
Character table of S5
These notes describe how to find the character table of S5, based on the methods described in
the 2008-09 Group Representations course by Dr Timothy Murphy. We work both directly using
eigenvalues of group elements and using induction from S4 - there are obviously other possibilities
not covered here.

Chris Blair, May 2009

1 General information

1.1 Representations and characters

A group representation of a group G in a vector space V over a field k (which we will take to be C) is given
by a homomorphism from G to GL(V ). In general we think of GL(V ) as being composed of n×n invertible
matrices, and think of our representation as a matrix representation. The degree of the representation is
the dimension of the vector space. A subspace U of V is said to be stable if gu ∈ U for all u ∈ U, g ∈ G.
A representation is said to be simple if the only stable subspaces are V and 0. The sum of the dimensions
of the simple representations over C of a group is equal to the order of G. A representation is said to be
semisimple if it is expressible as a sum of simple representations.

The character of a representation α : g → GL(V ) is defined to be χα(g) = trα(g). Most of the
properties of a representation are determined by its character. Recall that the conjugacy class of g ∈ G is
{h ∈ G : h = xgx−1, x ∈ G}. Characters are constant on conjugacy classes. We also have that the number
of simple representations over C is equal to the number of conjugacy classes. The character of the identity
element equals the degree of the representation (as the identity element is represented by the identity matrix
in the n-dimensional space V ). The character satisfies χα+β(g) = χα(g) + χβ(g), χαβ(g) = χα(g)χβ(g),
χα∗(g) = χα(g1) and if k = C, χα∗(g) = χα(g−1) = χα(g).

The intertwining number I(α, β) of two representations in vector spaces U and V is defined to be
the degree of the space of maps from U to V which leave the action of G invariant. If α, β are simple
representations over C then I(α, β) = 1 if α = β and is zero otherwise. If α is a semisimple representation
and σ is a simple representation then I(α, σ) gives the number of times σ occurs in α. Note that Maschke’s
theorem states that every representation of a finite group over C (or R) is semisimple. A formula for the
intertwining number in terms of characters is

I(α, β) =
1
||G||

∑
g∈G

χα(g−1)χβ(g)

where ||G|| is the order of the group G. If k = C then we can replace χα(g−1) by χα(g). The same formula
can be given in terms of the classes [g] in G as

I(α, β) =
1
||G||

∑
[g]∈G

||[g]||χα([g])χβ([g])

where ||[g]|| gives the number of elements in the class [g]. The character table of a group gives the values
of the characters of the simple representations on the classes in the groups.

1.2 Permutation groups

The symmetric group Sn consists of all permutations of n elements. It has order ||Sn|| = n!. An element of
the group can be written in the cycle notation (abc . . . n) which means a goes to b, b goes to c and so on,
with n going to 1. A permutation can be written as the union of disjoint cycles, eg in S4 (ab)(cd) which
swaps a and b and swaps c and d. Two elements of Sn are conjugate if and only if they have are expressible
as the same number of disjoint cycles of the same cycle lengths. Sn is also generated by the transpositions
(ab).

The natural representation θ of Sn in kn by permutation of coordinates splits into two simple parts,
θ = 1 + σ.
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2 Finding the character table

2.1 Classes

The order of S5 is 5! = 120. The classes are 15, 213, 221, 312, 32, 41, 5 (the notation means 213 is a two-cycle
(ab), 32 is a three-cycle and a two-cycle (abc)(de) etc). There is one element in the class 15 (the identity),
5·4/2 in the second (numbers of ways of choosing two elements with order not important), (5·4/2)·(3·2/2)/2 in
the third (numbers of ways of choosing two elements and then two other elements with order not important),
5 · 4 · 3/3 in the fourth (ways of choosing three elements with order not important), (5 · 4 · 3/3) · (2/2) in the
fourth, 5 · 4 · 3 · 2/4 in the fifth and 5!/5 in the last. Hence the top rows of our character table will look like

# elts 1 10 15 20 20 30 24
class 15 213 221 312 32 41 5

2.2 One dimensional representations

We know S5 has two one-dimensional representations, the trivial representation 1 and the parity represen-
tation ε, which takes values +1 on even representations (odd cycle length) and −1 on odd representations
(even cycle length). So we can fill in:

# elts 1 10 15 20 20 30 24
class: 15 213 221 312 32 41 5

1 1 1 1 1 1 1 1
ε 1 -1 1 1 -1 -1 1

2.3 Natural representation

The natural representation θ of S5 on {x1, x2, x3, x4, x5} splits into two simple parts, 1 and σ. This natural
representation is a permutation representation, and so its character is given by the number of elements it
leaves invariant (consider the diagonal of a permutation matrix). So:

# elts 1 10 15 20 20 30 24
class: 15 213 221 312 32 41 5

1 1 1 1 1 1 1 1
ε 1 -1 1 1 -1 -1 1
θ 5 3 1 2 0 1 0

σ = θ − 1 4 2 0 1 -1 0 -1

Note that to check σ is simple, we calculate

I(σ, σ) =
1

120

(
1 · 42 + 10 · 22 + 15 · 02 + 20 · (−1)2 + 20 · (−1)2 + 30 · 02 + 24 · (−1)2

)
=

1
120

(120) = 1

We can immediately find another simple representation, the product of ε and σ. For if σ is a simple
representation of Sn, I(εσ, εσ) = I(σ, ε∗εσ) = I(σ, ε2σ) = I(σ, σ) = 1, and so εσ is a simple representation.
To check that εσ is distinct from σ we note that as χσ((ab)) 6= 0 and χε((ab)) = −1 then clearly χεσ((ab)) 6=
χσ((ab)), so εσ 6= σ. This holds for any simple representation α of Sn such that χα((ab)) 6= 0, and thus for
all representations of odd degree. We can see this by considering the eigenvalues of (ab), which as (ab)2 = 1
are ±1. This means (ab) is represented in matrix form by a matrix with ±1 on the diagonal; if σ has odd
degree then there are odd number of ±1 terms, and we cannot add these to get zero, hence χσ((ab)) 6= 0.
Hence,
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# elts 1 10 15 20 20 30 24
class: 15 213 221 312 32 41 5

1 1 1 1 1 1 1 1
ε 1 -1 1 1 -1 -1 1
σ 4 2 0 1 -1 0 -1
εσ 4 -2 0 1 1 0 -1

2.4 Dimensional analysis mod 8

We now use a trick to find the dimensions of the remaining representations. We know that there are 7−4 = 3
simple representations left; let them have dimensions a, b, c. Then we must have 12+12+42+42+a2+b2+c2 =
120⇒ a2 + b2 + c2 = 86, or a2 + b2 + c2 = 6 mod 8. Quickly checking the values of n2 mod 8 for n = 1, . . . , 10
shows that n2 mod 8 = 0 if n is a multiple of 4, 1 if n is odd, and 4 if nmod 4 = 2. Seeing as the only way
we can make 6 out of three of 0, 1, 4 is 1 + 1 + 4 we see that a and b are odd and as odd representations come
in pairs we must have a = b. Putting 2a2 + c2 = 86 and trying a = 3, 5, 7 we find that a = 5 and c = 6. So,

# elts 1 10 15 20 20 30 24
class: 15 213 221 312 32 41 5

1 1 1 1 1 1 1 1
ε 1 -1 1 1 -1 -1 1
σ 4 2 0 1 -1 0 -1
εσ 4 -2 0 1 1 0 -1
ϕ 5
εϕ 5
ψ 6

2.5 Eigenvalues

To proceed let us look at the 5-dimensional representation ϕ. Consider a 5-cycle (abcde). As (abcde)5 = 1,
the eigenvalues will be chosen from 1, ω, ω2, ω3, ω4 (where ω = e2πi/5). Now (abcde)r (r = 2, 3, 4) is also a
5-cycle, with eigenvalues consisting of the eigenvalues of (abcde) raised to the power of r. As conjugate cycles
have the same eigenvalues, we see that if λ is an eigenvalue of (abcde) then so are the powers of λ. This
gives two possible choices for the eigenvalues, {1, 1, 1, 1, 1} or {1, ω, ω2, ω3, ω4} (as there must be a total of
five, ignoring repetition). Now the former case gives χϕ((abcde)) = 5, while the latter gives χϕ((abcde)) = 0.
But in the formula for I(ϕ,ϕ) this character will contribute 24 · χϕ((abcde))2, which must be less than or
equal to 120. This rules out the possibility of 1 being an eigenvalue with multiplicity 5.

Similarly consider a 4-cycle (abcd) with eigenvalues ±1,±i. As (abcd)3 is also a 4-cycle, if i occurs as an
eigenvalue then so does i3 = −i. Hence ±i occur together (or not at all) and will cancel out when we take
the trace, leaving an odd number of ±1 pairs. The two possibilities for χϕ((abcd)) are ±3,±1 - we again see
that the former contributes too much to I(ϕ,ϕ), hence χϕ((abcd)) = ±1. We choose the plus option - the
negative possibility then corresponds to εϕ.

Finally we can do the same for the 3-cycles (abc), which has eigenvalues 1, ω, ω2 (where ω = e2πi/3). As
(abc)2 is also a 3-cycle if an eigenvalue occurs then so does its square, meaning here that ω and ω2 occur
together. If they don’t occur, we have χϕ((abc)) = 5, which is too large, if they occur once χϕ((abc)) =
1 + 1 +ω+ω2 = 2 which is too large (taking into account the contributions from the 4- and 5-cycles). Hence
they must occur twice and χϕ((abc)) = 1 + ω + ω2 + ω + ω2 = −1. So we have
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# elts 1 10 15 20 20 30 24
class: 15 213 221 312 32 41 5

1 1 1 1 1 1 1 1
ε 1 -1 1 1 -1 -1 1
σ 4 2 0 1 -1 0 -1
εσ 4 -2 0 1 1 0 -1
ϕ 5 x y -1 z 1 0
εϕ 5 - x y -1 −z −1 0
ψ 6

2.6 Orthogonality

To find x, y, z we use the orthogonality of the simple characters:

I(ϕ, 1) = 0⇒ 5 + 10x+ 15y − 20 + 20z + 30 = 0⇒ 10x+ 15y + 20z = −15

I(εϕ, 1) = 0⇒ 5− 10x+ 15y − 20− 20z − 30 = 0⇒ 10x− 15y + 20z = −45

This gives 30y = 30⇒ y = 1. We also have

I(ϕ, σ) = 0⇒ 20 + 20x− 20− 20z = 0⇒ x = z

and filling this back in we find x = −1, giving

# elts 1 10 15 20 20 30 24
class: 15 213 221 312 32 41 5

1 1 1 1 1 1 1 1
ε 1 -1 1 1 -1 -1 1
σ 4 2 0 1 -1 0 -1
εσ 4 -2 0 1 1 0 -1
ϕ 5 -1 1 -1 -1 1 0
εϕ 5 1 1 -1 1 −1 0
ψ 6

2.7 Regular representation

The regular representation of a group G is the representation induced by the action of the group on itself. Its
character equals the order of the group for g = e and is zero otherwise. Every simple representation σi occurs
dimσi times in the regular representation, giving us a straightforward way of finding the representation ψ:

1 · 1 + 1 · (−1) + 4 · 2 + 4 · (−2) + 5 · (−1) + 5 · (1) + 6χψ((ab)) = 0⇒ χψ((ab)) = 0

1 · 1 + 1 · 1 + 4 · 0 + 4 · 0 + 5 · 1 + 5 · 1 + 6χψ((ab(cd))) = 0⇒ χψ((ab)(cd)) = −2

1 · 1 + 1 · 1 + 4 · 1 + 4 · 1 + 5 · (−1) + 5 · (−1) + 6χψ((abc)) = 0⇒ χψ((abc)) = 0

1 · 1 + 1 · (−1) + 4 · (−1) + 4 · 1 + 5 · (−1) + 5 · 1 + 6χψ((abc)(de)) = 0⇒ χψ((abc)(de)) = 0

1 · 1 + 1 · (−1) + 4 · 0 + 4 · 0 + 5 · 1 + 5 · (−1) + 6χψ((abcd)) = 0⇒ χψ((abcd)) = 0

1 · 1 + 1 · 1 + 4 · (−1) + 4 · (−1) + 5 · 0 + 5 · 0 + 6χψ((abcde)) = 0⇒ χψ((abcde)) = 1
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and so

# elts 1 10 15 20 20 30 24
class: 15 213 221 312 32 41 5

1 1 1 1 1 1 1 1
ε 1 -1 1 1 -1 -1 1
σ 4 2 0 1 -1 0 -1
εσ 4 -2 0 1 1 0 -1
ϕ 5 -1 1 -1 -1 1 0
εϕ 5 1 1 -1 1 −1 0
ψ 6 0 -2 0 0 0 1

3 Alternative method - induced representations

3.1 Induced representations

Given H a subgroup of G and α a representation of H in U , then we can form the induced representation
αG of G. In terms of characters, we have

χαG([g]) =
||G||

||H|| ||[g]||
∑

[h]⊂[g]

||[h]||χα([h])

where [g] are the classes in G and [h] are the classes in H. Note that every class in h lies in a unique class
in G, however the classes of G may be split in H. This does not happen for Sn−1 ⊂ Sn, however.

3.2 Inducing from S4 up to S5

Suppose now we know the character table of S4:

# elts 1 6 3 8 6
class: 14 212 22 31 4

1 1 1 1 1 1
ε 1 -1 1 1 -1
α 2 0 2 -1 0
β 3 1 -1 0 -1
εβ 3 -1 -1 0 1

The induced representations are given by

χαG([g]) =
5 ||[h]||
||[g]||

χα([h])

giving for instance

χαG(e) =
5 · 1

1
· 2 = 10 χαG((ab)) =

5 · 6
10
· 0 = 10 χαG((ab)(cd)) =

5 · 3
15
· 2 = 2

χαG((abc)) =
5 · 8
20
· (−1) = −2 χαG((abcd)) =

5 · 6
30
· 0 = 0

and χαG((abc)(de)) = χαG((abcde)) = 0 as these classes do not occur in S4. Hence, assuming we have found
the first four representations of S5 as before, we have
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# elts 1 10 15 20 20 30 24
class: 15 213 221 312 32 41 5

1 1 1 1 1 1 1 1
ε 1 -1 1 1 -1 -1 1
σ 4 2 0 1 -1 0 -1
εσ 4 -2 0 1 1 0 -1
αS5 10 0 2 -2 0 0 0
βS5 15 3 -1 0 0 -1 0

We can also apply the mod trick to discover that the remaining simple representations have dimensions
5,5 and 6. Now, we find that

I(αS5 , αS5) = 2 I(βS5 , βS5) = 3

so αS5 is composed of two simple parts and βS5 is composed of three simple parts. For αS5 this means that the
dimensions of its components are either 4 and 6, or 5 and 5. But we can check that I(αS5 , σ) = I(αS5 , εσ) = 0,
hence αS5 = ϕ + εϕ (using the fact that representations of odd degrees come in pairs - we can also check
that αS5 6= 2ϕ by computing I( 1

2α
S5 , 1

2α
S5) = 1

2 ).
Now we can compute I(σ, βS5) = 1 and I(σ, βS5) = 0, meaning that we must have

βS5 = σ +

{
ϕ

εϕ
+ ψ ⇒ εβS5 = εσ +

{
εϕ

ϕ
+ εψ

Combining these give
βS5 + εβS5 = σ + εσ + ϕ+ εϕ+ ψ + εψ

But as ψ is of even degree, and as we have all the other simple representations, we must have ψ = εψ; and
we also know that αS5 = ϕ+ εϕ. This means we can find ψ using ψ = 1

2 (βS5 + εβS5 − σ − εσ − αS5). This
gives

# elts 1 10 15 20 20 30 24
class: 15 213 221 312 32 41 5

1 1 1 1 1 1 1 1
ε 1 -1 1 1 -1 -1 1
σ 4 2 0 1 -1 0 -1
εσ 4 -2 0 1 1 0 -1
ϕ 5
εϕ 5
ψ 6 0 -2 0 0 0 1
αS5 10 0 2 -2 0 0 0
βS5 15 3 -1 0 0 -1 0
εβS5 15 -3 -1 0 0 1 0

We can then finish off the character table using εϕ = βS5 − σ − ψ, and the result is as before. (Note we
have the freedom to call this representation εϕ or ϕ as we wish, and choose the former to be consistent with
our earlier notation.)
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