
Revision notes for Part III Supersymmetry

Even though the sound of it is something quite atrocious...

- from “Supercalifragilisticexpialidocious,” Mary Poppins

Notes by Chris Blair, May 2011

1 Supersummary

Basic definitions/identities:

ηµν = ηµν = diag (1,−1,−1,−1)

εαβ =

(
0 1

−1 0

)
= εα̇β̇ εαβ = −εαβ εα̇β̇ = −εα̇β̇

ψα ≡ εαβψβ ψα ≡ εαβψ
β ψχ ≡ ψαχα ψ̄χ̄ ≡ ψ̄α̇χ̄

α̇

σµαα̇ = (I, σ1, σ2, σ3) (σ̄µ)α̇α = (I,−σ1,−σ2,−σ3)

(σµν) βα =
i

4
(σµσ̄ν − σν σ̄µ) (σ̄µν)α̇

β̇
=
i

4
(σ̄µσν − σ̄νσµ)

tr (σµσ̄ν) = 2ηµν σµαα̇(σ̄µ)β̇β = 2δβαδ
β̇
α̇

(ψα)† = ψ̄α̇ (ψα)† = ψ̄α̇

(ψχ)† = χ̄ψ̄ (ψσµχ̄)† = χσµψ̄

θαθβ = −1

2
εαβ(θθ) θαθβ = +

1

2
εαβ(θθ)

θ̄α̇θ̄β̇ = +
1

2
εα̇β̇(θ̄θ̄) θ̄α̇θ̄β̇ = −1

2
εα̇β̇(θ̄θ̄)

Some results:

(θσµθ̄)(θσν θ̄) =
1

2
ηµν(θθ)(θ̄θ̄)

(θψ)(θχ) = −1

2
(θθ)(ψχ)

(θψ)(χ̄η̄) = −1

2
(θσµη̄)(χ̄σ̄µψ)

ψσµχ̄ = −χ̄σ̄µψ

ψσµσ̄νχ = χσν σ̄µψ

Super-Poincare algebra for N = 1 SUSY:

[P µ, P ν ] = 0 [Mµν , P σ] = i(P µηνσ − P νηµσ) [Mµν ,Mρσ] = i(Mµσηνρ +Mνρηµσ −Mµρηνσ −Mνσηµρ)
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[Qα,M
µν ] = (σµν) βα Qβ [Q̄α̇,Mµν ] = (σ̄µν)α̇

β̇
Q̄β̇ [Qα, Pµ] = [Q̄α̇, Pµ] = 0

{Qα, Q
β} = {Q̄α̇, Q̄

β̇} = 0 {Qα, Q̄α̇} = 2σµαα̇Pµ

[Qα, Ti] = 0 [Qα, R] = Qα [Q̄α̇, R] = −Q̄α̇

Extended SUSY:

{QA
α , Q̄β̇B} = 2σµ

αβ̇
Pµδ

A
B {QA

α , Q
B
β } = εαβZ

AB {Q̄α̇A, Q̄β̇B} = εα̇β̇(Z†)AB

Superfields:

S(xµ, θα, θ̄
α̇) = ϕ+ θψ + θ̄χ̄+ (θθ)M + (θ̄θ̄)N + (θσν θ̄)Vν + (θθ)θ̄λ̄+ (θ̄θ̄)θρ+ (θθ)(θ̄θ̄)D

δS = i(εQ+ ε̄Q̄)S Qα = −i ∂
∂θα
− σµαα̇θ̄α̇

∂

∂xµ
Q̄α̇ = i

∂

∂θ̄α̇
+ θασµαα̇

∂

∂xµ

Dα = ∂α + iσµαα̇θ̄
α̇∂µ D̄α̇ = −∂̄α̇ − iθασµαα̇∂µ

{Dα, D̄α̇} = −2iσµαα̇∂µ others zero

yµ = xµ + iθσµθ̄ D̄α̇y
µ = 0

Chiral superfield:

D̄α̇Φ = 0 Φ = ϕ+
√

2θψ + (θθ)F + i(θσµθ̄)∂µϕ−
i√
2

(θθ)∂µψσ
µθ̄ − 1

4
(θθ)(θ̄θ̄)∂µ∂

µϕ

Vector superfield:

V (x, θ, θ̄) = V †(x, θ, θ̄)

V (x, θ, θ̄) = C + iθχ− iθ̄χ̄+
i

2
(θθ)(M + iN)− i

2
(θ̄θ̄)(M − iN) + θσµθ̄Vµ

+ (θθ)θ̄

(
iλ̄− 1

2
σ̄µ∂µχ

)
+ (θ̄θ̄)θ

(
−iλ− 1

2
σµ∂µχ̄

)
+

1

2
(θθ)(θ̄θ̄)

(
D − 1

2
∂µ∂

µC

)
V 7→ V + i(Λ− Λ†) Φ 7→ e−2iqΛΦ

VWZ(x, θ, θ̄) = (θσµθ̄)Vµ + i(θθ)θ̄λ̄− i(θ̄θ̄)θλ+
1

2
(θθ)(θ̄θ̄)D

D- and F -terms:

(θθ)(θ̄θ̄)D(x) (θθ)F (x)

Field strength:

Wα = −1

4
(D̄D̄)DαV = −iλα(y) + θαD(y) + (σµνθ)αFµν(y) + (θθ)σµ

αβ̇
∂µλ̄

β̇(y)
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Lagrangian:

L =
∑
i

Φ†ie
2qiV Φi

∣∣∣
D

+
(
W (Φi)

∣∣∣
F

+ h.c.
)

+
(
f(Φi)(W

αWα)
∣∣∣
F

+ h.c.
)

+ ξV
∣∣∣
D

Non-abelian vector superfields:

Vµ = V a
µ T

a D = DaT a λ = λaT a

Φ→ e−2iΛq Λ = ΛaT a e2qV → e2qV ′
= e−2iΛ†qe2qV e2iΛq

Wα = − 1

8q
(D̄D̄)

(
e−2qVDαe

2qV
)

Wα → e2iqΛ†
Wαe

2iqΛ

W a
α = −iλaα(y) + θαD

a(y) + (σµνθ)αF
a
µν(y) + (θθ)σµ

αβ̇
Dµλ̄

aβ̇(y)

F a
µν = ∂µV

a
ν − ∂νV a

µ + qfabcV b
µV

c
µ Dµλ̄

a = ∂µλ̄
a + qV b

µ λ̄
cfabc

1

4

(
trWαWα

∣∣∣
F

+ h.c.
)

=
1

2
DaDa − iλaσµDµλ̄

a − 1

4
F aµνF a

µν

LD =
1

2
DaDa + qϕ†mD

aT amnϕn VD(ϕ) =
q2

2

(
ϕ†mT

a
mnϕn

) (
ϕ†pT

a
pqϕq

)
Supersymmetry breaking:

Qα|0〉 6= 0 Q̄α̇|0〉 6= 0

2∑
α=1

(
QαQ

†
α +Q†αQα

)
= 4E ⇒ broken SUSY: Evac > 0 , unbroken SUSY: Evac = 0

F -term breaking:

〈F 〉 6= 0⇒ 〈δϕ〉 = 〈δF 〉 = 0 〈δψ〉 6= 0

VF = |∂W
∂ϕ
|2 = |F |2 ⇒ VF > 0 forF − term breaking

O’Raifeartaigh model:

K = Φ†iΦi W = gΦ1(Φ2
3 −m2) +MΦ2Φ3

D-term breaking:

〈D〉 6= 0⇒ 〈δλ〉 = ε〈D〉 6= 0

Supertrace:

StrM2 =
∑
j

(−1)2j+1(2j + 1)m2
j = 0

MSSM:
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vector SU(3)C × SU(2)L × U(1)Y spin-1/2 spin-1

G (8, 1, 0) gluino g̃ gluon g

W (1, 3, 0) wino w̃ W-boson W µ

B (1, 1, 0) bino b̃ hypercharge boson Bµ

chiral spin-0 spin-1/2

Qi =

(
uLi

dLi

)
(3, 2, 1/6) squarks

ũLi
d̃Li

 quarks

uLi
dLi


Li =

νLi
eLi

 (1, 2,−1/2) sleptons

ν̃Li
ẽLi

 leptons

νLi
eLi


ūiR (3̄, 1,−2/3) antisquark ũ∗iR antiquark ūiR

d̄iR (3̄, 1, 1/3) antisquark d̃∗iR antiquark d̄iR

ēiR (1, 1, 1) slepton ẽ∗iR lepton ēiR

H1 =

H0
1

H−1

 (1, 2,−1/2) Higgs

H0
1

H−1

 Higgsino

H̃0
1

H̃−1


H2 =

H+
2

H0
2

 (1, 2, 1/2) Higgs

H+
2

H0
2

 Higgsino

H̃+
2

H̃0
2


WRP = (YU)ijQiH2ūRj − (YD)ijQiH1d̄Rj − (YE)ijLiH1ējR + µH1H2

W��RP =
1

2
λijkLiLj ēkR + λ′ijkLiQj d̄k + κiLiH2 +

1

2
λ′′ijkūiRd̄jRd̄kR

R-parity:

R = (−1)3(B−L)+2S + 1 for Standard Model particles − 1 for superpartners

2 Superset-up

2.1 Basics

Metric signature Our metric signature is mostly minus:

ηµν = ηµν = diag (1,−1,−1,−1)

Representation theory If these were proper notes there would be a discussion of representations of

the Lorentz group and SL(2,C) here as well as an explanation of what spinors are. However, there isn’t.

Raising and lowering indices Spinor indices are raised and lowered using the epsilon tensor:

εαβ =

(
0 1

−1 0

)
= εα̇β̇
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εαβ = −εαβ εα̇β̇ = −εα̇β̇ εαβε
βγ = δγα

When raising or lowering the order is important:

ψα ≡ εαβψβ ψα ≡ εαβψ
β

Index-free contraction We define the contraction of two spinors as follows:

ψχ ≡ ψαχα

ψ̄χ̄ ≡ ψ̄α̇χ̄
α̇

Note that left-handed spinors have the index on the left raised, and right-handed spinors have the

index on the right raised. The index free notation commutes:

ψχ = χψ ψ̄χ̄ = χ̄ψ̄

Proof: This is because χψ = χαψα = −ψαχα = −εαβψβχα = +ψβεβαχ
α = ψβχβ = ψχ, and similarly for the barred

spinors.

Sigma matrices In 4-component notation,

σµ = (I, σ1, σ2, σ3)

with index structure

σµαα̇

Recall that the Pauli matrices are hermitian and traceless, and σiσj = δij + iεijkσk. We can also define

(σ̄µ)α̇α ≡ εαβεα̇β̇σµ
ββ̇

which has the numerical form

σ̄µ = (I,−σ1,−σ2,−σ3)

Proof: To demonstrate this it is convenient to use matrix notation and note that fact that εαβ = εα̇β̇ = iσ2. Then from

the index structure we have σ̄µ = −(εσµε)T = (σ2σµσ2)T , from which the result easily follows as σ1, σ3 and the identity

are equal to their transpose while σ2 = −(σ2)T .

Sigma matrix identities We can prove some identities involving products of these sigma matrix objects:

tr (σµσ̄ν) = 2ηµν

Proof: This is most easily seen by noting that the product of any two of the matrices involved is a Pauli matrix and so

traceless if the two matrices are distinct; if on the other hand µ = ν then we get ±I, with trace ±2, with the plus sign

corresponding to µ = ν = 0 and the minus sign corresponding to µ = i, recalling that σi = −σ̄i.
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Another result is

σµαα̇(σ̄µ)β̇β = 2δβαδ
β̇
α̇

Proof: One can argue that the right-hand side must be proportional to the two Kronecker deltas as they are the only avail-

able tensors with the right index structure, and then evaluate for specific components to get the constant of proportionality.

The previous result with α̇ and β̇ contracted gives

(σµσ̄µ)βα = 4δβα

Left- and right-handed representations The matrices

(σµν) βα =
i

4
(σµσ̄ν − σν σ̄µ) (σ̄µν)α̇

β̇
=
i

4
(σ̄µσν − σ̄νσµ)

furnish us with left- and right-handed representations of the Lorentz group on two-component spinors.

Hermitian conjugation Hermitian conjugation exchanges left- and right-handed spinors:

(ψα)† = ψ̄α̇ (ψα)† = ψ̄α̇

When taking the hermitian conjugate of a product do not include minus signs from interchanges

(ψαχβ)† = χ†βψ
†
α

This means that

(ψχ)† = (ψαχα)† = χ̄α̇ψ̄
α̇ = χ̄ψ̄

Recall that σµ is hermitian, so

(ψσµχ̄)† = χσµψ̄

The rule for indices is to swap order than trade dots for no dots and vice versa, i.e.

(σµ
αβ̇

)† = σµβα̇

2.2 Spinor identities

A very important simplification We have

θαθβ = −1

2
εαβ(θθ)

Proof: By the definition of the contraction of two spinors, θθ = θαθα = εαβθ
αθβ = −θ1θ2 + θ1θ2 = −2θ1θ2 = +2θ2θ1.

The result follows by recalling that ε12 = +1 and ε21 = −1.

Similarly,

θ̄α̇θ̄β̇ = +
1

2
εα̇β̇(θ̄θ̄)
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Proof: Identical to the previous, by using θ̄θ̄ = θ̄α̇θ̄
α̇ = εα̇β̇ θ̄

β̇ θ̄α̇ = −θ̄2̇θ̄1̇ + θ̄1̇θ̄2̇ = +2θ̄1̇θ̄2̇ = −2θ̄2̇θ̄1̇, and recalling

ε1̇2̇ = +1, ε2̇1̇ = −1.

Similarly we have

θαθβ = +
1

2
εαβ(θθ) θ̄α̇θ̄β̇ = −1

2
εα̇β̇(θ̄θ̄)

Various rearrangement identities The previous result is very useful when we have some expression

in which a spinor θ occurs twice:

(θψ)(θχ) = −1

2
(θθ)(ψχ)

Proof: Simply by writing left-hand side as

−θαθβψαχβ = +
1

2
εαβ(θθ)ψαχβ = −1

2
(θθ)ψαχα = −1

2
(θθ)(ψχ)

Note that one can apply this with for example ψ = σµψ̄, as this is a left-handed spinor (from index

structure), so

(θσµψ̄)(θχ) = −1

2
(θθ)(χσµψ̄)

Fierz identity The same methods apply to show

(θσµθ̄)(θσν θ̄) =
1

2
ηµν(θθ)(θ̄θ̄)

Proof: Write the left-hand side as

θασµαα̇θ̄
α̇θβσν

ββ̇
θ̄β̇ = +

1

4
εαβεα̇β̇σµαα̇σ

ν
ββ̇

(θθ)(θ̄θ̄) =
1

4
σµαα̇(σ̄ν)α̇α(θθ)(θ̄θ̄) =

1

4
tr (σµσν)(θθ)(θ̄θ̄)

from which the result follows as tr (σµσν) = 2ηµν .

Fierz identity A similar result is

(θψ)(χ̄η̄) = −1

2
(θσµη̄)(χ̄σ̄µψ)

Proof: Write the right-hand side as

−1

2
θαη̄α̇χ̄β̇ψβσ

µ
αα̇(σ̄µ)β̇β = −θαη̄α̇χ̄β̇ψβδ

β
αδ

β̇
α̇ = −θαψαη̄α̇χ̄α̇ = +(θψ)(χ̄η̄)

Bilinear forms One has some freedom to rewrite bilinear forms involving the Pauli matrices:

ψσµχ̄ = −χ̄σ̄µψ

Proof: Write the left-hand side as

ψασµαα̇χ̄
α̇ = −χ̄β̇ε

α̇β̇εαβσµαα̇ψβ = −χ̄β̇(σ̄µ)β̇βψβ = −χ̄σ̄µψ
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More manipulation using ε tensors gives

ψσµσ̄νχ = χσν σ̄µψ

3 Supermultiplets

N = 1 SUSY algebra The SUSY algebra extends the familiar Poincare algebra

[P µ, P ν ] = 0

[Mµν , P σ] = i(P µηνσ − P νηµσ)

[Mµν ,Mρσ] = i(Mµσηνρ +Mνρηµσ −Mµρηνσ −Mνσηµρ)

by introducing fermionic symmetry generators Qα and Q̄α̇.

We can motivate the SUSY algebra as follows. Consider first the transformation of Qα as a spinor

under a Lorentz transformation:

Qα → exp

(
− i

2
ωµνσ

µν

) β

α

Qβ ≈ Qα −
i

2
ωµν(σ

µν) βα Qβ

It also transforms as an operator under U = exp(− i
2
ωµνM

µν) as Q→ U †QU , so to first order

Qα → Qα −
i

2
ωµν [Qα,M

µν ]

hence we derive

[Qα,M
µν ] = (σµν) βα Qβ

Similarly, we have

Q̄α̇ → exp

(
− i

2
ωµν σ̄

µν

)α̇
β̇

Q̄β̇ ≈ Q̄α̇ − i

2
ωµν(σ̄

µν)α̇
β̇
Q̄β̇

and this similarly transforms as Q̄→ U †Q̄U , so

[Q̄α̇,Mµν ] = (σ̄µν)α̇
β̇
Q̄β̇

Next consider

[Qα, P
µ] = cσµαα̇Q̄

α̇

where c is a (complex) constant and the right-hand side follows from the index structure and the re-

quirement of linearity. Similarly, we should have

[Q̄α̇, P µ] = c∗(σ̄µ)α̇βQβ
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Now use the Jacobi identity:

0 = [P µ, [P ν , Qα]] + [P ν , [Qα, P
µ]] + [Qα, [P

µ, P ν ]]

= −cσναα̇[P µ, Q̄α̇] + cσµαα̇[P ν , Q̄α̇]

= |c|2 (σν σ̄µ − σµσ̄ν) βα Qβ 6= 0

This means that we must have c = 0, so

[Qα, Pµ] = [Q̄α̇, Pµ] = 0

Next, consider

{Qα, Q
β} = k(σµν) βαMµν

where the right-hand side follows again from index structure and linearity. However the left-hand side

commutes with P µ and the right-hand side does not, unless k = 0. Hence

{Qα, Q
β} = {Q̄α̇, Q̄

β̇} = 0

Finally, index structure and convention takes

{Qα, Q̄α̇} = 2σµαα̇Pµ

We also have that Qα commutes with any generators of internal symmetries, with the exception of the

R-symmetry transformation

Qα → e−iRγQαe
iRγ = eiγQα

which means

[Qα, R] = Qα [Q̄α̇, R] = −Q̄α̇

Casimir operators The Casimir operators for the super-Poincare algebra are

C1 = PµP
µ C̃2 = CµνC

µν

where

Cµν = BµPν −BνPµ

with

Bµ = Wµ −
1

4
Q̄α̇(σ̄µ)α̇αQα

with the Pauli-Ljubanski vector

Wµ =
1

2
εµνρσP

νMρσ

We take ε0123 = +1 = −ε0123.
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N = 1 massless supermultiplets We can take a standard momentum vector pµ = (E, 0, 0, E), for

which C1 = C̃2 = 0. We can characterise a massless state by its momentum pµ and its helicity λ, where

W µ|pµ, λ〉 = λpµ|pµ, λ〉. Now, for the supersymmetry generators we have

{Qα, Q̄α̇} = 2σµαα̇Pµ = 2E(σ0 − σ3)αα̇ = 4E

(
0 0

0 1

)
αα̇

This implies that {Q1, Q̄1̇} = 0. Now,take a state |pµ, λ〉 in the multiplet to be such that Qα|pµ, λ〉 =

0 (if not we can just consider |pµ, λ′〉 = Qα|pµ, λ〉 instead, and by the anticommutation relations

QαQα|pµ, λ〉 = 0). We can form new states from this one by applying Q̄1̇ or Q̄2̇, but by the anti-

commutation relations

0 = 〈pµ, λ|{Q1, Q̄1̇}|pµ, λ〉 = 〈pµ, λ|Q1Q̄1̇|pµ, λ〉

so Q̄1̇ creates a state of zero norm; this would apply for any state formed by acting with Q̄1̇ so we can

therefore take Q̄1̇ ≡ 0 in this supermultiplet. Thus the only state other than |pµ, λ〉 is found by applying

Q̄2̇. Now, we have

[Wµ, Q̄
α̇] =

1

2
εµνρσP

ν [Mρσ, Q̄α̇] = −1

2
εµνρσP

ν(σ̄ρσ)α̇
β̇
Q̄β̇

and in particular

[W0, Q̄
α̇] = −1

2
ε03ρσE(σ̄ρσ)α̇

β̇
Q̄β̇ = −p0E(σ̄12)α̇

β̇
Q̄β̇

using antisymmetry and the fact that p0 = E. Now,

σ̄12 =
i

4

(
σ̄1σ2 − σ̄2σ1

)
=
i

4

(
−σ1σ2 + σ2σ1

)
=

1

2
σ3

as σ1σ2 = −σ2σ1 = iσ3. Thus,

[W0, Q̄
α̇] = −1

2
p0(σ3Q̄)α̇

or explicitly

[W0, Q̄
1̇] = −1

2
Q̄1̇ [W0, Q̄

2̇] = +
1

2
Q̄2̇

the former implying that

[W0, Q̄2̇] = −1

2
Q̄2̇

and so we have

W0Q̄2̇|pµ, λ〉 =
(
[W0, Q̄2̇] + Q̄2̇W0

)
|pµ, λ〉 =

(
λ− 1

2

)
Q̄2̇|pµ, λ〉

Hence we see that Q̄2̇ reduces helicity of a state by 1/2. We define

|pµ, λ− 1/2〉 ≡ 1√
4E

Q̄2̇|pµ, λ〉
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We can generate no further new states. Note that 1√
4E
Q2 and 1√

4E
Q̄2̇ form a pair of creation and

annihilation operators, satisfying {
1√
4E

Q2,
1√
4E

Q̄2̇

}
= 1

Finally we should include CPT conjugates of negative helicity, and so conclude that our multiplet

consists of the states

|pµ, λ〉 |pµ, λ− 1/2〉

along with the CPT conjugates

|pµ,−λ〉 |pµ,−(λ− 1/2)〉

Note that to show the Casimir C̃2 is zero we calculate as follows:

C̃2 = 2(BµPνB
µP ν −BµPνB

νP µ) = −2(BµP
µ)2 = −2E2(B0 +B3)2

but as Bµ = Wµ − 1
4
Q̄α̇(σ̄µ)α̇αQα we have

B0 =
1

2
ε03ρσEM

ρσ − 1

4

(
Q̄1̇Q1 + Q̄2̇Q2

)
B3 =

1

2
ε30ρσEM

ρσ − 1

4

(
Q̄1̇Q1 − Q̄2̇Q2

)
using σ̄3 = −σ̄3 = σ3. So B0 +B3 = −1

2
Q̄1̇Q1 and is therefore zero for massless states.

Examples of massless supermultiplets We can take λ = 1/2, giving us a chiral multiplet with

two |p, 0〉 states and the states |p,±1/2〉. The latter correspond to quarks, leptons, Higgsinos, and the

former correspond to squarks, sleptons and Higgses.

We can take λ = 1, giving a vector multiplet with the states |p,±1/2〉 (photino, gluino, Zino, Wino)

and |p,±1〉 (photon, gluon, Z-boson, W-boson). Note that we don’t construct for instance quark-

quarkino pairs as a spin-1 particle only leads to a renormalisable QFT if it is a gauge boson.

We can also take λ = 2, giving a gravitino-graviton pair.

N = 1 massive supermultiplets For a massive particle we can go to the centre of mass frame,

pµ = (m, 0, 0, 0). Now the Casimirs become C1 = m2 and C̃2 = 2m4Y iYi where the superspin is

Yi = Ji + 1
4m
Q̄α̇σ̄

α̇α
i Qα (the plus sign is a minus in the notes which confuses me but never mind, I’ve

taken Ji = 1
2
εijkM

jk and ε0ijk ≡ εijk, perhaps we can absorb a minus sign into the Pauli matrix and its

down or up index or something) and satisfies [Yi, Yj] = iεijkYk. We can therefore label states by their mass

m and the number y where y(y+ 1) is the eigenvalue of YiYi. The supersymmetry generators now obey

{Qα, Q̄α̇} = 2σµαα̇Pµ = 2m

(
1 0

0 1

)
αα̇

Now, let |Ω〉 be the vacuum state, which is annihilated by Q1 and Q2. For this state the ordinary spin

agrees with the superspin, Yi|Ω〉 = Ji|Ω〉. Hence for a given m, y we have

|Ω〉 = |m, j = y; pµ, j3〉
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From [Qα,M
µν ] = (σµν) βα Qβ and [Q̄α̇,Mµν ] = (σ̄µν)α̇

β̇
Q̄β̇ we can derive

[Q̄α̇, J3] = [Q̄α̇,M12] = (σ̄12)α̇
β̇
Q̄β̇ =

1

2

(
1 0

0 −1

)α̇
β̇

Q̄β̇

remembering that Ji = 1
2
εijkM

jk and using the definition of σ̄µν again. Hence we have that

[Q̄1̇, J3] =
1

2
Q̄1̇ [Q̄2̇, J3] = −1

2
Q̄2̇

or

[J3, Q̄1̇] =
1

2
Q̄1̇ [J3, Q̄2̇] = −1

2
Q̄2̇

Thus we find we can use Q̄1̇ to raise the value of j3:

J3Q̄1̇|j3〉 =
(
[J3, Q̄1̇] + Q̄1̇J3

)
|j3〉 = (j3 + 1/2)Q̄1̇|j3〉

and similarly Q̄2̇ lowers j3 by 1/2. So we have

|j3 + 1/2〉 ≡ Q̄1̇√
2m
|j3〉 |j3 − 1/2〉 ≡ Q̄2̇√

2m
|j3〉

and 1√
2m
Q1,2 have the opposite effect. The main point is that Q̄α̇ acting on |Ω〉 behaves like the combi-

nation of spins j and 1/2, i.e. j ⊗ 1/2 = (j − 1/2) ⊕ (j + 1/2). The only way this works is if we have

a decomposition of the form

Q̄1̇√
2m
|Ω〉 = k1|m, j = y + 1/2; pµ, j3 + 1/2〉+ k2|m, j = y − 1/2; pµ, j3 + 1/2〉

Q̄2̇√
2m
|Ω〉 = k3|m, j = y + 1/2; pµ, j3 − 1/2〉+ k4|m, j = y − 1/2; pµ, j3 − 1/2〉

The only other states are of the form

|Ω′〉 =
1

2m
Q̄2̇Q̄1̇|Ω〉

Note that Q1|Ω〉 = 0 but Q1|Ω′〉 = −Q̄2̇|Ω〉 6= 0 so that |Ω〉 6= |Ω′〉 and |Ω′〉 therefore constitutes a

different set of states of spin j = y.

The states in the massive supermultiplet are then |Ω〉 and |Ω′〉 of the form

|m, j = y; pµ, j3〉

giving a total of 2(2y + 1) states, states

|m, j = y + 1/2; pµ, j3〉
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giving a further 2(y + 1/2) + 1 = 2y + 2 states, and also

|m, j = y − 1/2; pµ, j3〉

giving another 2(y − 1/2) + 1 = 2y states.

A slight exception is provided by the case y = 0. There we have

|Ω〉 = |m, j = 0; pµ, j3 = 0〉

Q̄1̇,2̇√
2m
|Ω〉 = |m, j = 1/2; pµ, j3 = ±1/2〉

|Ω′〉 =
1

2m
Q̄2̇Q̄1̇|Ω〉 = |m, j = 0; pµ, j3 = 0〉

The states |Ω〉 and |Ω′〉 differ in their handedness and are exchanged under parity. There are two

eigenstates of parity

|±〉 =
1√
2

(|Ω〉 ± |Ω′〉)

corresponding to a scalar and a pseudoscalar particle.

Let’s also outline the y = 1/2 case. Here we start with the two states |m, j = 1/2; pµ, j3 = ±1/2〉.
Acting with Q̄1̇ produces the states |m, j = 1; pµ, j3 = 1, 0〉 while acting with Q̄2̇ produces the states

|m, j = 0; pµ, j3 = 0〉 and |m, j = 1; pµ, j3 = −1〉. Acting with both gives us then another j = 1/2,

j3 = ±1/2 pair.

Extended SUSY We extend supersymmetry by including N copies of the supersymmetry generators,

labelled by an index A, with new anticommutation relations

{QA
α , Q̄β̇B} = 2σµ

αβ̇
Pµδ

A
B

{QA
α , Q

B
β } = εαβZ

AB

{Q̄α̇A, Q̄β̇B} = εα̇β̇(Z†)AB

where ZAB commutes with everything and is antisymmetric ZAB = −ZBA. We are also using a “perverse

but essential” convention where ZAB = −ZAB.

Note that if ZAB = 0 then there is an internal U(N ) symmetry QA
α → UA

BQ
B
α , known as R-symmetry.

If some ZAB 6= 0 then the above anticommutation relations break this symmetry to some subgroup of

U(N ).

N > 1 massless supermultiplets Again we have pµ = (E, 0, 0, E) and now

{QA
α , Q̄β̇B} = 4E

(
0 0

0 1

)
αβ̇

δAB

13



We can again find that Q̄1̇A = 0, and from the anticommutators we then must have all ZAB = 0. We

now have that each of the N operators Q̄2̇A lower the helicity by 1/2. To construct an extended SUSY

massless supermultiplet we therefore start with a state of maximal helicity λmax and apply all possible

combinations of these operators.

Explicitly, we start with the single state |pµ, λmax〉. Applying Q̄2̇A gives us N states with helicity

λmax−1/2. Applying two operators Q̄2̇AQ̄2̇B gives N (N−1)/2 states with helicity λmax−1. We continue

in this way until we reach the single state with helicity λmax −N /2 formed by applying all operators.

Note that the total number of states with helicity λmax − k is
(N
k

)
so the total number of states is 2N .

Note that λmax − λmin = 1
2
N in all cases. For renormalisable theories we should have |λ| ≤ 1, which

implies N ≤ 4. However we find that N > 1 is non-chiral, which does not work with the Standard

Model, which contains chiral particles.

Examples of N > 1 massless supermultiplets Consider the N = 2 vector multiplet, which has

λmax = 1. Acting with a single lowering operator gives states with λ = 1/2, and acting with both we

get a state with λ = 0 (and we should also include the CPT conjugates of negative helicity). We can

decompose this multiplet into an N = 1 chiral multiplet, consisting of the λ = 0 and one λ = 1/2 state,

and an N = 1 vector multiplet, consisting of the other λ = 1/2 state and the λ = 1 state (plus CPT

conjugates in both these cases).

An N = 2 hypermultiplet has λmax = 0, and so consists of one state with λ = 1/2, two with λ = 0

and one with λ = −1/2. This multiplet is CPT self-conjugate and decomposes into a sum of a chiral

and antichiral N = 1 multiplet.

An N = 4 vector multiplet has λmax = 1, consisting of one state with λ = 1, four with λ = 1/2, six

with λ = 0, four with λ = −1/2 and one with λ = −1. This decomposes into one N = 2 vector multiplet

and two N = 2 hypermultiplets, or else one N = 1 vector multiplet and three N = 1 chiral multiplets.

N > 1 massive supermultiplets For massive particles we go to the centre of mass frame pµ =

(m, 0, 0, 0). We have

{QA
α , Q̄β̇B} = 2m

(
1 0

0 1

)
αβ̇

δAB

Unlike the massless case, ZAB may now be non-zero. We consider the two cases ZAB 6= 0 and ZAB = 0

separately, starting with the latter.

If ZAB = 0 then we have 2N raising and lowering operators given by

aAα =
1√
2m

QA
α aA†α̇ =

1√
2m

Q̄A
α̇

These allow us to create 22N states. For example, consider N = 2 with y = 0. We have the ground state

|Ω〉 and then four states of the form aA†α̇ |Ω〉, which have spin j = y = 1/2, and j3 = ±1/2 depending on

whether they were created by aA†
1̇

or aA†
2̇

. We then have six states formed by acting with two creation

operators. The possibilities are a1†
1̇
a2†

1̇
, giving one state with j3 = 1, a1†

2̇
a2†

2̇
, giving one state with j3 = −1,

and four states of the form aA†
1̇
aB†

2̇
, each of which has j3 = 0. These six states split up into three states
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with spin j = 0 and three with spin j = 1. After this we then have four spin 1/2 states formed by acting

with three creation operators, and one state with spin 0 formed by acting with all creation operators.

Note in general if we start with a state of superspin y then we end up with (2y+ 1)22N states, as the

vacuum state |Ω〉 is (2y + 1) dimensional.

If some ZAB 6= 0, then we proceed by defining the scalar quantity

H = (σ̄0)β̇α{QA
α − ΓAα , Q̄β̇A − Γ̄β̇A}

where

ΓAα = εαβU
ABQ̄α̇B(σ̄0)α̇β

for UAB any unitary N ×N matrix. Note that H ≥ 0 as it is a sum of quantities of the form X†X.

To evaluate H, we first use that

(σ̄0)β̇α{QA
α , Q̄β̇A} = 2mδAA(σ̄0)β̇ασ0

αβ̇
= 4mN

and also

{ΓAα , Q̄β̇A} = εαβU
AB(σ̄0)α̇β{Q̄α̇B, Q̄β̇A} = εαβU

AB(σ̄0)α̇βεα̇β̇Z
†
BA = −σ0

αβ̇
UABZ†BA

As we’re using the ridiculous convention that ZAB = −ZAB, we thus get

(σ̄0)β̇α{QA
α , Γ̄β̇A}+ (σ̄0)β̇α{ΓAα , Q̄β̇A} = 2tr

(
ZU † + UZ†

)
where we’ve added the hermitian conjugate term. Finally we write

Γα̇A = εβ̇α̇Q
B
α (σ̄0)β̇α(U †)BA

with UBA = −UBA also, so that

{ΓAα , Γ̄β̇A} = εαβ(σ̄0)α̇βεβ̇γ̇(σ̄
0)γ̇γUABU †CA{Q̄α̇B, Q

C
γ }

= 2mεαβεβ̇γ̇(σ
0)γα̇(σ̄0)α̇β(σ̄0)γ̇γUABU †BA

= −2mεαγεβ̇γ̇(σ̄
0)γ̇γUAB(U †)BA

= +2mN (σ0)αβ

So we get

H = 8mN − 2tr
(
ZU † + UZ†

)
≥ 0

Now, according to the polar decomposition theorem for matrices we can write Z = HV for H hermitian

and V unitary. Let’s take V = U then ZU † = H and we have

8mN − 4trH ≥ 0⇒ m ≥ 1

2N
trH
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and as H = ZU †, H2 = HH† = ZZ† we can write the so-called BPS bound:

m ≥ 1

2N
tr
√
ZZ†

States saturating this bound are called BPS states; they correspond to H = 0 and thus to vanishing

QA
α − ΓAα , leading to shorter multiplets as some generators vanish.

For instance, for N = 2 we can write ZAB in the form

ZAB =

(
0 q1

−q1 0

)
⇒ m ≥ 1

2
q1

For N > 2 and even we can express ZAB in block diagonal form, with each block of the form(
0 qi

−qi 0

)

and then the BPS condition holds block by block, 2m ≥ qi. We can define H for each block. If k of

the qi are equal to 2m then there are 2N − 2k creation operators and so 22(N−k) states. The cases

k = 0, 0 < k < N /2 and k = N /2 are termed long, short and ultra-short multiplets respectively.

4 Superfields

Superspace A superfield may be thought of as living in superspace. For N = 1 superspace this is de-

fined to be the coset formed by quotienting the super-Poincare group, parametrised by {ωµν , aµ, θα, θ̄α̇},
by the Lorentz group, parametrised by {ωµν}. Here θα and θ̄α̇ are spinors of Grassmann variables.

We can write an element of superspace as

G(x, θ, θ̄) = ei(−x
µPµ+θQ+θ̄Q̄)

Under a supersymmetry transformation we have

G(x, θ, θ̄)→ G(0, ε, ε̄)G(x, θ, θ̄) = ei(εQ+ε̄Q̄)ei(−x
µPµ+θQ+θ̄Q̄)

= ei(−x
µPµ+(θ+ε)Q+(θ̄+ε̄)Q̄)+ i2

2 [εQ+ε̄Q̄,θQ+θ̄Q̄]

using the CBH formula. One can work out the commutators to find that the superspace parameters

x, θ, θ̄ transform as

xµ → xµ − iεσµθ̄ + iθσµε̄ θ → θ + ε θ̄ + ε̄

General scalar superfield The general scalar superfield has the form

S(xµ, θα, θ̄
α̇) = ϕ(xµ) + θψ(xµ) + θ̄χ̄(xµ)

+ (θθ)M(xµ) + (θ̄θ̄)N(xµ) + (θσν θ̄)Vν(x
µ)

+ (θθ)θ̄λ̄(xµ) + (θ̄θ̄)θρ(xµ) + (θθ)(θ̄θ̄)D(xµ)
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Transformation properties of general scalar superfield The general scalar superfield transforms

as an operator as

S 7→ e−i(εQ+ε̄Q̄)Se+i(εQ+ε̄Q̄)

and as a Hilbert space vector by

S 7→ e+i(εQ+ε̄Q̄)S(x, θ, θ̄) = S(xµ − iεσµθ̄ + iθσµε̄, θ + ε, θ̄ + ε̄)

A Taylor expansion implies that the transformation properties are implemented by the operators

Qα = −i ∂
∂θα
− σµαα̇θ̄α̇

∂

∂xµ

Q̄α̇ = i
∂

∂θ̄α̇
+ θασµαα̇

∂

∂xµ

and we have

δS = i(εQ+ ε̄Q̄)S

One can then work out the transformation properties of the various fields making up S. In doing so we

need to make use of the identities which follow from θαθβ = −1
2
εαβ(θθ) and θ̄α̇θ̄β̇ = +1

2
εα̇β̇(θ̄θ̄) in order

to end up with an expression with the same structure as the original superfield.

Covariant derivative One can define a covariant derivative which commutes with εQ+ ε̄Q̄:

Dα = ∂α + iσµαα̇θ̄
α̇∂µ

D̄α̇ = −∂̄α̇ − iθασµαα̇∂µ

These anticommute with Qα and Q̄α̇ and themselves, apart from

{Dα, D̄α̇} = −2iσµαα̇∂µ

Chiral superfield A chiral superfield Φ obeys

D̄α̇Φ = 0

General form of chiral superfield It is convenient here (and sometimes elsewhere) to define

yµ = xµ + iθσµθ̄

One has that D̄α̇θ
α = D̄α̇y

µ = 0, while D̄α̇θ̄
β̇ 6= 0, so a scalar superfield is chiral if it is a function of just

y and θ:

Φ(y, θ) = ϕ(y) +
√

2θψ(y) + (θθ)F (y)
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We can expand this and use the results (θσµθ̄)(θσν θ̄) = 1
2
ηµν(θθ)(θ̄θ̄) and (θσµθ̄)(θ∂µψ) = −1

2
(θθ)∂µψσ

µθ̄

to get the general chiral superfield in the form

Φ(x, θ, θ̄) = ϕ(x) +
√

2θψ(x) + (θθ)F (x)

+ i(θσµθ̄)∂µϕ(x)− i√
2

(θθ)∂µψ(x)σµθ̄

− 1

4
(θθ)(θ̄θ̄)∂µ∂

µϕ(x)

Here ϕ(x) is a scalar field, ψ(x) a spin-1/2 field and F (x) an auxiliary field.

F - and D-terms For a general scalar superfield, the D-term

(θθ)(θ̄θ̄)D(x)

transforms as D → D+ total derivative under a supersymmetry transformation. For a chiral superfield,

the F -term

(θθ)F (x)

transforms as F → F+ total derivative under a supersymmetry transformation. Thus we can use these

terms to construct supersymmetry invariant Lagrangians.

Calculation of D-terms of Φ†Φ We have

Φ = ϕ+
√

2θψ + (θθ)F + i(θσµθ̄)∂µϕ−
i√
2

(θθ)∂µψσ
µθ̄ − 1

4
(θθ)(θ̄θ̄)∂µ∂

µϕ

Φ† = ϕ∗ +
√

2θ̄ψ̄ + (θ̄θ̄)F ∗ − i(θσµθ̄)∂µϕ∗ +
i√
2

(θ̄θ̄)θσµ∂µψ̄ −
1

4
(θθ)(θ̄θ̄)∂µ∂

µϕ∗

The terms involving two θs and two θ̄s in Φ†Φ are(
−1

2
ϕ∗∂µ∂

µϕ+ F ∗F

)
(θθ)(θ̄θ̄) + ∂µϕ

∗∂νϕ(θσµθ̄)(θσν θ̄) +
(
i(θ̄θ̄)θσµ∂µψ̄θψ + h.c.

)
Using the identities

(θσµθ̄)(θσν θ̄) =
1

2
ηµν(θθ)(θ̄θ̄) (θψ)(θχ) = −1

2
(θθ)(ψχ) ψσµχ̄ = −χ̄σ̄µψ

and integrating by parts we get

Φ†Φ
∣∣∣
D

= ∂µϕ
∗∂µϕ− iψ̄σ̄µ∂µψ + F ∗F

Calculation of F -terms of Φ2 and Φ3 We have

Φ = ϕ+
√

2θψ + (θθ)F + i(θσµθ̄)∂µϕ−
i√
2

(θθ)∂µψσ
µθ̄ − 1

4
(θθ)(θ̄θ̄)∂µ∂

µϕ
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so we just need to consider

ϕ+
√

2ψθ + θθF

Squaring this gives

ϕ2 + 2(ψθ)(ψθ) + 2ϕ(
√

2ψθ + θθF )

hence

Φ2
∣∣∣
F

= 2Fϕ− ψψ

We then need to work out

(ϕ+
√

2ψθ + θθF )(ϕ2 + 2
√

2ϕψθ + θθ(2Fϕ− ψψ))

Taking just the terms with two θs:

4ϕψθψθ + (θθ)
(
3Fϕ2 − ϕ(ψψ)

)
hence

Φ3
∣∣∣
F

= 3(ϕ2F − ϕ(ψψ))

Lagrangians for chiral superfields A general Lagrangian for chiral superfields Φi is of the form

L = K(Φi,Φ
†
j)
∣∣∣
D

+
(
W (Φi)

∣∣∣
F

+ h.c.
)

where K is known as the Kahler potential and W is known as the superpotential. We can Taylor expand

the latter about Φi = ϕi:

W (Φi) = W (ϕi) + (Φi − ϕi)
∂W

∂ϕi
+

1

2
(Φi − ϕi)(Φj − ϕj)

∂2W

∂ϕiϕj
+ . . .

where
∂W

∂ϕi
≡ ∂W

∂Φi

∣∣∣
Φi=ϕi

Extracting the F -terms via

Φi − ϕi =
√

2θψi + (θθ)Fi + . . .

gives

L = K(Φi,Φ
†
j)
∣∣∣
D

+

(
Fi
∂W

∂ϕi
+ h.c.

)
− 1

2

(
∂2W

∂ϕiϕj
ψiψj + h.c.

)
For the Kahler term it is usual to take

K(Φi,Φ
†
j) = Φ†iΦi
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for which one has

L = ∂µϕ
∗
i∂µϕi − iψ̄iσ̄µ∂µψi −

1

2

(
∂2W

∂ϕiϕj
ψiψj + h.c.

)
+ LF

with

LF = FiF
∗
i + Fi

∂W

∂ϕi
+ F ∗i

∂W ∗

∂ϕ∗i

One can solve for the auxiliary field equation of motion

Fi = −∂W
∗

∂ϕ∗i

and hence

LF = −
∣∣∣∣∂W∂ϕi

∣∣∣∣2 ≡ −VF
We thus obtain VF , the scalar potential.

One can constrain the form of the superpotential on dimensional grounds. We must have [L] = 4,

and as ϕ and ψ are normal scalar and spin-1/2 fields they have dimensions [ϕ] = 1, [ψ] = 3/2 implying

that [Φ] = 1 and [θ] = [θ̄] = −1/2. Now we want [W |F ] = 4, and as we have W = + . . . (θθ)W |F + . . .

we should have [W ] = 3. If we are to avoid couplings of negative mass dimension it follows the allowed

form of W is

W = α + λiΦi +
1

2
mijΦiΦj +

1

3
gijkΦiΦjΦk

Similarly one constrains [K] = 2.

Wess-Zumino model The Wess-Zumino model involves one chiral superfield Φ, and has superpoten-

tial

W =
1

2
mΦ2 +

1

3
gΦ3

The F -terms of this superpotential are

m(ϕF − 1

2
(ψψ)) + g(ϕ2F − ϕ(ψψ))

Vector superfield A vector superfield V satisfies

V (x, θ, θ̄) = V †(x, θ, θ̄)
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General form of vector superfield It is convenient to take the following general form of a vector

superfield:

V (x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x)

+
i

2
(θθ)(M(x) + iN(x))− i

2
(θ̄θ̄)(M(x)− iN(x)) + θσµθ̄Vµ(x)

+ (θθ)θ̄

(
iλ̄(x)− 1

2
σ̄µ∂µχ(x)

)
+ (θ̄θ̄)θ

(
−iλ(x)− 1

2
σµ∂µχ̄(x)

)
+

1

2
(θθ)(θ̄θ̄)

(
D(x)− 1

2
∂µ∂

µC(x)

)
Gauge transformations A generalised gauge transformation of a vector field is of the form

V 7→ V + i(Λ− Λ†)

for Λ a chiral superfield. Under this Vµ 7→ Vµ− ∂µ(ϕ+ϕ†) which is the usual transformation of a vector

field.

We can choose ϕ, ψ and F to set C,M,N and χ to zero. This give us a vector superfield in Wess-

Zumino gauge:

VWZ(x, θ, θ̄) = (θσµθ̄)Vµ(x) + i(θθ)θ̄λ̄(x)− i(θ̄θ̄)θλ(x) +
1

2
(θθ)(θ̄θ̄)D(x)

The component fields are now Vµ(x), a gauge boson, λ and λ̄ representing a fermion gaugino, and D(x)

an auxiliary field. Note that V 2
WZ = 1

2
(θθ)(θ̄θ̄)V µVµ and all higher powers are zero.

Supersymmetry transformations take us out of Wess-Zumino gauge; however we can always augment

a supersymmetry transformation with an additional gauge transformation to return to Wess-Zumino

gauge.

Couplings of vector superfields to chiral superfields The supersymmetric generalisation of the

familiar U(1) transformations of a complex scalar field coupled to a vector field is to have

Φ 7→ e−2iqΛΦ

for Φ a chiral superfield. As under the same transformation V 7→ V + i(Λ − Λ†) a gauge invariant

coupling we can use in Lagrangians is

Φ†e2qV Φ

Supersymmetric field strength The supersymmetric analogue of the field strength Fµν = ∂µVν −
∂νVµ is given by

Wα = −1

4
(D̄D̄)DαV
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which is chiral and gauge invariant. It is convenient to evaluate this using yµ = xµ + iθσµθ̄. Recall that

Dα = ∂α + iσµαα̇θ̄
α̇∂µ D̄α̇ = −∂̄α̇ − iθασµαα̇∂µ

and one can show that

∂αθ
β = δβα ∂αθβ = εβα ∂α(θθ) = 2θα ∂α(θλ) = λα

Now, one has

Dαy
µ = 2iσµαα̇θ̄

α̇ D̄α̇y
µ = 0

hence on a function of y, D̄α̇ ≡ 0, Dα ≡ 2iσµαα̇θ̄
α̇∂µ, where we now mean a derivative with respect to yµ.

Hence rewrite V in terms of y:

V = (θσµθ̄)Vµ(yµ − iθσµθ̄) + i(θθ)θ̄λ̄(y)− i(θ̄θ̄)θλ(y) +
1

2
(θθ)(θ̄θ̄)D(y)

= (θσµθ̄)Vµ(y) + i(θθ)θ̄λ̄(y)− i(θ̄θ̄)θλ(y) +
1

2
(θθ)(θ̄θ̄) (D(y)− i∂µV µ)

having Taylor expanded and used (θσµθ̄)(θσν θ̄) = 1
2
ηµν(θθ)(θ̄θ̄). We can now use this expression to

calculate

(D̄D̄)DαV ≡ (∂̄α̇∂̄
α̇)(∂α + 2iσµ

αβ̇
θ̄β̇∂µ)V

where ∂µ is derivative with respect to y. Because of the (∂̄α̇∂̄
α̇) derivatives only terms involving two θ̄s

need be kept from working out DαV . We need the facts that

∂αθλ = λα ∂αθθ = 2θα

then we have

(∂̄α̇∂̄
α̇)
(
−iλα(θ̄θ̄) + θα(θ̄θ̄)(D − i∂µVµ) + 2iσµ

αβ̇
θ̄β̇(θσν θ̄)∂µVν − 2σµ

αβ̇
θ̄β̇(θθ)θ̄∂µλ̄

)
Now,

2iσµ
αβ̇
θ̄βθβσνβγ̇ θ̄

γ̇ = −iεβ̇γ̇(θ̄θ̄)σµ
αβ̇
σνβγ̇ε

βγθγ = iσµ
αβ̇

(σ̄ν)β̇γθγ(θ̄θ̄)

and

−2σµ
αβ̇
θ̄β̇ θ̄α̇∂µλ̄

α̇ = 2σµ
αβ̇
θ̄β̇∂µθ̄

α̇λ̄α̇ = σµ
αβ̇
εβ̇α̇∂µλ̄α̇(θ̄θ̄) = σµ

αβ̇
∂µλ̄

β̇(θ̄θ̄)

Hence we have

(∂̄α̇∂̄
α̇θ̄θ̄)

(
−iλα + θα(D − i∂µVµ) + i(σµσ̄νθ)α∂µVν + (σµ∂µλ̄)αθθ

)
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Now,

∂̄α̇∂̄
α̇θ̄θ̄ = εα̇β̇∂̄α̇∂̄β̇ θ̄θ̄ = −2εα̇β̇∂̄α̇θ̄β̇ = −2δα̇α̇ = −4

and as we have

σµν =
i

4
(σµσ̄ν − σν σ̄µ) =

i

4
(2σµσ̄ν + 2ηµν)⇒ σµσ̄ν = −2iσµν + ηµν

the Vµ terms combine as

−θαi∂µVµ + i(−2iσµν + ηµνθ)α∂µVν = (σµνθ)α(∂µVν − ∂νVµ)

and so we find

Wα(y, θ) = −iλα(y) + θαD(y) + (σµνθ)αFµν(y) + (θθ)σµ
αβ̇
∂µλ̄

β̇(y)

This expression is sufficient for working out the F -terms of WαWα as we can replace y with x and

calculate away. We only need to consider(
−iλα + θαD + (σµνθ)αFµν + εαβθθσµ

ββ̇
∂µλ̄

β̇
)(
−iλα + θαD + (σµνθ)αFµν + θθσµ

αβ̇
∂µλ̄

β̇
) ∣∣∣

F

which gives

−2i(θθ)λσµ∂µλ̄+ (θθ)D2 + 2Fµνθσ
µνθD + FµνFρσ(σµνθ)α(σρσθ)α

Now,

θασµν βα θβ = −θαθβσµναβ =
1

2
θθεαβσµναβ = −1

2
θθ trσµν = 0

The final result needs an identity involving traces of σµν which I won’t bother giving here. The end-

product is

WαWα

∣∣∣
F

= D2 − 2iλσµ∂µλ̄−
1

2
FµνF

µν − i

2
FµνF̃

µν

with

F̃ µν =
1

2
εµνρσFρσ

Lagrangians for vector and chiral superfields For a theory consisting of several chiral superfields

Φi coupled to a vector superfield V , we take the Lagrangian

L =
∑
i

Φ†ie
2qiV Φi

∣∣∣
D

+
(
W (Φi)

∣∣∣
F

+ h.c.
)

+
(
f(Φi)(W

αWα)
∣∣∣
F

+ h.c.
)

+ ξV
∣∣∣
D

Here qi denotes the U(1) charge of each chiral superfield, W (Φi) is a superpotential which must be U(1)

invariant, f(Φ) is called the gauge kinetic function, and the final term involving the constant ξ is known

as the Fayet-Iliopolous term. For a renormalisable theory we should take f(Φi) = τ = constant. For

the case of supersymmetric QED, we take f(Φi) = 1/4.
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In Wess-Zumino gauge we have

VWZ = (θσµθ̄)Vµ + i(θθ)θ̄λ̄− i(θ̄θ̄)θλ+
1

2
(θθ)(θ̄θ̄)D

so

e2qV = 1 + 2q(θσµθ̄)Vµ + 2iq(θθ)θ̄λ̄− 2iq(θ̄θ̄)θλ+ (θθ)(θ̄θ̄)(qD + q2VµV
µ)

and using

Φ = ϕ+
√

2θψ + (θθ)F + i(θσµθ̄)∂µϕ−
i√
2

(θθ)∂µψσ
µθ̄ − 1

4
(θθ)(θ̄θ̄)∂µ∂

µϕ

Φ† = ϕ∗ +
√

2θ̄ψ̄ + (θ̄θ̄)F ∗ − i(θσµθ̄)∂µϕ∗ +
i√
2

(θ̄θ̄)θσµ∂µψ̄ −
1

4
(θθ)(θ̄θ̄)∂µ∂

µϕ∗

we can work out that

Φ†e2qV Φ
∣∣∣
D

= Φ†Φ
∣∣∣
D

+ (ϕ∗ +
√

2θ̄ψ̄ − i(θσµθ̄)∂µϕ∗)

× (2q(θσµθ̄)Vµ + 2iq(θθ)θ̄λ̄− 2iq(θ̄θ̄)θλ+ (θθ)(θ̄θ̄)(qD + q2VµV
µ))

× (ϕ+
√

2θψ + i(θσµθ̄)∂µϕ)
∣∣∣
D

The new terms we need to consider are

(θθ)(θ̄θ̄)ϕ∗(qD + q2VµV
µ)ϕ

which is fine, and

2iqϕ∗(θσµθ̄)Vµ(θσµθ̄)∂µϕ+ h.c. = iqϕ∗V µ∂µϕ(θθ)(θ̄θ̄) + h.c.

as well as

−2
√

2iqϕ∗(θ̄θ̄)(θλ)(θψ) + h.c = (θθ)(θ̄θ̄)
√

2iqϕ∗(λψ) + h.c.

and finally

4q(θ̄ψ)(θσµθ̄)Vµ(θψ) = −q(θ̄θ̄)(θθ)ψ̄σ̄µVµψ

using the usual tricks.

Hence we get

Φ†e2qV Φ
∣∣∣
D

= ∂µϕ
†∂µϕ− iψ̄σ̄µ∂µψ + F †F

− qψ̄σ̄µVµψ + iqϕ†V µ∂µϕ− iq∂µϕ†Vµϕ

+
√

2iq
(
ϕ†(λψ)− (ψ̄λ̄)ϕ

)
+ qϕ†

(
D + q2VµV

µ
)
ϕ
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or

Φ†e2qV Φ
∣∣∣
D

= (Dµϕ)†Dµϕ− iψ̄σ̄µDµψ + F †F + qϕ†Dϕ+
√

2iq
(
ϕ†(λψ)− (ψ̄λ̄)ϕ

)
using the covariant derivative

Dµ = ∂µ − iqVµ

Now, we had

WαWα

∣∣∣
F

= D2 − 2iλσµ∂µλ̄−
1

2
FµνF

µν − i

2
FµνF̃

µν

so
1

4
WαWα

∣∣∣
F

+ h.c =
1

2
D2 − iλσµ∂µλ̄−

1

4
FµνF

µν

allowing us to write the total Lagrangian explicitly.

L = ∂µϕ
∗
i∂µϕi − iψ̄iσ̄µ∂µψi −

1

2

(
∂2W

∂ϕiϕj
ψiψj + h.c.

)
+ LF

+ (Dµϕi)
†Dµϕi − iψ̄iσ̄µDµψi + qϕ†iDϕi +

√
2iq
(
ϕ†i (λψi)− (ψ̄iλ̄)ϕi

)
+

1

2
D2 − iλσµ∂µλ̄−

1

4
FµνF

µν +
1

2
ξD

with

LF = F †i Fi + Fi
∂W

∂ϕi
+ F †i

∂W †

∂ϕ†i

One pick out the terms involving the auxiliary field D:

LD =

(
qϕ†iϕi +

1

2
ξ

)
D +

1

2
D2 ⇒ D = −qϕ†iϕi −

1

2
ξ

This gives us a part of the scalar potential

LD = −1

2
(qϕ†iϕi +

1

2
ξ)2 ≡ −VD(ϕ)

We can rewrite the Lagrangian as

L = ∂µϕ
∗
i∂µϕi − iψ̄iσ̄µ∂µψi −

1

2

(
∂2W

∂ϕiϕj
ψiψj + h.c.

)
+ (Dµϕi)

†Dµϕi − iψ̄iσ̄µDµψi +
√

2iq
(
ϕ†i (λψi)− (ψ̄iλ̄)ϕi

)
− iλσµ∂µλ̄−

1

4
FµνF

µν − V (ϕi)

with the scalar potential given by

V (ϕi) =
∑
i

∣∣∣∣∂W∂ϕi
∣∣∣∣2 +

1

8
(ξ + 2qϕ†iϕi)

2
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Non-abelian vector superfields In the non-abelian case the vector superfield is now valued in some

representation of a Lie algebra, so we have V = V aT a with T a denoting the Lie algebra generators in

the particular representation used, satisfying [T a, T b] = ifabcT c. This means we have

Vµ = V a
µ T

a D = DaT a λ = λaT a

We also consider our chiral superfields Φi as transforming in the same representation. In particular we

have

Φ→ e−2iΛq Λ = ΛaT a

and want Φ†e2qV Φ to be invariant as before. This is possible if we define the transformation law for V by

e2qV → e2qV ′
= e−2iΛ†qe2qV e2iΛq

which by the CBH formula eAeB = eA+B+[A,B]/2+... leads to

V ′ = V + i(Λ− Λ†) + iq[V,Λ + Λ†] + . . .

We can still use this to put V in Wess-Zumino gauge.

The definition of the field strength is modified to:

Wα = − 1

8q
(D̄D̄)

(
e−2qVDαe

2qV
)

which transforms as

Wα → e2iqΛ†
Wαe

2iqΛ

and so we use

trWαWα

∣∣∣
F

in our Lagrangians.

In Wess-Zumino gauge it can be shown that

W a
α = −iλaα(y) + θαD

a(y) + (σµνθ)αF
a
µν(y) + (θθ)σµ

αβ̇
Dµλ̄

aβ̇(y)

with

F a
µν = ∂µV

a
ν − ∂νV a

µ + qfabcV b
µV

c
µ

and

Dµλ̄
a = ∂µλ̄

a + qV b
µ λ̄

cfabc

which is just the usual non-abelian generalisation of our previous expression. Similarly, one gets

1

4

(
trWαWα

∣∣∣
F

+ h.c.
)

=
1

2
DaDa − iλaσµDµλ̄

a − 1

4
F aµνF a

µν
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Our previous expression for the Lagrangian of chiral superfields coupled to a vector superfield can be

easily carried over to the non-abelian case, noting that there is now no Fayet-Iliopolous term, i.e. ξ = 0,

and that each chiral superfield now carries an internal representation index. For instance, the part of

the Lagrangian involving the auxiliary field D = DaT a is now

LD =
1

2
DaDa + qϕ†mD

aT amnϕn

where m,n denote the representation index. We thus get that Da = −qϕ†mT amnϕn, so that

VD(ϕ) =
q2

2

(
ϕ†mT

a
mnϕn

) (
ϕ†pT

a
pqϕq

)
Renormalisation ForN = 1 supersymmetry the Kahler potentialK, superpotentialW , gauge kinetic

function f(Φ) and Fayet-Iliopolous constant ξ completely specify the structure of the theory. It turns

out that K gets quantum corrections at all orders in perturbation theory, f(Φ) only gets corrections at

one-loop, and W and ξ are not renormalised at all.

5 Superbreaking

Conditions for supersymmetry breaking Supersymmetry is broken if the vacuum state is not

annihilated by the generators, Qα|0〉 6= 0. Consider

{Qα, Q̄α̇} = 2σµαα̇Pµ

and contract with (σ̄ν)β̇α to get

(σ̄ν)β̇α{Qα, Q̄α̇} = 4P ν

(as the trace of σ̄νσµ is 2ηµν). Specialising to ν = 0, we have that

2∑
α=1

(
QαQ

†
α +Q†αQα

)
= 4E

Taking the vacuum expectation value of this we see that broken supersymmetry means Evac > 0, while

unbroken supersymmetry means Evac = 0.

F -term breaking Consider a chiral superfield, for which we have the supersymmetry transformations

δϕ =
√

2εψ δψ =
√

2εF + i
√

2σµε∂µϕ δF = i
√

2ε̄σµ∂µψ

Supersymmetry will be broken if one of these variations has a non-zero vacuum expectation value.

Lorentz invariance however requires that 〈ψ〉 = 〈∂µϕ〉 = 0. Hence the only way to achieve supersymme-

try breaking via a chiral superfield is to have

〈F 〉 6= 0⇒ 〈δϕ〉 = 〈δF 〉 = 0 〈δψ〉 6= 0
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The spinor field ψ then becomes a Goldstone fermion (or Goldstino).

As VF = |∂W
∂ϕ
|2 = |F |2 then we must have VF > 0 for F -term breaking.

O’Raifeartaigh model An example of F -term breaking is provided by the O’Raifeartaigh model.

This model consists of three chiral superfields, with Kahler potential

K = Φ†iΦi

and superpotential

W = gΦ1(Φ2
3 −m2) +MΦ2Φ3 M >> m

Recall that

Fi = −∂W
∗

∂ϕ∗i
≡ −∂W

∗

∂Φ∗i

∣∣∣∣
Φi=ϕi

so that

F1 = −g(ϕ∗23 −m2) F2 = −Mϕ∗3 F3 = −2gϕ∗1ϕ
∗
2 −Mϕ∗2

We observe that 〈F1〉 = 0 ⇒ 〈F2〉 6= 0 and 〈F2〉 = 0 ⇒ 〈F1〉 6= 0, so it is unavoidable that we cannot

have all 〈Fi〉 = 0 simultaneously, and thus have F -term breaking.

The scalar potential is

VF = g2|ϕ2
3 −m2|2 +M2|ϕ3|2 + |2gϕ1 +M |2|ϕ2|2

The minimum of this potential is achieved for

〈ϕ3〉 = 〈ϕ2〉 = 0

and 〈ϕ1〉 arbitrary; then we get VF = g2m4 > 0. To calculate the scalar masses let ϕ3 = 1√
2
(a+ ib), then

VF =
1

4
g2|a2 − b2 − 2m2 + 2iab|2 +

1

2
M2(a2 + b2) + |ϕ2|2M2 + cubic terms

= −1

4
g24m2(a2 − b2) +

1

2
M2(a2 + b2) + |ϕ2|2M2 + cubic terms

from which we see that

m2
1 = 0 m2

2 = M2 m2
a = M2 − 2g2m2 m2

b = M2 + 2g2m2

The fermion masses appear from the term

−1

2

∂2W

∂ϕiϕj
ψiψj = −1

2

(
ψ1 ψ2 ψ3

) 0 0 2gϕ3

0 0 M

2gϕ3 M 2gϕ1


ψ1

ψ2

ψ3
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from which we extract the mass matrix 0 0 0

0 0 M

0 M 0


implying there are two fermions of mass M and one massless fermion, ψ1. (The Lagrangian for a

two-component Majorana spinor is −iψ̄σ̄µ∂µ − 1
2
m(ψψ + ψ̄ψ̄).)

Supertrace in F -term breaking The supertrace is defined by

StrM2 =
∑
j

(−1)2j+1(2j + 1)m2
j

For a chiral superfield this reduces to

−
∑

scalars

m2 + 2
∑

fermions

m2

Now, the scalar mass terms arise from

VF =
∑
j

∂W

∂ϕj

∂W ∗

∂ϕ∗j

Let’s split the scalar fields into their real and imaginary parts:

ϕj =
1√
2

(aj + ibj)

The mass matrix is then given schematically by

M2 ∼

(
∂2V

∂aj∂ak

∂2V
∂aj∂bk

∂2V
∂bj∂ak

∂2V
∂bj∂bk

)

where to be precise we should consider setting all fields aj = bj = 0 after taking the derivatives so only

the quadratic terms are relevant. Now, we just want the trace,

∑
j

∂2V

∂a2
j

+
∑
j

∂2V

∂b2
j

Now,
∂

∂aj
=
∂ϕj
∂aj

∂

∂ϕj
+
∂ϕ∗j
∂aj

∂

∂ϕ∗j
=

1√
2

(
∂

∂ϕj
+

∂

∂ϕ∗j

)
(no sum on j here) and similarly

∂

∂bj
=

i√
2

(
∂

∂ϕj
− ∂

∂ϕ∗j

)
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so
∂2

∂a2
j

=
1

2

(
∂2

∂ϕ2
j

+
∂2

∂ϕ∗2j
+ 2

∂2

∂ϕjϕ∗j

)
∂2

∂b2
j

= −1

2

(
∂2

∂ϕ2
j

+
∂2

∂ϕ∗2j
− 2

∂2

∂ϕjϕ∗j

)
hence we get for the trace of the scalar mass matrix

2
∑
j

∂2V

∂ϕjϕ∗j
= 2

∑
i,j

∂2

∂ϕjϕ∗j

∂W

∂ϕi

∂W ∗

∂ϕ∗i
= 2

∑
i,j

∂2W

∂ϕiϕj

∂2W ∗

∂ϕ∗iϕ
∗
j

The fermion mass matrix is

M =
∂2W

∂ϕi∂ϕj

where again we should set the fields to zero afterwards to only consider the relevant terms. To get the

sum of mass squares we need the trace of MM † (because we can diagonalise M to have eigenvalues

mie
iφi ; then MM † has m2

i on the diagonal; tr (UMU †UM †U †) = trMM †), but this is

∂2W

∂ϕi∂ϕj

∂2W ∗

∂ϕ∗j∂ϕ
∗
i

which gives just half the trace of the scalar mass squares. We therefore see that the supertrace vanishes

for F -term supersymmetry breaking.

D-term breaking For a vector superfield V consisting of the fields λ, Vµ, D then Lorentz invariance

only allows us have

〈D〉 6= 0⇒ 〈δλ〉 = ε〈D〉 6= 0

so that λ becomes a Goldstino.

For an abelian vector superfield we have

D = −qϕ†iϕi −
1

2
ξ

and

VD =
1

2
(qϕ†iϕi +

1

2
ξ)2 =

1

2
D2

If q and ξ have opposite signs then we can have 〈D〉 = 0 with 〈ϕi〉 6= 0, and this minimises VD leaving

supersymmetry unbroken. If however they have the same sign then we can take 〈ϕi〉 = 0, and 〈D〉 6= 0, so

that VD > 0 in the vacuum and supersymmetry is broken. Note that the Lagrangian then contains a term

1

2
qξϕ†iϕi

so each scalar field ϕi acquires a mass m2 = 1
2
qξ while the fermions ψi remain massless.
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F - and D-term breaking in non-abelian model For a model with a non-abelian vector superfield

then there is no Fayet-Iliopolous term. For simplicity consider coupling a single chiral superfield Φ with

representation index m to a vector superfield. We have

V = F †mFm +
1

2
DaDa

with

Fm =
∂W ∗

∂F †m
Da = ϕ†m(T a)mnϕn

Now, by definition the vacuum corresponds to a minimum of the potential, i.e.

0 =

〈
∂V

∂ϕn

〉
=

∂2W

∂ϕm∂ϕn
Fn + ϕ†m(T a)mnD

a

where we have left the vacuum expectation brackets implicit on the right-hand side. Now, the superpo-

tential W is gauge invariance by construction, so that

0 = 〈δaW 〉 =
∂W

∂ϕm
δaϕm = F †m(T a)mnϕn

If our generators are hermitian this is equivalent to

ϕ†m(T a)mnFn = 0

We can combine this into the matrix condition(
∂2W

∂ϕm∂ϕn
ϕ†m(T a)mn

−ϕ†m(T a)mn 0

)(
Fn

Da

)
= 0

We can relate this matrix to the fermion mass matrix. The relevant terms in the Lagrangian are

−1

2

(
∂2W

∂ϕmϕn
ψmψn + h.c.

)
+
√

2iqϕ†m(λa(T a)mnψn) + h.c.

or

−1

2

(
ψm λa

)( ∂2W
∂ϕmϕn

√
2iqϕ†p(T

a)pm

−
√

2iqϕ†p(T
a)pn 0

)(
ψn

λa

)
In verifying this note we get an additional minus sign from interchanging the spinors λa and ψn; recall

again that a Lagrangian for a two-component Majorana spinor is −iψ̄σ̄µ∂µ − 1
2
m(ψψ + ψ̄ψ̄) justifying

claiming that (
∂2W
∂ϕmϕn

√
2iqϕ†p(T

a)pm

−
√

2iqϕ†p(T
a)pn 0

)
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represents the fermion mass matrix. As then(
∂2W
∂ϕmϕn

√
2iqϕ†p(T

a)pm

−
√

2iqϕ†p(T
a)pn 0

)(
Fn

1√
2
Da

)
= 0

we can conclude the fermion mass matrix has a zero eigenvalue, corresponding to the existence of a

massless Goldstino.

6 Supermodel

The Standard Model Let’s first review the basic successes and shortcomings of the current Standard

Model of particle physics. The Standard Model is a gauge theory with gauge group SU(3)C × SU(2)L×
U(1)Y broken to SU(3)C × U(1)em by the Higgs mechanism, through which the particles acquire mass.

The Standard Model describes electromagnetic, weak and strong interactions and is impressively in

accord with experiment. The Higgs particle remains the only undiscovered Standard Model particle.

Apart from the obvious failure to include quantum gravity, there are a number of problems with the

Standard Model. The hierarchy problem is the question of why the electroweak scale (∼ 102 GeV) is so

much less than the Planck scale (∼ 1019 GeV), and how do we ensure that the Higgs mass does not receive

massive quantum corrections? We will discuss this further below. The cosmological constant problem

asks why the cosmological constant (vacuum energy of the universe) is so small, Λ/(M4
pl) ∼ 10−120.

This would seem to require much fine tuning of the contributions of the Standard Model particles to

the vacuum energy. The Standard Model also still involves ∼ 20 free parameters which must be set by

measurement, and does not describe dark matter.

MSSM field content Supersymmetry is one way of extending the Standard Model. The simplest

possibility is the minimal supersymmetric Standard Model (MSSM). We can describe its field content

in terms of SU(3)C × SU(2)L × U(1)Y quantum numbers. We have

• Vector superfields

field SU(3)C × SU(2)L × U(1)Y spin-1/2 spin-1

G (8, 1, 0) gluino g̃ gluon g

W (1, 3, 0) wino w̃ W-boson W µ

B (1, 1, 0) bino b̃ hypercharge boson Bµ

• Chiral superfields

field SU(3)C × SU(2)L × U(1)Y spin-0 spin-1/2

Qi =

(
uLi

dLi

)
(3, 2, 1/6) squarks

(
ũLi

d̃Li

)
quarks

(
uLi

dLi

)

Li =

(
νLi

eLi

)
(1, 2,−1/2) sleptons

(
ν̃Li

ẽLi

)
leptons

(
νLi

eLi

)
ūiR (3̄, 1,−2/3) antisquark ũ∗iR antiquark ūiR

d̄iR (3̄, 1, 1/3) antisquark d̃∗iR antiquark d̄iR

ēiR (1, 1, 1) slepton ẽ∗iR lepton ēiR
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The indices L and R denote whether the fermions are left-handed or right-handed, and i = 1, 2, 3

labels the generation.

• Higgs doublets

field SU(3)C × SU(2)L × U(1)Y spin-0 spin-1/2

H1 =

(
H0

1

H−1

)
(1, 2,−1/2) Higgs

(
H0

1

H−1

)
Higgsino

(
H̃0

1

H̃−1

)

H2 =

(
H+

2

H0
2

)
(1, 2, 1/2) Higgs

(
H+

2

H0
2

)
Higgsino

(
H̃+

2

H̃0
2

)
We need two Higgses firstly so that we can give mass to both up- and down-type quarks, as we cannot

use H†1 in the superpotential as it is meant to be holomorphic, and secondly so as to cancel an anomaly

arising from a triangle Feynman diagram with hypercharge bosons as external particles (this diagram

is proportional to (
∑

lh fermions−
∑

rh fermions)(Y/2)3).

MSSM superpotential The MSSM superpotential involves writing all field terms which are renor-

malisable and invariant under the gauge symmetries. The superpotential in fact splits into two parts,

the first of which is

WRP = (YU)ijQiH2ūRj − (YD)ijQiH1d̄Rj − (YE)ijLiH1ējR + µH1H2

In writing this we have suppressed internal indices, so really

QiH2ūRj ≡ εabQ
xa
i H

b
2ūRxj

with x = 1, 2, 3 an SU(3) index. The matrices Yij amount to matrices of Yukawa couplings, and µ is a

mass term for the Higgses.

In fact we can write

(YU)ijQiH2ūRj = (YU)ij
(
−uLiH0

2 ūRj + dLiH
+
2 ūRj

)
and then apply the Higgs mechanism by writing H0

2 = 1√
2
(v2 + h0

2), thus obtaining a mass matrix

1√
2
v2(YU)ij

for up-type quarks and squarks. Similarly, we have

−(YD)ijQiH1d̄Rj = −(YD)ij
(
−uLiH−1 d̄Rj + dLiH

0
1 d̄Rj

)
leading to a mass matrix

1√
2
v1(YD)ij
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for down-type quarks and squarks, and

−(YE)ijLiH1ējR = −(YE)ij
(
−νLiH−1 ējR + eLiH

0
1 ējR

)
leading to a mass matrix

1√
2
v1(YE)ij

for leptons and sleptons.

R-parity violating terms and proton decay Other possible terms for the superpotential are

W��RP =
1

2
λijkLiLj ēkR + λ′ijkLiQj d̄k + κiLiH2 +

1

2
λ′′ijkūiRd̄jRd̄kR

The first three of these violate lepton number, with ∆L = 1, and the last violates baryon number, with

∆B = 1. An unwanted consequence of this is that including these terms would lead to proton decay.

d

u

u

ū

u

e+

d̃∗j

Figure 1: Proton decay

This can be seen in figure 1. Now, the term 1
2
λ′′ijkūiRd̄jRd̄kR contributes

1

2
λ′′ijkūiRd̄jRd̄kR

∣∣∣
F

+ h.c.

to the Lagrangian; writing

ūiR = ˜̄uiR +
√

2θūiR + . . . d̄iR = ˜̄diR +
√

2θd̄iR + . . .

we get quark-quark-squark interaction terms of the form

∼ λ∗11k
˜̄d∗kRū†Rd̄†R

Similarly from the F -terms of LiQj d̄k we get interaction terms

∼ λ′∗11k
˜̄d∗kRe†Liu†Lj

which mediate the ud → ˜̄d∗ → e+ū interaction; the amplitude for proton decay is then proportional

to λ∗11kλ
′∗
11k. The probability will then be proportional to |λ11kλ

′
11k|2; and also to m−

d̃
4 (the propagator

contains an inverse mass squared); and so an estimate for the proton decay rate on dimensional grounds
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([mass] = [time]−1) is

Γ ∼ m5
pm
−4

d̃
|λ11kλ

′
11k|2

Experiment suggests the proton lifetime is τ ∼ 1040s so

1040s ∼ m−5
p m4

d̃
|λ11kλ

′
11k|−2

Using the facts that 1s ∼ 1024 GeV−1, mp ∼ 1 GeV and supposing md̃ ∼ 1 TeV we have

1064 ∼ 1036−30|λ11kλ
′
11k|−2 ⇒ |λ11kλ

′
11k|2 ∼ 10−60

so one or other of the couplings must be absolutely tiny. Conversely if we had assumed the couplings

were of O(1), we would obtain τ ∼ 10−18 s.

To rule out proton decay it is convenient to impose a new symmetry on the MSSM Lagrangian which

forbids the superpotential W��RP . This symmetry is R-parity and it is defined by

R = (−1)3(B−L)+2S

where B and L are the baryon and lepton numbers and S is the spin (note that superpartners inherit

the baryon and lepton numbers of the original Standard Model particles). All standard model particles

have R = +1, and their superpartners have R = −1. Imposing R-parity conservation has the effect of

ruling out all interaction terms stemming from W��RP (this can be seen by expanding the chiral super-

fields and observing which terms have two Standard Model fields interacting with a single superpartner

field, or a single Standard Model field interacting with a single superpartner field). It also means that a

single supersymmetric particle cannot decay into Standard Model particles alone - there must be an odd

number of supersymmetric particle present in the decay. An interesting effect of this is that it implies

the lightest supersymmetric particle (LSP) must be stable (as there is nothing else supersymmetric for

it to decay into). If the LSP is neutral then we obtain a good candidate for dark matter in the form a

WIMP neutralino (mass eigenstate of neutral supersymmetric particles such as higgsino, photino). In

the context of the LHC, R-parity conservation implies that even numbers of supersymmetric particles

would be produced in every proton-proton collision. One way to search for these is by looking for missing

transverse momentum.

MSSM gauge couplings The (chiral) matter superfields we have described above couple to vector

gauge superfields. This coupling is provided by the Kahler potential

K =
∑
k

Φ†ke
∑
i=1 2giT

a
R(i)

V aΦk

where we sum over all chiral superfields Φk. Each chiral superfield is in a particular representation R(i)

of the three gauge groups of the model, which we label by i = 1, 2, 3 for U(1), SU(2) and SU(3). The

coupling for group i is gi, and T aR(i) denotes the ath generator of the group i in the representation R(i)
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which Φk transforms in.

MSSM Higgs potential We know from our general theory of non-abelian fields that the D-term po-

tential for a scalar field ϕ coupled to a vector superfield with coupling constant g and in a representation

with hermitian generators T a is

VD =
1

2
g2DaDa Da = −ϕ∗T aϕ

In the MSSM we have scalar Higgs fields

H1 =

(
H0

1

H−1

)
H2 =

(
H+

2

H0
2

)

transforming trivially under SU(3) but in the fundamental representation of SU(2) and with hyper-

charges −1/2 and +1/2 respectively under U(1)Y . We let the latter have coupling constant g′ and the

former have coupling constant g.

The contribution from the U(1)Y generators to VD is then just

1

8
g′2
(
H†2H2 −H†1H1

)2

=
1

8
g′2
(
|H0

2 |2 + |H+
2 |2 − |H0

1 |2 − |H−1 |2
)2

The generators of SU(2) can be taken to be σa/2 with σa the Pauli sigma matrices. Letting Da
2 denote

the corresponding D fields we have

2D1
2 =

(
H0∗

1 H−∗1

)(0 1

1 0

)(
H0

1

H−1

)
+
(
H+∗

2 H0∗
2

)(0 1

1 0

)(
H+

2

H0
2

)
= H0∗

1 H
−
1 +H−∗1 H0

1 +H+∗
2 H0

2 +H0∗
2 H

+
2

2D2
2 =

(
H0∗

1 H−∗1

)(0 −i
i 0

)(
H0

1

H−1

)
+
(
H+∗

2 H0∗
2

)(0 −i
i 0

)(
H+

2

H0
2

)
= i
(
−H0∗

1 H
−
1 +H−∗1 H0

1 −H+∗
2 H0

2 +H0∗
2 H

+
2

)
2D3

2 =
(
H0∗

1 H−∗1

)(1 0

0 −1

)(
H0

1

H−1

)
+
(
H+∗

2 H0∗
2

)(1 0

0 −1

)(
H+

2

H0
2

)
= |H0

1 |2 − |H−1 |2 + |H+
2 |2 − |H0

2 |2
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The contribution to the potential is then

1

8
g2
( [
H0∗

1 H
−
1 +H−∗1 H0

1 +H+∗
2 H0

2 +H0∗
2 H

+
2

]2 − [−H0∗
1 H

−
1 +H−∗1 H0

1 −H+∗
2 H0

2 +H0∗
2 H

+
2

]2
+
[
|H0

1 |2 − |H−1 |2 + |H+
2 |2 − |H0

2 |2
]2 )

=
1

8
g2
(

4
[
|H0

1 |2|H−1 |2 +H0∗
1 H

−
1 H

0∗
2 H

+
2 +H−∗1 H0

1H
+∗
2 H0

2 + |H+
2 |2|H0

2 |2
]

+|H0
1 |4 + |H−1 |4 + |H+

2 |4 + |H0
2 |4 − 2|H0

1 |2|H−1 |2 + 2|H0
1 |2|H+

2 |2

−2|H0
1 |2|H0

2 |2 − 2|H−1 |2|H+
2 |2 + 2|H−1 |2|H0

2 |2 − 2|H0
2 |2|H+

2 |2
)

=
1

8
g2
(

4
[
|H+

2 |2|H0
1 |2 + |H0

2 |2|H−1 |2 +H+
2 H

0∗
1 H

0∗
2 H

−
1 +H+∗

2 H0
1H

0
2H
−∗
1

]
+|H0

1 |4 + |H−1 |4 + |H+
2 |4 + |H0

2 |4 + 2|H0
1 |2|H−1 |2 + 2H0

2 |2|H+
2 |2

−2|H+
2 |2|H0

1 |2 − 2|H−1 |2|H0
2 |2 − 2|H0

1 |2|H0
2 |2 − 2|H−1 |2|H+

2 |2
)

which is just
1

2
g2
∣∣H+

2 H
0∗
1 +H0

2H
−∗
1

∣∣2 +
1

8
g2
(
|H0

2 |2 + |H+
2 |2 − |H0

1 |2 − |H−1 |2
)2

We can also consider the F -term potential, which can be written

VF =

∣∣∣∣ ∂W∂H1

∣∣∣∣2 +

∣∣∣∣ ∂W∂H2

∣∣∣∣2 = |µ|2
(
|H2|2 + |H1|2

)
so that the full Higgs potential from the F - and D-terms is

g2

2

∣∣H+
2 H

0∗
1 +H0

2H
−∗
1

∣∣2+
g2 + g′2

8

(
|H0

2 |2 + |H+
2 |2 − |H0

1 |2 − |H−1 |2
)2

+|µ|2
(
|H0

1 |2 + |H−1 |2 + |H0
2 |2 + |H+

2 |2
)

Supersymmetry breaking in the real world Owing to the conspicuous lack of superpartners with

the same mass as Standard Model particles supersymmetry if present in nature must be a broken sym-

metry. The question then arises of finding the mechanism by which supersymmetry is broken. The

methods of F - and D-term breaking are unsuitable as breaking supersymmetry directly in this fashion

always leads to a vanishing supertrace:

StrM2 =
∑
j

(−1)2j+1(2j + 1)m2
j = 0

As we need supersymmetric particles to be heavier than their Standard Model partners this cannot

hold. Thus we should have a “hidden sector” of fields which do not directly indirect with the Standard

Model; supersymmetry is broken out of direct reach and this is mediated to the observable fields by

some process. Examples include considering the gauge group E8 × E8 from heterotic string theory: we

break supersymmetry in the first E8 factor, with the Standard Model fields contained in the second E8,

with the two interacting via supergravity.

In general one obtains additional “soft breaking terms” as part of our Lagrangian of observable fields.
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For the MSSM the general R-parity conserving soft supersymmetry breaking Lagrangian is

L = (YU)ijQ̃LiH2ũ
∗
Rj − (YD)ijQ̃LiH1d̃

∗
Rj − (YE)ijL̃LiH1ẽ

∗
Rj

+ Q̃∗Lim
2
Q̃ij
Q̃Lj + L̃∗Lim

2
L̃ij
L̃Lj + ẽ∗Rim

2
ẽij ẽ
∗
Rj + ũ∗Rim

2
ũijũ

∗
Rj + d̃∗Rim

2
d̃ij
d̃∗Rj

+ µBH1H2 + h.c.+m2
1|H1|2 +m2|H2|2 +

M3

2
g̃ag̃a +

M2

2
W̃ bW̃ b +

M1

2
B̃B̃

The complete model then has over 100 parameters.

Hierarchy problem The hierarchy problem comes in two parts. The first part asks why the elec-

troweak symmetry breaking scale MEW ∼ 102 GeV is so much less than the Plank mass MPl ∼ 1019 GeV

defining the scale of quantum gravity. The second part asks if this hierarchy is stable under quantum

corrections.

The second part of the problem results from the fact that the electroweak scale is set by the Higgs

mass term in the Standard Model Lagrangian (by gauge symmetry the Higgs is the only particle in the

Standard Model which can have a mass term). Corrections to the Higgs mass arise from diagrams with

fermions and boson loops, and in the presence of a momentum cut-off Λ have the form

δm2
H =

Λ2

16π2

(
aλ− bλ2

f

)
Here λ is the coupling constant for the quartic Higgs self-interaction and λf is a coupling constant for a

Higgs Yukawa coupling to fermions. The problem is that for large Λ this is much bigger than MEW . One

can fine-tune the theory to avoid this instability, but nobody likes fine-tuning. Supersymmetry however

provides exactly the right relationship between λ and λ2
f to cancel this mass correction. This is one of

the primary motivations behind considering supersymmetry as a physical symmetry. Note however that

we must break supersymmetry in such a way as to preserve it as a solution to the hierarchy problem.

(See discussion in Quevedo’s lecture notes for more details.)

7 Supergravity

Elements of supergravity One can extend supersymmetry to a local symmetry to obtain super-

gravity. There, we introduce a spin-3/2 field ψαµ known as the Rarita-Schwinger field, representing a

gravitino, which couples to the conserved supercurrent Jµα . Construction of invariant Lagrangians is a

little more involved. For the F -terms scalar potential one gets

VF = eK/M
2
Pl

(
(Kij̄)

−1DiW (Dj̄W )∗ − 3|W |2

M2
Pl

)
Here W is a superpotential, K a Kahler potential, and

Kij̄ =
∂2K

∂ΦiΦ∗j
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with Φi denoting the chiral superfields of the theory. Note the subtle fact that the index structure of

the inverse Kahler metric is

(Kij̄)
−1 = K īj

We also have the derivatives

DiW =
∂W

∂Φi

+
W

M2
Pl

∂W

∂Φi

which are in fact essentially the auxiliary fields Fi are

Fi ∝ DiW

For supersymmetry breaking in supergravity models one has 〈Fi〉 6= 0. Note that it’s possible to have

V > 0 or V < 0 even after breaking supersymmetry. This is important for the cosmological con-

stant problem, as we could have 〈VF 〉 ≈ 0 after breaking in accord with observation of the cosmological

constant (whereas global supersymmetry breaking leads to a cosmological constant of order (100GeV)4).

There is also a phenomenon known as the super Higgs effect (note this does not refer to the normal

Higgs effect in a supersymmetric theory). In this effect the goldstino resulting from the breaking gets

eaten by the gravitino, which thereby obtains a mass. Thus a massive gravitino is a hallmark of broken

supergravity. The gravitino mass is mG̃ = 〈eK/2|W |〉.

8 Supersources

The basic notes for this course, asides from the ones I took down in Prof Ben Allanach’s lectures, were

• F. Quevedo, “Cambridge Lectures on Supersymmetry and Extra Dimensions,” http://arxiv.org/

abs/1011.1491

There were various inconsistencies between Quevedo’s notes and those from the actual classes I attended,

due either to changing conventions or mistakes. Generally I’ve followed the conventions from my class

notes (and inevitably taken the accidental liberty of introducing my own mistakes). Useful resources for

comparison and illumination included:

• D. Bailin, A. Love, Supersymmetric Gauge Field Theory and String Theory, IOP

• J. Wess, J. Bagger, Supersymmetry and Supergravity, PUP

• M. Srednicki, Quantum Field Theory, CUP

• J.D. Lykken, “Introduction to Supersymmetry,” http://arxiv.org/abs/hep-th/9612114

• S. Dawson, “The MSSM and Why It Works,” http://arxiv.org/abs/hep-ph/9712464

I tended to refer to the first two of the above for information on superspace and superfields. Sred-

nicki’s book summarises about half the course in two typically short and carefully constructed chapters.

Lykken’s notes are quite good and he lists all his conventions, basic identities and commutation rela-

tions at the end (the world would be a far better place if all texts on the subject did something similar).

Dawson’s notes, as the name suggests, were helpful for the MSSM.
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