
Ma3469 Practical Numerical Simulation

Notes by Chris Blair

Some notes on the theoretical part of Ma3469, as taught in 2009-10.

1 Ordinary differential equations

Some notation: we will develop our techniques for scalar equations in one dependent variable y; obviously
everything we do is valid for vectors ~y too. We denote error terms using the definition that z = O(hn) means
that z → chn for h → 0 with c → c0 6= 0. The length of the timestep used in computational methods will
usually be denoted by h. The step error is the error at each step, while the total error is the step error
multiplied by the number of steps. The latter equals the total runtime divided by h, so that if the step error
is O(hn) the total error will be O(hn−1).

1.1 Euler method

For an ordinary differential equation of the form

y′(t) = f(y, t)

We Taylor expand:
y(t+ h) = y(t) + hy′(t) +O(h2)

This gives the Euler method:
y(t+ h) := y(t) + hf(y(t), t) (Euler)

Step error is O(h2) and total error is O(h).

1.2 Runge-Kutta 2nd Order

For an ordinary differential equation of the form

y′(t) = f(y, t)

We Taylor expand:

y(t+ h) = y(t) + hy′(t) +
1
2
h2y′′(t) +O(h3)

= y(t) +
1
2
h (y′(t) + y′(t) + hy′′(t)) +O(h3)

We use y′(t+ h) = y′(t) + hy′′(t) +O(h2) to obtain the Runge-Kutta 2nd order method:

y(t+ h) := y(t) +
1
2
h
(
f(y(t), t) + f(y(t+ h), t+ h)

)
(RK2)

Step error is O(h3) and total error is O(h2).
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1.3 Leapfrog method and Euler-Cromer

For an ordinary differential equation of the form

y′′(t) = f(y, t)

which can be written as a system of two coupled first-order equations:

y′(t) = v

v′(t) = f(y, t)

We Taylor expand:

y(t+ h) = y(t) + hy′(t) +
1
2
h2y′′(t) +O(h3)

= y(t) + h

(
y′(t) +

1
2
hy′′(t)

)
+O(h3)

We use y′(t+ h/2) = y′(t) + 1
2hy

′′(t) +O(h2) and obtain:

y(t+ h) = y(t) + hy′(t+ h/2) +O(h3)

Doing the same with v(t+ h) we obtain the leapfrog method: an initial step using the Euler method

v(t0 + h/2) := v(t0) +
1
2
hf(y(t0), t0) (Leapfrog 1)

followed by

y(t+ h) := y(t) + hv(t+ h/2)
v(t+ 3h/2) := v(t+ h/2) + hf(y(t+ h), t+ h)

(Leapfrog 2)

Step error is O(h3) and total error is O(h2) (error in initial step is a once-off error of O(h2)).
We obtain the Euler-Cromer method by defining ṽ(t) = v(t+ h/2):

y(t+ h) := y(t) + hṽ(t)
ṽ(t+ h) := ṽ(t) + hf(y(t+ h), t+ h)

(Euler-Cromer)

1.4 Symmetric methods

Consider a known value of the solution y(t). Let y(t + H,h) denote the value of y at time t + H obtained
using a stepsize h, and let y(t + H,−h) denote the value of y at time t + H from which we would obtain
y(t) by iterating our algorithm in reverse (i.e. with step −h). A method for solving ordinary differential
equations is called symmetric if

y(t+H,h) = y(t+H,−h)

i.e. just if it is symmetric in time.
The leapfrog method is manifestly symmetric and hence so too is Euler-Cromer.

1.5 Error lemma

The “error lemma” for an ordinary differential equation y′(t) = f(y, t), where for t ∈ [a, b], f has bounded
partial derivatives up to and including the N + 2th such derivative, and we denote by y(t;h) the solution
obtained via a pth order one-step method, then

y(t;h) = y(t) + hpep(t) + hp+1ep+1(t) + · · ·+ hNeN (t) + hN+1EN+1(t;h) (Error lemma)

where the functions ek are independent of h and EN+1 is bounded on [a, b].
We define the error by

ε(t;h) = y(t;h)− y(t)

2



1.6 Two-point Richardson extrapolation

We will demonstrate the usefulness of the error lemma by using it to estimate the error in a single step of
our method. We can write

y(t+ h;h) = y(t+ h) + hpep(t+ h) +O(hp+1)

y(t+ h;h/2) = y(t+ h) +
hp

2p
ep(t+ h) +O(hp+1)

We can view these as two simultaneous equations in ep(t + h) and y(t + h). Up to the error terms we can
solve for y(t+ h) and so obtain an improved estimate for the solution at time t+ h. Multipying the second
equation by 2p and subtracting the first from it we get

y∗(t+ h) = y(t+ h) +O(hp+1) =
2py(t+ h;h/2)− y(t+ h;h)

2p − 1

We can also obtain an estimate for the error. The error for the smaller stepsize is

ε(t+ h;h/2) = y(t+ h;h/2)− y(t+ h) =
hp

2p
ep(t+ h) +O(hp+1)

We also obviously have

y(t+ h;h)− y(t+ h;h/2) = hpep(t+ h)− hp

2p
ep(t+ h) +O(hp+1) = (2p − 1)

hp

2p
ep(t+ h)

so that

ε(t+ h;h/2) =
y(t+ h;h)− y(t+ h;h/2)

2p − 1
+O(hp+1)

Actually, we can magically improve the order of accuracy by one by noting that if we are interested in the
error in the step since the time t, we can suppose that at time t our solution is the exact one. This means
that ek(t) = 0, and so ek(t+ h) = he′k(t) +O(h2). This changes O(hp+1) to O(hp+2) in the above.

1.7 Full extrapolation

A full Richardson extrapolation involves calculating y at time t + H for N + 1 stepsizes hi = H/ni (where
the ni are positive integers). We can write

y(t+H;hi) = y(t+H) +
p+N−1∑

k=p

hk
i ek(t+H) + hp+N

i Ep+N (t+H;hi)

Note that if the method is symmetric y(t + H;hi) = y(t + H;−hi), so all the odd powers of k vanish, and
the error lemma becomes

y(t+H;hi) = y(t+H) +
p+N−1∑

k=p

h2k
i ek(t+H) + h

2(p+N)
i Ep+N (t+H;hi)

We can then use these N solutions to extrapolate an improved value for y at time t+H. The essential idea
is to consider the values y(t+H;hi) as giving N+1 simultaneous equations for the N+1 quantities y(t+H)
and ep, . . . , ep+N−1: we solve these for the improved solution y∗(t+H) = y(t+H) +O(H2(p+N−1)).
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1.8 Neville algorithm

The Neville algorithm constructs a polynomial of degree at most N from N + 1 data points (xi, yi). We
start with the trivial polynomials

P0(x) = y0 P1(x) = y1 . . . PN (x) = yN

and then recursively define

Pj−k,...,j(x) =
(xj − x)Pj−k,...,j−1(x) + (x− xj−k)Pj−k+1,...,j(x)

xj − xj−k
(Neville)

which passes through the points yj−k, yj−k+1, . . . , yj . It’s easy to see this: clearly Pj−k,...,j(xj) =
Pj−k+1,...,j(xj) = yj , and Pj−k,...,j(xj−k) = Pj−k,...,j(xj−k) = yj−k. For xm, j − k < m < j, we have
Pj−k,...,j(xm) = (xj − xm + xm − xj−k)ym/(xj − xj−k) = ym.

1.9 Bulirsch-Stoer algorithm

The Bulirsh-Stoer algorithm uses a symmetric method (the modified midpoint method) to compute values
y(t+H;hi) for y at time t+H, using N + 1 stepsizes hi = H/ni. This gives a system of N + 1 equations:

yi ≡ y(t+H;hi) = y(t+H) +
N∑

k=1

h2k
i ep(t+H) ≡ PN (h2

i )

which we view as particular values of a polynomial PN (h2). Here y(t+H) is our extrapolated result for y,
and is equal to PN (0).

To generate the polynomial PN (h2) we use the Neville algorithm:

Pj−k,...,j(h2) =
(h2

j − h2)Pj−k,...,j−1(h2) + (h2 − h2
j−k)Pj−k+1,...,j(h2)

h2
j − h2

j−k

and
Tj,k = Pj−k,...,j(0)

Note that k indexes which iteration of the Neville algorithm we are at: so initially we have N+1 polynomials
Pi which combine pairwise to produce N polynomials Pi−1,i, corresponding to Ti,1. These then combine
pairwise to produce N − 1 polynomials Pi−2,i−1,i, corresponding to Ti,2. Note we have N Ti,1 and N − 1
Ti,2, and wish to calculate TN,N . We have

Tj,k =
Tj−1,k−1h

2
j − Tj,k−1h

2
j−k

h2
j − h2

j−k

or

Tj,k =
Tj−1,k−1

1
n2

j
− Tj,k−1

1
n2

j−k

1
n2

j
− 1

n2
j−k

=
Tj−1,k−1 − Tj,k−1

(
n2

j

n2
j−k
− 1
)
− Tj,k−1

1− n2
j

n2
j−k

= Tj,k−1 +
Tj,k−1 − Tj−1,k−1

n2
j

n2
j−k
− 1

Starting with Ti,0 = yi we can then use this recursion relation to calculate TN,N .
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2 Partial differential equations

We will consider solving the following parabolic partial differential equation for an unknown function f(x, t):

∂f

∂t
(x, t) = α

∂2f

∂x2
(x, t) + g(x, t)f(x, t)

For instance, we obtain the Schrödinger equation (in dimensionless units) by setting α = i/2, and choosing
g(x, t) = −iU(x, t) to represent some potential. One could also add in an inhomogeneous part without
adding any great difficulties to the methods we will discuss below.

We will solve the equation on [x0, x1]× [t0, t1], subdivided into a grid with meshsizes ∆x and ∆t, and with
Dirichlet boundary conditions: f(x0, t) = f(x1, t) = 0. Note that more complicated boundary conditions
could conceivable be used (and that we also have to specify an initial f at t = t0 which is consist with these
boundary conditions).

Generalising to higher spatial dimensions should be straightforward.

2.1 Discretising derivatives

We will need the following forms for time and space derivatives:

∂f

∂t

∣∣∣∣
FT

=
f(t+ ∆t)− f(t)

∆t
+O(∆t) forwards time

∂f

∂t

∣∣∣∣
BT

=
f(t)− f(t−∆t)

∆t
+O(∆t) backwards time

∂f

∂t

∣∣∣∣
CT

=
f(t+ ∆t)− f(t−∆t)

2∆t
+O(∆t2) centred time

∂2f

∂x2

∣∣∣∣
CS

=
f(x+ ∆x) + f(x−∆x)− 2f(x)

(∆x)2
+O(∆x2) centered space

The validity of these expressions, and their error terms, can be easily checked by Taylor expanding.

2.2 FTCS

The forward-time centred-space scheme is:

f(x, t+∆t) := f(x, t)+α
∆t

(∆x)2

(
f(x+∆x, t)+f(x−∆x, t)−2f(x, t)

)
+∆tg(x, t)f(x, t)+O(∆t2) (FTCS)

Introducing the discretisation fj ≡ f(xj) where xj = x0 + j∆x, and letting ~f = (f1, . . . , fN ) this becomes a
matrix equation

~f(t+ ∆t) :=
(

1 + α
∆t

(∆x)2
D2 + ∆tG(t)

)
~f(t)

where G(t) = diag(g1(t), . . . , gN (t)) and

D2 =


−2 1 0 0
1 −2 1
0 1 −2
...

. . . 1
0 −2
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2.3 BTCS

The backward-time centred-space scheme is:

f(t+∆t) := f(t)+α
∆t

(∆x)2

(
f(x+∆x, t+∆t)+f(x−∆x, t+∆t)−2f(x)

)
+∆tg(x, t+∆t)f(x, t+∆t)+O(∆t2)

(BTCS)
or (

1− α ∆t
(∆x)2

D2 −∆tG(t+ ∆t)
)
~f(t+ ∆t) := ~f(t)

2.4 CTCS

The centred-time centred-space scheme is:

f(x, t+ ∆t) := f(x, t−∆t) + 2α
∆t

(∆x)2

(
f(x+ ∆x, t) + f(x−∆x, t)− 2f(x, t)

)
+ 2∆tg(x, t)f(x, t) +O(∆t3)

(CTCS)
or

~f(t+ ∆t) := ~f(t−∆t) + 2
(
α

∆t
(∆x)2

D2 +G(t)
)
~f(t)

2.5 CN

The Crank-Nicholson scheme involves combining one FTCS step at stepsize ∆t/2 with one BTCS step
to obtain the following implicit expression for ~f(t+ ∆t):(

1− α ∆t
2(∆x)2

D2 −
∆t
2
G(t+ ∆t)

)
~f(t+ ∆t) :=

(
1 + α

∆t
2(∆x)2

D2 +
∆t
2
G(t)

)
~f(t) (CN)

2.6 Von-Neumann stability analysis

We can estimate stability requirements for our schemes using Von Neumann stability analysis. This
essentially involves Fourier transforming: we write our solution as fj(t) = A(t)e−ikxj and see how the
amplitude A(t) evolves. In doing so we will ignore boundary conditions and the function g(x, t).

For the FTCS scheme, we have

A(t+ ∆t)e−ikxj =
(

1 + α
∆t

(∆x)2

(
eik∆x + e−ik∆x − 2

))
A(t)e−ikxj

Now, eik∆x + e−ik∆x − 2 =
(
eik∆x/2 − e−ik∆x/2

)2
= −4 sin2 k∆x/2, hence we find

A(t+ ∆t) =
(

1− 4α
∆t

(∆x)2
sin2 k∆x/2

)
A(t)

hence we have stability if ∣∣∣∣1− 4α
∆t

(∆x)2
sin2 k∆x/2

∣∣∣∣ < 1

So for instance if α is real and positive this means we must have

4α
∆t

(∆x)2
< 2

while if α is real and negative we will always be unstable.

6



If α is imaginary, we have ∣∣∣∣1 + 16|α|2 ∆t2

(∆x)4
sin2 k∆x/2

∣∣∣∣ < 1

and hence the scheme is unconditionally unstable.
For the BTCS scheme we have

A(t+ ∆t)
(

1 + 4α
∆t

(∆x)2
sin2 k∆x/2

)
= A(t)

and so require that ∣∣∣∣∣ 1
1 + 4α ∆t

(∆x)2 sin2 k∆x/2

∣∣∣∣∣ < 1

which is unconditionally stable if α is real and positive, and unstable if α is real and negative. If α is
imaginary the scheme is unconditionally stable.

For the Crank-Nicholson scheme we have(
1 + 2α

∆t
(∆x)2

sin2 k∆x/2
)
A(t+ ∆t) =

(
1− 2α

∆t
(∆x)2

sin2 k∆x/2
)
A(t)

and hence stability if ∣∣∣∣∣1− 2α ∆t
(∆x)2 sin2 k∆x/2

1 + 2α ∆t
(∆x)2 sin2 k∆x/2

∣∣∣∣∣ < 1

This is unconditionally stable for α real and positive and unstable for α real and negative. If α is imaginary
the left-hand side is equal to 1 and we cannot draw a definite conclusion about stability.

2.7 Special case: unitarity of methods for the Schrödinger equation

Sometimes the precise details of the equation we are studying impose their own specialised stability condi-
tions. As an example we will consider the Schrödinger equation:

i
∂f

∂t
= Hf

where H = − 1
2

∂2

∂x2 + U(x) is hermitian. The norm f†f is conserved as is easily checked:

∂

∂t
(f†f) = if†Hf − if†Hf = 0

Denoting f ≡ f(t) and f ′ ≡ f(t + ∆t) for slight convenience, we can write the FTCS implementation of
this equation as f ′ = (1− i∆tH)f . We observe that in this scheme

f ′†f ′ = f†(1 + i∆tH)(1− i∆H)f = f†f + f†∆t2H†Hf

The latter term is always positive and so the norm always increases, violating unitarity. Note that when
discretised H contains the term 1

∆x2D2, so that ∆t2H2 can be expected to not be negligible.
For the BTCS implementation we have f ′ = (1 + i∆tH)−1f . We have

f ′†f ′ = f†(1− i∆tH)−1(1− i∆H)−1f = f†(1 + ∆t2H†H)−1f

We now have to note that f can be expanded in terms of (orthonormal) eigenfunctions ψk of H: f =
∑

k ckψk

whereHψk = Ekψk. Now (1+∆t2H2)f =
∑

k(1+∆t2E2
k)ckψk so (1+∆t2H2)−1f =

(∑
k(1 + ∆t2E2

k)
)−1

ckψk

and
f†(1 + ∆t2H†H)−1f =

∑
k

1
1 + ∆t2E2

k

c∗kck
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and this is less than
∑

k c
∗
kck = f†f and so the norm in fact decreases.

For the Crank-Nicholson scheme we have f ′ = (1 + i 1
2∆tH)−1(1− i 1

2∆tH)f and so

f ′†f ′ = f†(1 + i
1
2

∆tH)−1(1− i1
2

∆H)−1(1 + i
1
2

∆H)−1(1− i1
2

∆tH)f

= f†(1 + i
1
2

∆tH)−1(1 +
1
4

∆t2H)−1(1− i1
2

∆tH)f

= f†(1 +
1
4

∆t2H)−1(1 +
1
4

∆t2H)f = f†f

so the Crank-Nicholson scheme preserves the norm.

2.8 Tridiagonal matrix inversion

We will need to solve equations of the form

β1 γ1 0 . . . . . . 0
α1 β2 γ2 0
0 α2 β3 0

. . .
. . . γN−1

αN−1 βN





f1

f2

...

...
fN


=



g1

g2

...

...
gN


This can be achieved using the following algorithm:

1. Define β′1 = β1, γ′1 = γ1, g′1 = g1.

2. For j > 1, we subtract (αj−1/β
′
j−1) times row (j − 1) from row j, which amounts to

α′j−1 = αj−1 −
αj−1

β′j−1

β′j−1 = 0

β′j = βj −
αj−1

β′j−1

γ′j−1

γ′j = γj

g′j = gj −
αj−1

β′j−1

g′j−1

The effect of this forward substitution is to make all αj zero.

3. We then solve using

fN =
g′N
β′N

and for j < N we have
β′jfj + γ′jfj+1 = g′j

so

fj =
g′j − γ′jfj+1

β′j
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3 Random numbers

3.1 Random numbers

The probability of a uniformly distributed random number ξu lying in an interval dξu is just Pr(ξu ∈
{dξu}) = dξu. Computers can generate uniformly distributed pseudo-random numbers quite easily.

We can use uniformly distributed random numbers to generate random numbers f distributed according
to some probability distribution P (f). The idea is to find a transform G such that ξu = G(f). This implies
dξu = G′(f)df , and we suppose that Pr(f ∈ {df}) = Pr(G(f) ∈ {G(f)}. Hence we have the equality

Pr(ξu ∈ {dξu}) = dξu = G′(f)df = Pr(f ∈ {df}) = P (f)df

so P (f) = G′(f) and

G(f) =
∫ f

−∞
P (f ′)df ′

3.2 Box-Muller algorithm

The Box-Muller algorithm is a mechanism for generating pairs of normally distributed random numbers.
The normal distribution is

P (x) =
1√
2π
e−x2/2

Hence the probability of finding a pair (x, y) in a particular infinitesimal region of area dxdy is

Pr(x ∈ dx, y ∈ dy) =
1

2π
dxdye−(x2+y2)/2

Changing to polar coordinates

1
2π
dxdye−(x2+y2)/2 =

1
2π
dϕrdre−r2/2

Letting t = 1
2r

2 and integrating out over ϕ (note that ϕ/2π is uniformly distributed) we have

Pr(t ∈ dt) = e−tdt

From the previous section we see that we can find a transformation G(t) which takes the random numbers
t into uniformly distributed random numbers ξu:

G(t) =
∫ t

0

e−t′dt′ = 1− e−t = ξu

Hence given a pair (ξu
1 , ξ

u
2 ) of uniformly distributed random numbers in (0, 1] we can obtain a pair of normally

distributed random numbers via:

ξn
1 =

√
−2 ln ξu

1 sin 2πξu
2 ξn

2 =
√
−2 ln ξu

1 cos 2πξu
2 (Box-Muller)
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