-D+25 + 1 for Standard Model particles — 1 for superpartners

2 Superset-up
2.1 Basics

Metric signature Our metric signature is mostly minus:
N = nwj = dlag (1, —1, —1, —1)

Representation theory If these were proper notes there would be a discussion of representations of

the Lorentz group and SL(2, C) here as well as an explanation of what spinors are. However, there isn’t.

Raising and lowering indices Spinor indices are raised and lowered using the epsilon tensor:

0 1 >
anﬁ — — gaﬂ



Eap = —e% gopeP =6

« «

EaB = —eah

When raising or lowering the order is important:

wa = 5a5¢6 wa = gaﬁwﬁ

Index-free contraction We define the contraction of two spinors as follows:
VX =V Xa

X = Pax”
Note that left-handed spinors have the index on the left raised, and right-handed spinors have the

index on the right raised. The index free notation commutes:
dx=x¢ U =x¢

Proof: This is because x¥ = X*®Yo = —Ya X = feagwﬁxa = +pPegax® = 1/J’BX5 = 19X, and similarly for the barred

spinors.

Sigma matrices In 4-component notation,
1 2 3
ot =(l,07,0%0°)

with index structure

i

O

Recall that the Pauli matrices are hermitian and traceless, and oo’/ = 6¥ + ic¥*o*. We can also define

—p\Ga aB &8 B
(cH)** = e g

which has the numerical form
ot =(I,—o', —0?% —0°)

Proof: To demonstrate this it is convenient to use matrix notation and note that fact that % = £%% = jo2. Then from
the index structure we have 6# = —(cote)? = (020#0?)T, from which the result easily follows as o', 0% and the identity

are equal to their transpose while 0 = —(02)7.

Sigma matrix identities We can prove some identities involving products of these sigma matrix objects:
tr (ota"”) = 2n*

Proof: This is most easily seen by noting that the product of any two of the matrices involved is a Pauli matrix and so
traceless if the two matrices are distinct; if on the other hand p = v then we get +I, with trace £2, with the plus sign

corresponding to u = v = 0 and the minus sign corresponding to u = i, recalling that o* = —&".



Another result is
UZa(@t)Bﬂ = 25£5£

Proof: One can argue that the right-hand side must be proportional to the two Kronecker deltas as they are the only avail-
able tensors with the right index structure, and then evaluate for specific components to get the constant of proportionality.

The previous result with & and § contracted gives
(Uuﬁu)g = 44,

Left- and right-handed representations The matrices

v v —v V= — UV \ & 4
()8 = § (00" —a'a") (),

) (cto” — avot)

furnish us with left- and right-handed representations of the Lorentz group on two-component spinors.

Hermitian conjugation Hermitian conjugation exchanges left- and right-handed spinors:
W) =va () =9¢°
When taking the hermitian conjugate of a product do not include minus signs from interchanges

(Paxs) = x5l

This means that
()" = (*xa)" = Xa¥® = XU
Recall that o* is hermitian, so

(Yo"x)" = xo"

The rule for indices is to swap order than trade dots for no dots and vice versa, i.e.

(UZB)T = Ug

2.2 Spinor identities

A very important simplification We have
apnpB 1 afs
0%6° = —5¢ (00)

Proof: By the definition of the contraction of two spinors, 80 = 00, = £,50%0° = —0'6? + 016? = —20'0% = +20%0".
The result follows by recalling that ¢!? = 4+1 and 2! = —1.
Similarly,

§0° = 452 (60)



Proof: Identical to the previous, by using 80 = 0;0% = 5d50_56_d = —0201 + 0102 = 20102 = 72520_1, and recalling
el = +1, el = 1.

Similarly we have

1 _ .
00 = +5eap(00)  0al; = —Ze55(00)

Various rearrangement identities The previous result is very useful when we have some expression

in which a spinor 6 occurs twice:
1
(0v)(0x) = —5(00)(Vx)

Proof: Simply by writing left-hand side as
appB 1 af 1 « 1
—0%¢ 1%)(5 = +§5 (99)1/1aXﬁ = _5(00>7/} Xa = —5(99)(1/0()

Note that one can apply this with for example 1) = o*), as this is a left-handed spinor (from index

structure), so
_ 1 _
(00"4)(0x) = —5(00)(xo"¥)
Fierz identity The same methods apply to show
_ _ 1 _
(0c"0)(00"0) = 577‘“’(99)(99)
Proof: Write the left-hand side as
ad” BB ac

- 5 L s ap o1 . o1 s
0004070705307 = +7e77eWa},075(00)(00) = 700,(57)*(00)(00) = S tx (o0™)(06)(09)

from which the result follows as tr (c#c”) = 2nH".

Fierz identity A similar result is
_ 1 NV
(0)(xn) = =5 (00"7) (x0u¥)
Proof: Write the right-hand side as
—%9aﬁd>25¢505a(5u)w = 07 X500} = —0%an®Xa = +(00) (XN)
Bilinear forms One has some freedom to rewrite bilinear forms involving the Pauli matrices:
Yoy = —xo"
Proof: Write the left-hand side as

ot X = =X ol s = =X (%) g = —xo"Y



More manipulation using e tensors gives
Yoa"x = xo "y

3 Supermultiplets
N =1 SUSY algebra The SUSY algebra extends the familiar Poincare algebra

[P*, PY] =0

(M, P) = i( P — Py
[M™, MP] = i(M" 5" + MYy — MPPy"® — MY )
by introducing fermionic symmetry generators @, and Qg.

We can motivate the SUSY algebra as follows. Consider first the transformation of @), as a spinor

under a Lorentz transformation:
z v ’ ¢ ury B
Qa — exp _EWMVU Qﬁ ~ Qa - Ewuu(a )a Qﬁ
(0%

It also transforms as an operator under U = exp(—%w,wM m) as Q@ — UTQU, so to first order

Qa — Qa B %wﬂl’[Qav MW’]

hence we derive

[Qa M) = (0") Q5

Similarly, we have

«

6 v — v ~/ ~q U — G A
QY — exp (—éwwa“ ) ‘Qﬁ ~ QY — §WW(0M )BQﬁ

B

and this similarly transforms as Q — UTQU, so
Q2] = (0",

Next consider
[Qaa Pu] = CO’Zd@d

where ¢ is a (complex) constant and the right-hand side follows from the index structure and the re-

quirement of linearity. Similarly, we should have

Q% P! = c*(6")* Qs



Now use the Jacobi identity:

0= [PM7 [Pyv Qa“ + [Pya [Qmpu]] + [Qaa [PM7PVH
= —ca’,[P", Q% + cat [P”, Q%
= || (0¥5" — 0"6") Qs # 0

This means that we must have ¢ = 0, so

[QOMPM] = [QQ’PM] =0

Next, consider
{Qa. Q") = k(o) My

where the right-hand side follows again from index structure and linearity. However the left-hand side

commutes with P* and the right-hand side does not, unless £ = 0. Hence
{Qu, Q% = {Qa,Q"y =0
Finally, index structure and convention takes
{Qa, Qa} = QUZQPM

We also have that (), commutes with any generators of internal symmetries, with the exception of the

R-symmetry transformation
Qa — eiiR’yQaeiR’y = ei’yQa
which means

[Qaa R} = Qa [Qo’m R] = _Qd

Casimir operators The Casimir operators for the super-Poincare algebra are

C,=P,P"  Cy=C,C"

where
Cw = B,P,— B,P,
with X
B, =W, — ZQd@u)wQa

with the Pauli-Ljubanski vector

We take £0123 = +1 = —60123.



N = 1 massless supermultiplets We can take a standard momentum vector p* = (F,0,0, E), for
which C; = C, = 0. We can characterise a massless state by its momentum p* and its helicity A, where

WHpt X) = ApH|p*, A). Now, for the supersymmetry generators we have

_ 0 0
{Qa, Qu} = 20", P, = 2E(0° — 0°) s = 4E (0 1)
This implies that {Q1,Q;} = 0. Now,take a state |p*, \) in the multiplet to be such that Q.|p*, \) =
0 (if not we can just consider |p*, \') = Q.|p",\) instead, and by the anticommutation relations
QaQulp*, ) = 0). We can form new states from this one by applying Q; or @Qs, but by the anti-

commutation relations
0= (", A\{Q1, Qi } ", \) = (", A|@Q:1Q1[p", \)

so Qi creates a state of zero norm; this would apply for any state formed by acting with Q; so we can
therefore take Q; = 0 in this supermultiplet. Thus the only state other than |p#, \) is found by applying

(5. Now, we have

@ 1 v oAb 1 v =po\i A
[W,UJQ ] = §€,uupap [Mp 7@ } = _§5uupap (Up >BQB

and in particular
. 1 e < o <
[Wo, Q] = _5803[)0’E(0p 5@ = —poE(a"%);Q”

using antisymmetry and the fact that po = E. Now,

512 — % ((—7102 _ 5201) _
as oclo? = —o?0! =i03. Thus,
W0, Q%] = ~370(0*Q)"
or explicitly
0,0 = —3Q W, @) = +,,0°
the former implying that
[W07QQ] = —%QQ

and so we have .
Woalp ) = (Wo, @3]+ Q) 7,3 = (A= 1) @il )

Hence we see that Q3 reduces helicity of a state by 1/2. We define

A= 1/2) = Z=Qul" N
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We can generate no further new states. Note that \/%TEQQ and \/%TJQ? form a pair of creation and

annihilation operators, satisfying
1

i ) =

Finally we should include CPT conjugates of negative helicity, and so conclude that our multiplet

consists of the states
[P, A) [P A —1/2)

along with the CPT conjugates
P, =) P = (A = 1/2))

Note that to show the Casimir 5’2 is zero we calculate as follows:
Cy = 2(B,P,B"P" — B,P,B"P") = —2(BMP“)2 = —2E2(Bo + B3)?

but as B, = W, — 1Q4(5,)**Qa we have

1 1, - 3 1 Lo 5
By = 5e03p0 EM*7 — 5 (QiQ1 + Q3Q2) By = E30pe EMP” — 7 (QiQ1 — @:Q2)

using o3 = —° = 03, So By + B3 = —%Qin and is therefore zero for massless states.

Examples of massless supermultiplets We can take A = 1/2; giving us a chiral multiplet with
two |p,0) states and the states |p, £1/2). The latter correspond to quarks, leptons, Higgsinos, and the
former correspond to squarks, sleptons and Higgses.

We can take A = 1, giving a vector multiplet with the states |p, £1/2) (photino, gluino, Zino, Wino)
and |p,+1) (photon, gluon, Z-boson, W-boson). Note that we don’t construct for instance quark-
quarkino pairs as a spin-1 particle only leads to a renormalisable QFT if it is a gauge boson.

We can also take A = 2, giving a gravitino-graviton pair.

N = 1 massive supermultiplets For a massive particle we can go to the centre of mass frame,
p* = (m,0,0,0). Now the Casimirs become C; = m? and C, = 2m*Y"Y; where the superspin is
Y, =J, + ﬁ@dc_r?aQa (the plus sign is a minus in the notes which confuses me but never mind, I've
taken J; = %gijki\/[j’“ and €¢;j1 = €5k, perhaps we can absorb a minus sign into the Pauli matrix and its
down or up index or something) and satisfies [Y;, Y;| = i€, Y;. We can therefore label states by their mass

m and the number y where y(y + 1) is the eigenvalue of Y;Y;. The supersymmetry generators now obey

(QurQe) = 20057, = 2m (; g)

Now, let |Q2) be the vacuum state, which is annihilated by @1 and )2. For this state the ordinary spin
agrees with the superspin, Y;|Q) = J;|2). Hence for a given m, y we have
Q) = |m, j = y;p", J3)
11



From [Qa, M™] = (6#) ] Qg and [Q%, M) = (6“")‘2@5 we can derive

« o (= d73_1 1 O “ 75
Q% J5] = [Q%, M) = (a%)3Q —2<0 _1>3Q

remembering that J; = %ajkM % and using the definition of 7" again. Hence we have that

QL H=5Q" 1% = 5@

or

~ 1~ _ 1
[J5, Q1] = 5@1 [J3, Q) = —§Q2

Thus we find we can use Q; to raise the value of js:
J3Qiljs) = ([J5, Qi] + Qi) |73) = (s + 1/2)QiJ3)

and similarly Qs lowers j3 by 1/2. So we have

js +1/2) = ljs = 1/2) =

fljz),) f!h)
and \/%—mQLQ have the opposite effect. The main point is that Q4 acting on |Q2) behaves like the combi-
nation of spins j and 1/2, i.e. j®1/2 = (5 —1/2) @ (j + 1/2). The only way this works is if we have
a decomposition of the form

Qi
V2m
Qs
V2m

The only other states are of the form

Q) =kilm,j =y +1/2;p", js +1/2) + ko|lm,j =y — 1/2;p", i3 + 1/2)

Q) = kslm,j =y +1/2;p", js — 1/2) + kalm, j =y — 1/2;p",j3 — 1/2)

1 - =
) = 5 -@Q12)
Note that Q1|Q) = 0 but Q1|Q) = —Qs|Q) # 0 so that |[Q) # |[) and |[€') therefore constitutes a
different set of states of spin j = y.

The states in the massive supermultiplet are then |Q2) and |€2) of the form
Im, j = y;p", ja)
giving a total of 2(2y + 1) states, states
Im,j =y +1/2;p", js)

12



giving a further 2(y + 1/2) + 1 = 2y + 2 states, and also
Im,j =y —1/2;p", js)

giving another 2(y — 1/2) 4+ 1 = 2y states.
A slight exception is provided by the case y = 0. There we have

€2) = |m,j = 0;p", j3 =0)

Qi
2m

1 - - ) .
) = %QQQi’fD = |m,j = 0;p", j3 = 0)

The states |2) and [©2) differ in their handedness and are exchanged under parity. There are two

Q) = |m,j =1/2;p", j5 = £1/2)

eigenstates of parity
1

V2

corresponding to a scalar and a pseudoscalar particle.

|+) (1) £ 1€))

Let’s also outline the y = 1/2 case. Here we start with the two states |m,j = 1/2;p*, j3 = £1/2).
Acting with Q; produces the states |m,j = 1;p#, j3 = 1,0) while acting with Q, produces the states
|m,j = 0;p*,j5 = 0) and |m,j = 1;p", j3 = —1). Acting with both gives us then another j = 1/2,
Jjs = £1/2 pair.

Extended SUSY We extend supersymmetry by including N copies of the supersymmetry generators,

labelled by an index A, with new anticommutation relations
A A A
{Qq, QBB} = QUZBPuéB

{Q£> QBB} = EOé/BZAB
{Qan, Qsp} =452 ) an

ZAB commutes with everything and is antisymmetric Z48% = —Z84. We are also using a “perverse

where
but essential” convention where Zyp = —Z45.
Note that if Z4Z = 0 then there is an internal U(N) symmetry Q4 — U4QZ, known as R-symmetry.

If some Z48 #£ 0 then the above anticommutation relations break this symmetry to some subgroup of

UWN).

N > 1 massless supermultiplets Again we have p* = (E,0,0, E') and now

- 0 0
@101 =12 ({ 7)o
afs

13



We can again find that Q;, = 0, and from the anticommutators we then must have all Z48 = 0. We
now have that each of the N operators @Q;, lower the helicity by 1/2. To construct an extended SUSY
massless supermultiplet we therefore start with a state of maximal helicity \,,.. and apply all possible
combinations of these operators.

Explicitly, we start with the single state |p*, Aas). Applying Qs gives us N states with helicity
Amaz—1/2. Applying two operators Qs 4,Qs 5 gives N'(N —1)/2 states with helicity A —1. We continue
in this way until we reach the single state with helicity Aj.. — N/2 formed by applying all operators.
Note that the total number of states with helicity A, — k is (/I\! ) so the total number of states is 2.

Note that A\ue — Ain = %./\f in all cases. For renormalisable theories we should have |A| < 1, which
implies N' < 4. However we find that A/ > 1 is non-chiral, which does not work with the Standard

Model, which contains chiral particles.

Examples of N’ > 1 massless supermultiplets Consider the N’ = 2 vector multiplet, which has
Amaz = 1. Acting with a single lowering operator gives states with A = 1/2, and acting with both we
get a state with A = 0 (and we should also include the CPT conjugates of negative helicity). We can
decompose this multiplet into an N = 1 chiral multiplet, consisting of the A = 0 and one A\ = 1/2 state,
and an N = 1 vector multiplet, consisting of the other A = 1/2 state and the A = 1 state (plus CPT
conjugates in both these cases).

An N = 2 hypermultiplet has A, = 0, and so consists of one state with A = 1/2, two with A =0
and one with A\ = —1/2. This multiplet is CPT self-conjugate and decomposes into a sum of a chiral
and antichiral N' = 1 multiplet.

An N = 4 vector multiplet has A\, = 1, consisting of one state with A = 1, four with A = 1/2, six
with A = 0, four with A\ = —1/2 and one with A = —1. This decomposes into one N’ = 2 vector multiplet
and two N = 2 hypermultiplets, or else one A/ = 1 vector multiplet and three N/ = 1 chiral multiplets.

N > 1 massive supermultiplets For massive particles we go to the centre of mass frame p* =

(m,0,0,0). We have

_ 10
{Q27QBB} =2m (0 1) 52
af

ZAB may now be non-zero. We consider the two cases Z4Z # 0 and Z42 =0

Unlike the massless case,
separately, starting with the latter.

If ZAP = 0 then we have 2N raising and lowering operators given by

1 1 -

A A At A

a, = —(q) a' = ——0~
“ V2om

22N states. For example, consider A' = 2 with y = 0. We have the ground state

These allow us to create
|2) and then four states of the form a‘y\Q), which have spin j =y = 1/2, and j3 = £1/2 depending on
whether they were created by a’{” or a’;T. We then have six states formed by acting with two creation
operators. The possibilities are a?a?, giving one state with j3 = 1, a?a?, giving one state with j3 = —1,

At Bt

and four states of the form ai’a;

5+ each of which has j3 = 0. These six states split up into three states

14



with spin j = 0 and three with spin j = 1. After this we then have four spin 1/2 states formed by acting

with three creation operators, and one state with spin 0 formed by acting with all creation operators.

22N

Note in general if we start with a state of superspin y then we end up with (2y + 1) states, as the

vacuum state |2) is (2y + 1) dimensional.

ZAB

If some # 0, then we proceed by defining the scalar quantity

H = (%) {QA — T2, Qsy —Tpa)

where
I = eapUQap(5°)*

for UAB any unitary N' x N matrix. Note that H > 0 as it is a sum of quantities of the form XTX.

To evaluate H, we first use that
(50)BQ{Q£, Q[;A} = 2m5‘;‘,(60)50‘035 = AmN
and also
{I’g, QBA} = 5aﬁUAB(5O)dﬁ{QdB7 Q,BA} = 5aﬁUAB(5O)d55aBZJT9A = _UggUABZJEA
As we're using the ridiculous convention that Z 5 = —Z4%, we thus get
(0°)" Q. Ta} + (3" (T2, Qaa} = 2ur (2U' +UZ)
where we've added the hermitian conjugate term. Finally we write
Paa = 4500 (8°) (U 5a
with Ugy = —UP4 also, so that

{Fﬁ, f‘[314} = gaﬁ(‘?o)dﬁgﬁ'ﬁ(&O)'yvUABUgA{QdB; Qg}
= 2m5a655y(00)wd(50)aﬁ(50)WUABUJTBA
= —2meae4,(5°)TUAP (UT)PA

= +2mN (0°) g

So we get
H=8mN —2tr (ZU'+UZ") >0

Now, according to the polar decomposition theorem for matrices we can write Z = HV for H hermitian
and V unitary. Let’s take V = U then ZU' = H and we have

1
8 —4trH>0= > —trH
mN rH > m_2Nr
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and as H = ZU', H> = HH' = ZZ' we can write the so-called BPS bound:
1
> —trvVZZt
m > N r

States saturating this bound are called BPS states; they correspond to ‘H = 0 and thus to vanishing
Q' — T4, leading to shorter multiplets as some generators vanish.

For instance, for N' = 2 we can write Z“# in the form

0 1
748 = D) = m > =
-q 0 2

For N' > 2 and even we can express Z42 in block diagonal form, with each block of the form

0 g
—q; 0

and then the BPS condition holds block by block, 2m > ¢;. We can define ‘H for each block. If k of
the ¢; are equal to 2m then there are 2\ — 2k creation operators and so 22V~ states. The cases
k=0,0<k<N/2and k =N/2 are termed long, short and ultra-short multiplets respectively.

4 Superfields

Superspace A superfield may be thought of as living in superspace. For N/ = 1 superspace this is de-
fined to be the coset formed by quotienting the super-Poincare group, parametrised by {w", a*, 0,04},
by the Lorentz group, parametrised by {w"”}. Here 6 and 0, are spinors of Grassmann variables.

We can write an element of superspace as
G(.T, 97 é) — ei(—LE“PH-FGQ-‘réQ)
Under a supersymmetry transformation we have

G(z,0,0) — G(0,e,5)G(x,0,0) = @+ i~ Put0Q+0Q)

_ ei(—:r:“Pu-&-(O-i-a)Q-i-(é-i-é)Q)+§[aQ-&-a’Q,GQ—f—éQ]

using the CBH formula. One can work out the commutators to find that the superspace parameters
z, 0,0 transform as

ot — 2 —ieotO + ifotE 0 —0+¢ 04

General scalar superfield The general scalar superfield has the form

S(2",04,0%) = p(z") + Op(xt) 4 Ox(2")
+ (00) M (z*) + (00)N (z*) + (0o 0)V,, (")
+ (00)0A(z") + (00)0p(x") + (06)(00) D(a+)

16



Transformation properties of general scalar superfield The general scalar superfield transforms

as an operator as
G 1y o HEQHEQ) g ti(eQ+EQ)
and as a Hilbert space vector by

S 6+i(8Q+5Q)S(x7 0,0) = S(z" — ico"d +i0c"z,0 +¢,0 + &)

A Taylor expansion implies that the transformation properties are implemented by the operators

N R,
Qo= i %l 5
N B

Q= igge T i gm

and we have

6S =i(cQ+£Q)S

One can then work out the transformation properties of the various fields making up S. In doing so we
need to make use of the identities which follow from 6% = —1°%(09) and 6%6° = +1c%%(66) in order

to end up with an expression with the same structure as the original superfield.

Covariant derivative One can define a covariant derivative which commutes with eQ + £0:
Do = 0, +ict,0%0,
D4 = —04 — i0%c" .0,
These anticommute with Q,, and Q, and themselves, apart from
{D,, Dy} = —2ic".0,
Chiral superfield A chiral superfield ® obeys
Dy® =0
General form of chiral superfield It is convenient here (and sometimes elsewhere) to define

Yy = 2" + i0o"0

One has that Ds0% = Dsy* = 0, while Ddﬁ_ﬁ # 0, so a scalar superfield is chiral if it is a function of just
y and 6:

©(y,0) = wly) + V204(y) + (90)F (y)

17



We can expand this and use the results (§o*6)(0o”8) = $7**(60)(00) and (65+6)(00,¢) = —3(06)9, 15"

to get the general chiral superfield in the form

O(x,0,0) = o(z) + \/§9¢(x) + (66)F(x)

v

+i(00"0)0,p(z) ﬁ(QQ)GMw(x)J“é
— $(00)(#0)0,0"o()

Here ¢(x) is a scalar field, ¢ (x) a spin-1/2 field and F(z) an auxiliary field.
F- and D-terms For a general scalar superfield, the D-term

(00)(00)D(x)

transforms as D — D+ total derivative under a supersymmetry transformation. For a chiral superfield,
the F-term
(60) F (x)

transforms as F' — F'+ total derivative under a supersymmetry transformation. Thus we can use these

terms to construct supersymmetry invariant Lagrangians.

Calculation of D-terms of ®'® We have

?

= o+ V200 + (B)F +i(00"0)0,0 — 7%

(60)0,160"F — i(@@)(@e)auaw

O — " + V3G + (B0)F* — i(60"8)D, 0" + —=(60)00" 0, — i(ee)(ee)auaw

i
V2
The terms involving two s and two s in ®T® are

(_%gp*auaw + FF) (06)(0) + 0,0 Dy9(008) (05 8) + (i(G0)0" 0,000 + h.c.)
Using the identities

(600)(60"5) = S (00)(00)  (04)(0x) = —5(00)(wx) wo"x = —xos
and integrating by parts we get
dTP o= 0, 0" — iha" b + F*F

Calculation of F-terms of ®? and ®* We have

B — o+ V200 + (00)F + i(05"0) 00 — ——(00),100"F — %(99)(59‘)@5%

V2
18



so we just need to consider
© + V20 + 00F

Squaring this gives
©® + 2(10) (10) + 20(V200 + O6F)

hence
| = 2Fp— gy
F

We then need to work out

(o + V200 + 00F) (0> + 2v/2010 + 00(2F o — 1))

Taking just the terms with two 6s:

A0 + (00) (3F ¢ — (1))

hence
| = 3(6°F — o(vv))

Lagrangians for chiral superfields A general Lagrangian for chiral superfields ®; is of the form

L= K, @j)‘D n (W(<I>Z-)

- + h.c.>

where K is known as the Kahler potential and W is known as the superpotential. We can Taylor expand
the latter about ®; = ¢;:

ow 1 O*W
D) = i) (P — i) 57—+ = (P — i) (P —j) 7—— +
W(®;) = W(pi) + ( 90)8% 5(Pi = 9i)(®; soj)a%pj
where
ow oW

a%’ - 0, l;=¢;
Extracting the F-terms via
D; — i = V200 + (00)F; + ...

ow 1/ 0*°W
F; N —— A .C.
D—i—(za%—irhc) 2(8%%%%—’_}16)

gives

L= K(®;,®)

For the Kahler term it is usual to take

K(®;, @) = ol

19



for which one has

82
L= au% nPi — szo- a;ﬂbz (890 1/1 77Z)] + h.c. ) + LF
i ow oW
ﬁF:EFZ’*‘f‘Fi +Fi*
;i ofton

One can solve for the auxiliary field equation of motion

oW
ol

F=-

and hence )

= —VF

tr=-|

oty
We thus obtain Vg, the scalar potential.

One can constrain the form of the superpotential on dimensional grounds. We must have [£] = 4,
and as ¢ and 1 are normal scalar and spin-1/2 fields they have dimensions [p] = 1, [¢)] = 3/2 implying
that [®] = 1 and [0] = [0] = —1/2. Now we want [W|r] = 4, and as we have W = +... (00)W|r + ...
we should have [W] = 3. If we are to avoid couplings of negative mass dimension it follows the allowed
form of W is

1
59k PiP; Py

1
W =a+\® + -m;;®;P; + 5

2

Similarly one constrains [K] = 2.

Wess-Zumino model The Wess-Zumino model involves one chiral superfield ®, and has superpoten-
tial

1 1
W = —m®? + —gd3
2m +3g

The F-terms of this superpotential are

(soF——(W)) 9(@*F — p(v))

Vector superfield A vector superfield V' satisfies

V(z,0,0) =V'(x,0,0)

20



General form of vector superfield It is convenient to take the following general form of a vector

superfield:

V(z,0,0) = C(z) + i0x(x) — ifx(z)

4 %(99)(]\4(9;) +iN(z) — %(99)(]\4(3;) —iN(2)) + 00"V, ()
+ (06)0 (z)\(:v) - %auﬁux(x)) + (00)0 (—i)\(x) - 50“8,»((:@)
+ %(ee)(ee) (D(:z:) _ %auaucm)

Gauge transformations A generalised gauge transformation of a vector field is of the form
Vi V4i(A— AT

for A a chiral superfield. Under this V,, — V,, — 8, (¢ + ¢') which is the usual transformation of a vector
field.
We can choose ¢, ¥ and F' to set C, M, N and x to zero. This give us a vector superfield in Wess-

Zumino gauge:
Vivz(x,0,0) = (Ga“é)vu(x) +i(00)0N(x) — i(00)ON(z) + %(86)(§§)D(x)

The component fields are now V,(x), a gauge boson, A and A representing a fermion gaugino, and D(z)
an auxiliary field. Note that V;3,, = 1(60)(66)V*V,, and all higher powers are zero.

Supersymmetry transformations take us out of Wess-Zumino gauge; however we can always augment
a supersymmetry transformation with an additional gauge transformation to return to Wess-Zumino
gauge.
Couplings of vector superfields to chiral superfields The supersymmetric generalisation of the

familiar U(1) transformations of a complex scalar field coupled to a vector field is to have
O — e 2P

for ® a chiral superfield. As under the same transformation V + V + i(A — AT) a gauge invariant

coupling we can use in Lagrangians is
dfe?V @

Supersymmetric field strength The supersymmetric analogue of the field strength F),, = 9,V, —
0,V, is given by
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which is chiral and gauge invariant. It is convenient to evaluate this using y* = z* + ifo*0. Recall that
D, =0, + iagdédﬁu Dy = -0, — i0%a" .0,
and one can show that
0.0 =60 0,05 = cpa  0a(00) =20, 0n(0)) = o

Now, one has

Dyy* = 2id!.,0% Dyy' =0

hence on a function of y, Dy =0, D, = 2ia§d§d8u, where we now mean a derivative with respect to y*.

Hence rewrite V' in terms of y:

V = (00 0)V, (o — i00%0) + i(60)9A(y) — (0R)ON(y) + 3 (60)(00) D(y)

= (00"0)V,u(y) + i(00)0A(y) — i(00)0A(y) + %(99)(9@ (D(y) — 0, V")

having Taylor expanded and used (65%8)(65"0) = in*(60)(66). We can now use this expression to
calculate

(DD)D.V = (920%)(9a + 20" ,6°0,)V

where 0, is derivative with respect to y. Because of the (040%) derivatives only terms involving two fs
need be kept from working out D,V. We need the facts that

00N = Ao 0,00 =20,

then we have
(9a5%) (—Ma(éé) + 0a(00)(D — i0"V,,) + 2ic" ,0%(00"0)0,V,, — 20" Béﬁ(ee)éa,j)
Now,

22’0’;5@5950’5&5# = —2'567(9_9_)fo‘/é)ag,-ygﬁw7 = MZB(&V)BW“’@G_)

and
_2056559_d8u;\d — QUgﬁ.Q_Baﬂéd;\d = Ugﬂggdaﬂj\d(éé) = 0563#5\5(9_(5)

Hence we have

(0a0%00) (—ida + 0a(D — i0"V,) +i(0#570) 48, Viy + (09, N)a00)
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Now

0,000 = edéédéﬂ-éé — 9989, 5= —205 = —4
and as we have

l

V= 1 (ota” —o¥a") = %(20“5” +20") = otg" = =2ic" + M

o
the V), terms combine as
—0,10"V, + i(—2ic" + 7}””9)&8”1/,, = (U“”@)Q(QLVV — &,Vu)

and so we find

Waly,6) = =ida(y) + 6aD(y) + (0" 0)oFyu(y) + (09)0” 0,0 (1)

This expression is sufficient for working out the F-terms of W<W, as we can replace y with  and
calculate away. We only need to consider
(=i + 67D + (070)° Fy, + 2°060"3,0,)7 ) (=ida + 0D + (070)aFy + 060" 0,1 ‘F

which gives
—2i(00) A" O\ + (00)D* + 2F,,00" 0D + F,, F,p (" 0)*(c770),,

Now,

1 1
0°0t P05 = —0°0%0k; = J09=""okly = — 00 tr o™ = 0

The final result needs an identity involving traces of ¢* which I won’t bother giving here. The end-
product is
_ 1 P~
WoWa| = D? = 2iAc" A = S F F* — %FWFW
F

with )
v 55/“/00 Foy

Lagrangians for vector and chiral superfields For a theory consisting of several chiral superfields

®; coupled to a vector superfield V', we take the Lagrangian

o he) + (F(@)Ww,)

L= ol o+ (W@, he) +€V]

Xi: fe (@) the) eV
Here ¢; denotes the U(1) charge of each chiral superfield, W (®;) is a superpotential which must be U(1)
invariant, f(®) is called the gauge kinetic function, and the final term involving the constant ¢ is known
as the Fayet-Iliopolous term. For a renormalisable theory we should take f(®;) = 7 = constant. For
the case of supersymmetric QED, we take f(®;) = 1/4.
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In Wess-Zumino gauge we have
Vies = (6"8)V, + i(60)8) — i(60)0) + %(99)(9‘930

SO

eV =1+ 2¢(05"0)V,, + 2iq(00)0X\ — 2iq(09)0\ + (00)(09) (gD + ¢*V,,V*)

and using '
1

V2

Bt — o + V2B + (B0)F* — i(00"0)0,p" + %(éé)eauaﬂ; _ i(e@)(éé)@uaﬂw

B — o+ V200 + (00)F + i(00"0)0p — ——(00),00"F — i(ee)(ee)auaw

we can work out that
@Tequ(I)’ _ <I>T<I>}
D D

+ (" + V200 — i(0070)0,.0%)
x (2q(05"0)V,, + 2iq(00)0X — 2iq(00)0X + (00)(00)(¢D + ¢*V,,V*))
X (i + V200 +i(00"0)0,0)|

The new terms we need to consider are
(00)(00)* (qD + ¢*V,V*)p
which is fine, and
2iqp* (00"0)V,,(05"0)0,p + h.c. = iqp* V" ,0(00)(00) + h.c.

as well as
—2v/2iq* (00)(OX) (00) + h.c = (00)(00)v/ 2iqp* (\) + h.c.

and finally
49(00)(05"0)V,.(00) = —q(00)(00)v5" V1

using the usual tricks.

Hence we get

V0| = D10 — i O+ FIF

- qqﬁ&“\/,ﬂﬁ + iquTV’L@Mgo — iq@“ngVMgo
+V2iq (") — (DA)@) + gt (D + @V, V")
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or

Pfe*V P o= (D) D" — iha" Db + FUF + qpt Do + V2iq (o' (M) — (X))

using the covariant derivative

D, =0,—1qV,

Now, we had

WeW,| =D? = 2iAc"9,\ — F FW—%FWﬁW
F
SO 1 1
“ye hie = D — AP — ~Fp P
4VV WaF+ c 5 iAot 1

allowing us to write the total Lagrangian explicitly.

62
‘C au% MSOZ Z¢ZU a,u,qu)z (&p 0 1/}ij + h.c. ) —+ EF
v}

+ (Dyupi) D o; — i Dby + qpl Dops + V/2ig (sol (M) — (@M)soz)

1 , o1 ,
5D2 AR T s §£D

with 5 -

Lr=FF+F W+FT W

I 0!

One pick out the terms involving the auxiliary field D:

1
D*= D= —Q%T%' — 55

1 1
Lp= <Q<P1T<Pz‘ + 55) D+ 5

This gives us a part of the scalar potential

1 1
Lp= —é(qd% + 567 = —Vn(y)

We can rewrite the Lagrangian as

X 0*W
)

+ (DM%)TD”%' - Z'%Eﬁ“DM/Ji + \/§iq (‘P;r(/\@/fi) - (Z@b%)

1
— AP ON — TFL P = V(p)

with the scalar potential given by

1
5 + 2901 pi)?
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Non-abelian vector superfields In the non-abelian case the vector superfield is now valued in some
representation of a Lie algebra, so we have V' = VT with T denoting the Lie algebra generators in

the particular representation used, satisfying [T, T%] = i f®“T. This means we have
Vi=V,T* D=DT*" A=\T"

We also consider our chiral superfields ®; as transforming in the same representation. In particular we

have
O — e A= AT

and want ®7e2?V® to be invariant as before. This is possible if we define the transformation law for V by

/ oAt .
quV — quV —e 2iA qe2qu2qu

which by the CBH formula e?e? = eA+B+ABl/2+ Jeads to
V=V +i(A— A" +igV,A+ AT + ...

We can still use this to put V' in Wess-Zumino gauge.
The definition of the field strength is modified to:

which transforms as

and so we use

tr WeW,,
F

in our Lagrangians.

In Wess-Zumino gauge it can be shown that
Wa = —iXa(y) + 0aD"(y) + (" 0)aF, (y) + (00)0% ;DA™ (1)
with
a a a abey by e
F, =0V} =0,V +qf"V,V,
and
DA = 9\ + qVXe fooe
which is just the usual non-abelian generalisation of our previous expression. Similarly, one gets

1 (tr Wew,

1 a na <\ a ya 1 apv oa
: F+h.c.):§DD — X' DA — ZFE,
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Our previous expression for the Lagrangian of chiral superfields coupled to a vector superfield can be
easily carried over to the non-abelian case, noting that there is now no Fayet-Iliopolous term, i.e. £ = 0,
and that each chiral superfield now carries an internal representation index. For instance, the part of

the Lagrangian involving the auxiliary field D = D*T* is now

1
Lp = 5D"D" +qpl, DTy on
where m, n denote the representation index. We thus get that D* = —qp! T2 ¢, so that

q2

Vo(#) = 5 (#hTnen) (25 T500)

Renormalisation For N = 1 supersymmetry the Kahler potential K, superpotential W, gauge kinetic
function f(®) and Fayet-Iliopolous constant £ completely specify the structure of the theory. It turns
out that K gets quantum corrections at all orders in perturbation theory, f(®) only gets corrections at

one-loop, and W and ¢ are not renormalised at all.
5 Superbreaking

Conditions for supersymmetry breaking Supersymmetry is broken if the vacuum state is not
annihilated by the generators, Q,|0) # 0. Consider

{Qon Qd} = QO-gdPM
and contract with (%)% to get
(0")7{Qa, Qa} = 4P"
(as the trace of a”o* is 2n*"). Specialising to v = 0, we have that

2

D (Qu@l + Q1Qa) =4E

a=1

Taking the vacuum expectation value of this we see that broken supersymmetry means F,,. > 0, while

unbroken supersymmetry means E,,. = 0.

F-term breaking Consider a chiral superfield, for which we have the supersymmetry transformations
0p =2 5 = V2eF +iV20"cd,p  OF = iv/28010,3)

Supersymmetry will be broken if one of these variations has a non-zero vacuum expectation value.
Lorentz invariance however requires that (1)) = (d,¢) = 0. Hence the only way to achieve supersymme-

try breaking via a chiral superfield is to have
(F) #0=(0p) = (0F) =0 (6¢)) #0
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The spinor field ¢ then becomes a Goldstone fermion (or Goldstino).
As Vi = |‘9a—‘?;|2 = |F'|? then we must have Vz > 0 for F-term breaking.

O’Raifeartaigh model An example of F-term breaking is provided by the O’Raifeartaigh model.

This model consists of three chiral superfields, with Kahler potential
K = o}®,

and superpotential
W:g@l(@g—m2)—l—M®2q>3 M >>m

Recall that

b O _ o
Y Opr T 0% Bimn

so that
Fi=—g(p5 —m®) Fy=—-Mp; F;3=—2g90}05— Mg}

We observe that (Fi) = 0 = (Fy) # 0 and (Fy) = 0 = (F}) # 0, so it is unavoidable that we cannot
have all (F;) = 0 simultaneously, and thus have F-term breaking.

The scalar potential is
Ve = g*|o3 — m*[ + M?|3|* + 2901 + M|?|ipa]?
The minimum of this potential is achieved for

(¢3) = (p2) =0

and (1) arbitrary; then we get Vr = ¢g?m* > 0. To calculate the scalar masses let @3 = \%(a—i—ib), then

1 1
Vi = Z—lg2|a2 —b* — 2m® + 2iab]* + 5]\42(a2 + b%) + |22 M? + cubic terms
1 1
= —Zgz4m2(a2 —b*) + §M2(a2 + b?) + |p2|* M? + cubic terms
from which we see that
mi=0 m5=M" m2=DM—2¢"m*> mi=M>+2¢°m?

The fermion masses appear from the term

. 0 0 2gp3\ (U1
vai=—5 (0 v ws) | 0 0 M| [
2903 M 2gp, 3

1 9*°W
2 0¢p;p;
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from which we extract the mass matrix

o O O

0 0
0 M
M 0
implying there are two fermions of mass M and one massless fermion, ¢1. (The Lagrangian for a
two-component Majorana spinor is —it)gd,, — %m(@/n,b +)).)

Supertrace in F-term breaking The supertrace is defined by

StrM? = (=) (2) + L)m?
J

For a chiral superfield this reduces to
Y a2 Y
scalars fermions

Now, the scalar mass terms arise from

oW oW*
Vo= 2.5, 07

J
Let’s split the scalar fields into their real and imaginary parts:

1
SOJ':E

The mass matrix is then given schematically by

9%V 9*v
M2 ~ 8aj8ak 8a]-6bk

(a; + ibj)

92V 92V
Ob;0ay,  Ob;0by,

where to be precise we should consider setting all fields a; = b; = 0 after taking the derivatives so only

the quadratic terms are relevant. Now, we just want the trace,
0PV 0*V
aaS ykat
da? —~ Ob;
J

Now,

jl_my8+ﬁ@é?_i«¥l+8)
Oa;  Oa; Dp;  Da; D V2 \Op; 0y

(no sum on j here) and similarly

i_L(i_a)
Ob; V2 \0p; 0]
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SO

da2 2 \0p?  Op* T Op;pl

J

0 __1<a2 L, >
ob; 2\0¢5  0p5  Opip;

hence we get for the trace of the scalar mass matrix

22 Z 0% oW oW Z W 9PW*
- (990 o Opjps Op; Oy Dpip; 007

The fermion mass matrix is

W
0pi0p;

where again we should set the fields to zero afterwards to only consider the relevant terms. To get the

sum of mass squares we need the trace of MM (because we can diagonalise M to have eigenvalues
m;e'®i; then M MT has m? on the diagonal; tr (UMUTUMTUT) = trM MT), but this is
oPwW - PWr
Dpi0p; 0900}

which gives just half the trace of the scalar mass squares. We therefore see that the supertrace vanishes

for F-term supersymmetry breaking.

D-term breaking For a vector superfield V' consisting of the fields A, V,,, D then Lorentz invariance

only allows us have
(D) #0 = (53) = (D) #0

so that A becomes a Goldstino.

For an abelian vector superfield we have

1
D= —qplpi — 56

and . . .
— Z(qulp; + —€)2 = ZD?
Vb = Slapivi + 56" = 5
If ¢ and ¢ have opposite signs then we can have (D) = 0 with (y;) # 0, and this minimises V} leaving
supersymmetry unbroken. If however they have the same sign then we can take (p;) = 0, and (D) # 0, so

that Vp > 0in the vacuum and supersymmetry is broken. Note that the Lagrangian then contains a term

1
P
Qqé“swz

2

so each scalar field ¢; acquires a mass m” = %qf while the fermions v); remain massless.
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F- and D-term breaking in non-abelian model For a model with a non-abelian vector superfield
then there is no Fayet-Iliopolous term. For simplicity consider coupling a single chiral superfield ® with

representation index m to a vector superfield. We have
T 1 a Ma
V=F'F,+ ED D
with
oW
dF),
Now, by definition the vacuum corresponds to a minimum of the potential, i.e.

oV O2W
0= = F, T (T, D*
<8%> S F l(T")

D* = So;rn (Ta)mngpn

m

where we have left the vacuum expectation brackets implicit on the right-hand side. Now, the superpo-

tential W is gauge invariance by construction, so that

oW
0=("W) =5, —0"¢m = F(T")mntpn

If our generators are hermitian this is equivalent to
SOLL(T(I)mnFn =0

We can combine this into the matrix condition

W a
~ 5 (T)mn 0 D

We can relate this matrix to the fermion mass matrix. The relevant terms in the Lagrangian are

1(62W

S wmwn + hC) + \/izq@jn()\a(Ta)mni/}n) + h.C.
0Pmen

2

B 1 8‘92mwn ﬁiq 80;; (T*)pm Un
6o ) (i, ) (3)

In verifying this note we get an additional minus sign from interchanging the spinors A* and ,,; recall

or

again that a Lagrangian for a two-component Majorana spinor is —itha#d, — %m(l/zw + ) justifying

O2W . a
—V2iqol (T) pn 0

claiming that
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represents the fermion mass matrix. As then

il Vg (B
—ﬁiquL(T‘l)pn 0 %Da

we can conclude the fermion mass matrix has a zero eigenvalue, corresponding to the existence of a

massless Goldstino.
6 Supermodel

The Standard Model Let’s first review the basic successes and shortcomings of the current Standard
Model of particle physics. The Standard Model is a gauge theory with gauge group SU(3)¢c x SU(2) X
U(1)y broken to SU(3)¢ x U(1)y, by the Higgs mechanism, through which the particles acquire mass.
The Standard Model describes electromagnetic, weak and strong interactions and is impressively in
accord with experiment. The Higgs particle remains the only undiscovered Standard Model particle.
Apart from the obvious failure to include quantum gravity, there are a number of problems with the
Standard Model. The hierarchy problem is the question of why the electroweak scale (~ 10 GeV) is so
much less than the Planck scale (~ 10! GeV), and how do we ensure that the Higgs mass does not receive
massive quantum corrections? We will discuss this further below. The cosmological constant problem
asks why the cosmological constant (vacuum energy of the universe) is so small, A/(M,) ~ 107",
This would seem to require much fine tuning of the contributions of the Standard Model particles to
the vacuum energy. The Standard Model also still involves ~ 20 free parameters which must be set by

measurement, and does not describe dark matter.

MSSM field content Supersymmetry is one way of extending the Standard Model. The simplest
possibility is the minimal supersymmetric Standard Model (MSSM). We can describe its field content
in terms of SU(3)¢ x SU(2), x U(1)y quantum numbers. We have

e Vector superfields

field SU(3)¢ x SU(2), x U(1)y spin-1/2 spin-1
G (8,1,0) gluino g gluon ¢
w (1,3,0) wino w W-boson W#
B (1,1,0) bino b hypercharge boson B*
e Chiral superfields
field SU(3)e x SU(2)r x U(1)y spin-0 spin-1/2

Q; = UL (3,2,1/6) squarks UL quarks i
dLi dLi sz'

L, = (VLZ) (1,2,-1/2) sleptons (ZLZ> leptons (VM)
€rLi €Li €ri

Uir (3,1,-2/3) antisquark u},  antiquark g
dir (3,1,1/3) antisquark d7,  antiquark d;z
€iR (1,1,1) slepton €5 lepton &;r
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The indices L and R denote whether the fermions are left-handed or right-handed, and ¢ = 1,2,3
labels the generation.

e Higgs doublets

field SU3)e x SU(2), x U(1)y spin-0 spin-1/2
HY HY HY
H =" 1,2,—1/2 Higes [ ' | Higgsino | ~*
g ( /2) gg Hy gg i
Hy Hy Hy

Hy= |2 1,2,1/2 Higgs | 2 Higgsino [ -2
> o ( /2) gg HY gg 10

We need two Higgses firstly so that we can give mass to both up- and down-type quarks, as we cannot
use H 1T in the superpotential as it is meant to be holomorphic, and secondly so as to cancel an anomaly

arising from a triangle Feynman diagram with hypercharge bosons as external particles (this diagram
is proportional to (Zlh fermions ~ Zrh fermions)(Y/2)3)'

MSSM superpotential The MSSM superpotential involves writing all field terms which are renor-
malisable and invariant under the gauge symmetries. The superpotential in fact splits into two parts,
the first of which is

Wrp = (Yi)i;QiHotig; — (Yp)i;jQiH1dr; — (Yi)ijLiH1;r + pHy Hy
In writing this we have suppressed internal indices, so really
QiHyup; = €abeaH§ﬂij

with x = 1,2,3 an SU(3) index. The matrices Y;; amount to matrices of Yukawa couplings, and y is a
mass term for the Higgses.

In fact we can write

(Y)i;QiHatigy = (Yu)ij (—uLngoﬂRj + dLinJraRj)

and then apply the Higgs mechanism by writing HY = %(?}2 + hY), thus obtaining a mass matrix

1
EUQ(YU)U‘

for up-type quarks and squarks. Similarly, we have
_(YD)ijQz’Hlde = —(Yp)y (—ULinJRj + dLiH?de)

leading to a mass matrix

1
Evl(YD)zj
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for down-type quarks and squarks, and
—(Yg)ijLiH1e;r = —(YE)ij (—VLinéjR + eLiH?éjR)

leading to a mass matrix

1
Em (YE)ij
for leptons and sleptons.

R-parity violating terms and proton decay Other possible terms for the superpotential are

1 - 1 -
Wre = 5/\ijkLiLjékR + Njp LiQjdy, + ki LiHy + 5/\§;kﬂmdj3dk1%
The first three of these violate lepton number, with AL = 1, and the last violates baryon number, with

AB = 1. An unwanted consequence of this is that including these terms would lead to proton decay.

L <l
d d u
u (4

Figure 1: Proton decay

This can be seen in figure 1. Now, the term %/\;’jkﬂiRJjRJkR contributes

%A;’jkumdedkR e
to the Lagrangian; writing
Uip = i+ V20Uig + ... dip = i + V20dig + . .
we get quark-quark-squark interaction terms of the form
~ )\ghkﬂéZRa%J}r%
Similarly from the F-terms of LZ»Qij we get interaction terms

w7t
*
~ 11kdkReLiuLj

which mediate the ud — d — et interaction; the amplitude for proton decay is then proportional
to Aj; A, The probability will then be proportional to [Aj1x\];,]%; and also to m=4 (the propagator

contains an inverse mass squared); and so an estimate for the proton decay rate on dimensional grounds
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([mass] = [time]™!) is

5,4 r2

Experiment suggests the proton lifetime is 7 ~ 10%s so
109 ~ m,, *m Mgy, 2
Using the facts that 1s ~ 10%* GeV ™, my ~ 1 GeV and supposing mj ~ 1 TeV we have
1064 ~ 1036730’)\11]6)\111]6’72 = |)\11k)\/11k|2 ~ 10760

so one or other of the couplings must be absolutely tiny. Conversely if we had assumed the couplings
were of O(1), we would obtain 7 ~ 107!% s.
To rule out proton decay it is convenient to impose a new symmetry on the MSSM Lagrangian which

forbids the superpotential Wgp. This symmetry is R-parity and it is defined by

R=(- 1)3(37L)+23

where B and L are the baryon and lepton numbers and S is the spin (note that superpartners inherit
the baryon and lepton numbers of the original Standard Model particles). All standard model particles
have R = 41, and their superpartners have R = —1. Imposing R-parity conservation has the effect of
ruling out all interaction terms stemming from Wy (this can be seen by expanding the chiral super-
fields and observing which terms have two Standard Model fields interacting with a single superpartner
field, or a single Standard Model field interacting with a single superpartner field). It also means that a
single supersymmetric particle cannot decay into Standard Model particles alone - there must be an odd
number of supersymmetric particle present in the decay. An interesting effect of this is that it implies
the lightest supersymmetric particle (LSP) must be stable (as there is nothing else supersymmetric for
it to decay into). If the LSP is neutral then we obtain a good candidate for dark matter in the form a
WIMP neutralino (mass eigenstate of neutral supersymmetric particles such as higgsino, photino). In
the context of the LHC, R-parity conservation implies that even numbers of supersymmetric particles
would be produced in every proton-proton collision. One way to search for these is by looking for missing

transverse momentum.

MSSM gauge couplings The (chiral) matter superfields we have described above couple to vector
gauge superfields. This coupling is provided by the Kahler potential

K=Y ofex=*Tio " g,
k

where we sum over all chiral superfields ®;. Each chiral superfield is in a particular representation R(7)
of the three gauge groups of the model, which we label by i = 1,2,3 for U(1), SU(2) and SU(3). The

coupling for group 7 is g;, and Tg(i) denotes the a'™ generator of the group i in the representation R(i)
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which &, transforms in.

MSSM Higgs potential We know from our general theory of non-abelian fields that the D-term po-
tential for a scalar field ¢ coupled to a vector superfield with coupling constant g and in a representation

with hermitian generators T is

1
VD:§g2DaDa Da:—gO*Ta(p

In the MSSM we have scalar Higgs fields

HY Hy
H1 - 1_ HQI 20
Hl H2

transforming trivially under SU(3) but in the fundamental representation of SU(2) and with hyper-
charges —1/2 and +1/2 respectively under U(1)y. We let the latter have coupling constant ¢’ and the
former have coupling constant g.

The contribution from the U(1)y generators to Vp is then just

1 21
<o (HiH — HIH,)" = 2g® (HSP + |HS |2 = |HO? = | H7 )’

The generators of SU(2) can be taken to be ¢%/2 with ¢® the Pauli sigma matrices. Letting D§ denote

the corresponding D fields we have

0 1\ (& 0 1\ (H
20} = (Hp H;”) (1 0) <H1_> + (mf my) (1 ) <H20>
1 2

= HYH; + H*H) + H*H) + HY*Hy

o= ) (§) () e o) (03) ()

=i (—H{*Hy + H;*H} — Hy*H} + HY*H)

2D3 = (H{’* H1—*> <(1) _01) (ISIE) + <H2+* Hg*> ((1) _01> (I[g)

= HY[* = [Hy |* + |HS |* — [H|®

o

36



The contribution to the potential is then

%gZ( [HYHy + Hy*HY + HY*HY + HYH | — [~ HYHY + H7HY — HY*HS + HY HY |
(1D = | Hy P P S

= o (A[\HOPIH P o+ B HY HYH o+ Hy HYHS B+ P 3P

[ HY[ o+ [HT [+ [ [+ [ — 20 HO2 T2+ 2 HY P P

2 HYP\HSJ? — 2| Hy 2 H | + 2y PIHSJ? — 2| B2 H )

= < (4113 PAHD | HYPIH P+ Y 5 HYHYH; )

| [ H [+ [H |+ [H |+ 2l HY P H P+ 232 HS

2| H | HY? — 2/ Hy | HYJ? — 2| HY [P\ B2 — 2| 12| 2)

which is just .

. a2 1 _2\2
592 Hi HY* + H)H; | +§92 ([HS]? + |HS PP — [HYP? — |HT|?)

We can also consider the F-term potential, which can be written

2

ow
= |p/? (|H2|2 + |H1|2)

0H,

o[ |3

0H,

so that the full Higgs potential from the F- and D-terms is

g2 + g/Q
8

7
2

* —x|2 —12\2 _
|Hy Hy* + HyH" |+ (L + | Hy [P = [HY|* = [ Hy )"+l (HDP + [ Hy [P+ [y + [ HS )
Supersymmetry breaking in the real world Owing to the conspicuous lack of superpartners with
the same mass as Standard Model particles supersymmetry if present in nature must be a broken sym-
metry. The question then arises of finding the mechanism by which supersymmetry is broken. The
methods of F- and D-term breaking are unsuitable as breaking supersymmetry directly in this fashion

always leads to a vanishing supertrace:

StrM? = (=12 + 1)m? =0
j
As we need supersymmetric particles to be heavier than their Standard Model partners this cannot
hold. Thus we should have a “hidden sector” of fields which do not directly indirect with the Standard
Model; supersymmetry is broken out of direct reach and this is mediated to the observable fields by
some process. Examples include considering the gauge group Egs x Eg from heterotic string theory: we
break supersymmetry in the first Ey factor, with the Standard Model fields contained in the second Ej,
with the two interacting via supergravity.

In general one obtains additional “soft breaking terms” as part of our Lagrangian of observable fields.
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For the MSSM the general R-parity conserving soft supersymmetry breaking Lagrangian is

L= (Yu)ijQriHatugp; — (Yp)iQrithdg; — (Ye)i; LriH1€g;
A% 2 ) Tx 2 T ~ 2 ~% ~% 2 ~x% o2 T
+ Qrim,;Qry + Lpmg, Lirj + €riig€r; + UpMiUp; + dgym7, dg;

M. My~ —~, M ~~
"’“BH1H2+h-c~+m%|H1|2+m2|H2|2+73§a§a+72WbWb+71BB

The complete model then has over 100 parameters.

Hierarchy problem The hierarchy problem comes in two parts. The first part asks why the elec-
troweak symmetry breaking scale Mgy ~ 10? GeV is so much less than the Plank mass Mp; ~ 10! GeV
defining the scale of quantum gravity. The second part asks if this hierarchy is stable under quantum
corrections.

The second part of the problem results from the fact that the electroweak scale is set by the Higgs
mass term in the Standard Model Lagrangian (by gauge symmetry the Higgs is the only particle in the
Standard Model which can have a mass term). Corrections to the Higgs mass arise from diagrams with

fermions and boson loops, and in the presence of a momentum cut-off A have the form

A2
1672

om3, = (aX — b)\fc)

Here A is the coupling constant for the quartic Higgs self-interaction and Ay is a coupling constant for a
Higgs Yukawa coupling to fermions. The problem is that for large A this is much bigger than Mgy,. One
can fine-tune the theory to avoid this instability, but nobody likes fine-tuning. Supersymmetry however
provides exactly the right relationship between A\ and Afc to cancel this mass correction. This is one of
the primary motivations behind considering supersymmetry as a physical symmetry. Note however that
we must break supersymmetry in such a way as to preserve it as a solution to the hierarchy problem.

(See discussion in Quevedo’s lecture notes for more details.)
7 Supergravity

Elements of supergravity One can extend supersymmetry to a local symmetry to obtain super-
gravity. There, we introduce a spin-3/2 field ¢y known as the Rarita-Schwinger field, representing a
gravitino, which couples to the conserved supercurrent J¥. Construction of invariant Lagrangians is a

little more involved. For the F-terms scalar potential one gets

2 3|W 2
Vip = /M <(Kij>1DiW(DjW)* _3 2| )
Mp,

Here W is a superpotential, K a Kahler potential, and

K
K-= ———
YT 09,0
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with ®; denoting the chiral superfields of the theory. Note the subtle fact that the index structure of
the inverse Kahler metric is
(1) = K7

ij
We also have the derivatives
ow W ow

0®, M2, 00,

which are in fact essentially the auxiliary fields F; are
F; o< D;W

For supersymmetry breaking in supergravity models one has (F;) # 0. Note that it’s possible to have
V > 0or V < 0 even after breaking supersymmetry. This is important for the cosmological con-
stant problem, as we could have (Vr) ~ 0 after breaking in accord with observation of the cosmological
constant (whereas global supersymmetry breaking leads to a cosmological constant of order (100GeV)?).

There is also a phenomenon known as the super Higgs effect (note this does not refer to the normal
Higgs effect in a supersymmetric theory). In this effect the goldstino resulting from the breaking gets
eaten by the gravitino, which thereby obtains a mass. Thus a massive gravitino is a hallmark of broken

supergravity. The gravitino mass is mg = (e//2|W|).
8 Supersources
The basic notes for this course, asides from the ones I took down in Prof Ben Allanach’s lectures, were

e F. Quevedo, “Cambridge Lectures on Supersymmetry and Extra Dimensions,” http://arxiv.org/
abs/1011.1491

There were various inconsistencies between Quevedo’s notes and those from the actual classes I attended,
due either to changing conventions or mistakes. Generally I've followed the conventions from my class
notes (and inevitably taken the accidental liberty of introducing my own mistakes). Useful resources for

comparison and illumination included:

e D. Bailin, A. Love, Supersymmetric Gauge Field Theory and String Theory, IOP

J. Wess, J. Bagger, Supersymmetry and Supergravity, PUP

M. Srednicki, Quantum Field Theory, CUP

e J.D. Lykken, “Introduction to Supersymmetry,” http://arxiv.org/abs/hep-th/9612114
e S. Dawson, “The MSSM and Why It Works,” http://arxiv.org/abs/hep-ph/9712464

I tended to refer to the first two of the above for information on superspace and superfields. Sred-
nicki’s book summarises about half the course in two typically short and carefully constructed chapters.
Lykken’s notes are quite good and he lists all his conventions, basic identities and commutation rela-
tions at the end (the world would be a far better place if all texts on the subject did something similar).

Dawson’s notes, as the name suggests, were helpful for the MSSM.
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