
Two soliton bundles
The purpose of these notes is to define principal bundles and connections in principal bundles,
and use the definitions to construct the monopole and instanton bundles. We follow the book
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Corrections/suggestions to cblair[at]maths.tcd.ie.
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1 Fibre bundles

A (differentiable) fibre bundle consists of a total space E, base space M and fibre F (with E, M and
F being differentiable manifolds), and a surjection π : E →M called the projection such that π−1(p) = F
for all p ∈M , such that given an open covering {Ui} of M there is a diffeomorphism φi : Ui × F → π−1(Ui)
such that π ◦ φi(p, f) = p. The map φi is called a local trivialisation.

The intuitive idea is that we have a space E which in local neighbourhoods Ui looks like (i.e. is diffeomor-
phic to) a simple product of two spaces, Ui×F ; we think of the total space as being formed by attaching the
fibre F to every point on M . The projection π then tells us where on M we are (but ignores any information
about the fibre). The local trivialisations are the maps that make the fibre bundle “look like” the product
Ui × F .

Given two open sets Ui and Uj with local trivialisations φi, φj , then on Ui ∩ Uj we relate the two
trivialisations as follows: suppose we are in the Uj trivialisation, so that our fibre bundle has the (local)
form Uj × F . We use φj to map from Uj × F to π−1(Ui ∩ Uj) and then use φ−1

i to map to Ui × F . The
composition

tij(p) = φ−1
i ◦ φj

is called a transition function, and if we have u ∈ E such that π(u) = p (i.e. u is a point in the fibre
bundle with base space coordinate p) then the local expressions of u in the φi and φj trivialisations are

φ−1
i (u) = (p, fi) φ−1

j (u) = (p, fj)

with
fi = tij(p)fj

Transition functions can be thought of as mappings from Ui ∩ Uj into a particular set of transformations of
the fibre, called the structure group of the fibre bundle.

Properties of transition functions: We have that transition functions satisfy tii(p) = identity,
tij(p) = t−1

ji (p) and tij(p) ◦ tjk(p) = tik(p). Given two local trivialisations {φi} and {φ̃i} with

transition functions tij = φ−1
i ◦φj and t̃ij = φ̃−1

i ◦φ̃j define the function relating the two trivialisations
to be gi = φ−1

i ◦ φ̃i, then we can write

t̃ij = φ̃−1
i ◦ φi ◦ φ

−1
i ◦ φj ◦ φ

−1
j ◦ φ̃j

so the transition functions transform as

t̃ij = g−1
i tijgj

Indeed, two sets of transitions functions for a fibre bundle are equivalent if there exists a set of maps
gi relating them in this way.

A section of a fibre bundle is a smooth map s : M → E such that π ◦ s = idM .

2 Principal bundles

A principal bundle is a fibre bundle such that the fibre F equals the structure group G. We denote this
by P (M,G), and sometimes call this a principal G-bundle over M .

1



Transition functions act on F on the left. We also have a right action of G on F (i.e. on itself). Given
a local trivialisation φi : Ui ×G→ π−1(Ui) with φ−1

i (u) = (p, gi) we define the right action on π−1(Ui) by

φ−1
i (uh) = (p, gih) h ∈ G

or
uh = φi(p, gih)

All that is happening here is that we have some local trivialisation where we map a point u in the principal
bundle to the pair (p, gi) with p ∈M and gi ∈ G, and then define a right action of the group G on itself via
gi 7→ gih.

The right action commutes with the left action, and is transitive and free (in other words given two points
u1, u2 in π−1(p) we can find a group element h such that u1 = u2h, and we have uh = u⇒ h = e).

Canonical local trivialisation: There is a nice way to define a local trivialisation on P (M,G)
using a section si(p) defined on some open set Ui. Given some section si(p) then clearly there
exists a unique gu ∈ G such that u = si(p)gu for u ∈ π−1(p). Then we define a trivialisation
φi : Ui ×G→ π−1(Ui) by specifying how it takes an element of π−1(p) to Ui ×G, namely

φ−1
i (u) = (p, gu) u ∈ π−1(p)

So the trivialisation chooses one point si(p) in each fibre over Ui and maps other points in the fibre
to the group element that transforms the first point si(p) into the second by the right action. In
this trivialisation si(p) = φi(p, e) and by definition φi(p, g) = φi(p, e)g = si(p)g. Two sections si
and sj on the intersection of Ui and Uj are related by si(p) = sj(p)tji(p).

Interlude: pullback to course 224

We need to recall some important facts about pushforwards and pullbacks. Let us start by recalling the
notion of a tangent vector to a manifold M . A tangent vector v is a linear map from smooth functions on
M to R, such that v satisfies the Leibniz property, v(fg) = v(f)g + fv(g). Given some curve γ(t) through
M then a tangent vector v to the curve is defined by vf = d

dtf(γ(t)) for an arbitrary smooth function f .
The set of all tangent vectors at a point x ∈ M is called the tangent space to M at x, TxM , and the set
of all tangent spaces to M is called the tangent bundle, TM .

A differential one-form is a mapping which takes tangent vectors to R. The space of one-forms at
x ∈ M can be thought of as dual to the tangent space TxM , and is notated T ∗xM . Given some function f
then we define a one-form df called the differential of f , defined by

df(v) = vf

i.e. the action of df on a tangent vector v is given by the action of v on f .
Given some differentiable map φ : M → N between manifolds (or from a manifold to itself) then we have

the following important features: given some map f : N → R then we can define the pullback of f under
φ by

φ∗f(x) = f(φ(x))

which says that the action of the pullback of f on x ∈M is given by the action of f on φ(x) ∈ N . The map
φ also induces the pushforward φ∗ which maps the tangent space TxM at x ∈ M to the tangent space
Tφ(x)N at φ(x) ∈ N . It is defined by

φ∗v(f) = v(φ∗f)

for arbitrary smooth f : N → R, i.e. the action of φ∗v on a function f in N is given by the action of v on
the pullback of that function, so by the action of v on f(φ(x)). If v is the tangent vector of some path γ(t),
then

φ∗v(f) = v(φ∗f) = v(f ◦ φ)⇒ φ∗v(f) =
d

dt
f(φ(γ(t)))
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We can also pullback one-forms: if ω a one-form on N then φ∗ω is a one-form on M defined by

φ∗ω|x(v) = ω|φ(x)φ∗v

where v ∈ TxM , i.e. the action of the pullback φ∗ω on a tangent vector at x is given by the action of ω on
the pushforward of that tangent vector at φ(x).

We can extend the idea of one-forms to produce multilinear functions acting on two and more tangent
vectors. An r-form η is an alternating (i.e. skew-symmetric) real-valued form which maps r tangent vectors
to R. We denote by Ωr(M) the space of all r forms on the manifold M , where we view functions f : M → R
as zero forms.

We also have the exterior derivative d : Ωr(M) → Ωr+1(M) which takes an r-form to an (r + 1)-form.
For example, df =

∑
i
∂f
∂xi dx

i is the one-form obtained by applying d to a function f .
Careful referral to these definitions should guide you through the next section of these notes.

3 Connections

We now want to develop a method whereby we can distinguish (loosely speaking) motion in the fibre (vertical)
direction from motion in the base space (horizontal) direction. We do this by studying the tangent space
TP to the principal bundle P (M,G).

Let us first recall some facts about Lie groups.

Properties of Lie groups and Lie algebras: Let G be a Lie group (i.e. a differentiable manifold
with a group structure). We define the left and right actions by Lgh = gh and Rgh = hg for
g, h ∈ G. We have an induced map of tangent spaces, Lg∗ : Th(G)→ Tgh(G), and have the notion
of left invariant vector fields X which satisfy Lg∗X|h = X|gh. The Lie algebra g of G is defined to
be the tangent space of G at the identity, and consists of left-invariant vector fields (as left-invariant
vector fields are specified by their value at the identity). We have the adjoint action ad : G → G
defined by adgh = ghg−1, which induces the adjoint map Ad : Th(G) → Tghg−1(G). The latter
maps g onto itself.

Given a principal bundle P (M,G) with u ∈ P (M,G) and fibre Gp at π(u) = p, then the vertical subspace
VuP of the tangent space TpP is defined to be the subspace of TpP which is tangent to Gp at u. More
precisely, we define VuP to be kerπ∗|u where π∗ : TuP → Tπ(u)M is the differential or push-forward of the
projection π. Now π∗(v)(f(u)) = v(π∗f(u)) = v(f(π(u))) = v(f(p)) so we see that the vertical space consists
of tangent vectors which vanish when applied to functions evaluated on the base. We define the horizontal
subspace HuP of the tangent space TpP to be a complement of of VuP in TuP .

To construct the vertical space, take A ∈ g. We can exponentiate A to get a element inG, and use the right
action Rexp(tA)u = u exp(tA) to generate a curve through u in P . As exp(tA) ∈ G, π(u) = π(u exp(tA)) = p,
so this curve lies within Gp. We then define a vector in the tangent space to P at u by

A#f(u) =
d

dt
f(u exp(tA))|t=0

for f : P → R an arbitrary smooth function. We call A# the fundamental vector field generated by A.
The vector A# is in fact tangent to Gp at u, and so A# ∈ VuP . This gives us a map # : g→ VuP , which is
a vector space isomorphism.

For example, consider the group U(1) of unit complex numbers, U(1) = {eiϕ : 0 ≤ ϕ ≤ 2π}. An element
of its Lie algebra u(1) is a purely imaginary complex number, u(1) = {iA : A ∈ R}. Then the fundamental
vector field generated by iA is given by

(iA)# = A
∂

∂ϕ

as then
A
∂

∂ϕ
f(eiϕ) = iAf ′eiϕ
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and
(iA)#f(eiϕ) =

d

dt
f(eiϕ exp(itA))|t=0 = f ′eiϕ

d

dt
exp(itA))|t=0 = iAf ′eiϕ

There remains the question of how precisely do we separate the tangent space into its vertical and horizontal
components. The answer comes in the form of the following abstract definition and the somewhat more
practical one that follows it:

A connection on a principal bundle P is a unique separation of the tangent space TuP into vertical and
horizontal components VuP and HuP such that

i) TuP = HuP ⊕ VuP
ii) a smooth vector field X on P is separated into smooth vector fields XH ∈ HuP and XV ∈ VuP , with

X = XH +XV .
iii) HugP = Rg∗HuP for u ∈ P and g ∈ G, i.e. horizontal subspaces HuP and HugP on the same fibre

are related by a linear map induced by the right action.

A connection one-form is a Lie algebra valued 1-form, ω ∈ g⊗ T ∗P which is a projection of TuP onto
the vertical component VuP ∼= g, satisfying

i) ω(A#) = A
ii) R∗gω = Adg−1ω, i.e. for X ∈ TuP , R∗gωu(X) = ωug(Rg∗X) = g−1ωu(X)g.

We then define HuP = kerω.
The second condition in the definition of the connection one-form may seem rather mysterious, but it

ensures that HugP = Rg∗HuP . For let HuP = {X ∈ TuP : ω(X)} = 0, and take X ∈ HuP so that
Rg∗X ∈ TugP , then

ω(Rg∗(X)) = R∗gω(X) = g−1ω(X)g = 0

hence Rg∗X ∈ Hug, and as Rg∗ is an invertible linear map any vector in HugP is expressible in the form
Rg∗X for some X in HuP .

Locally, given an open covering {Ui} of M and σi a local section defined on Ui, we can pull back ω to
give a Lie algebra valued one-form Ai on Ui:

Ai ≡ σ∗i ω ∈ g⊗ Ω1(Ui)

In fact the converse is true: given a Lie algebra valued one-form Ai on Ui and a section σi : Ui → π−1(Ui),
then there exists a connection one-form ω with Ai = σ∗i ω. To construct this one-form, we define

ωi = g−1
i π∗Aigi + g−1

i dgi

where d is the exterior derivative on P and gi is the canonical local trivialisation formed using σi (see section
1), i.e. we have φ−1(u) = (p, gi) for u = σi(p)gi. Hence gi can be thought of as the function on G that gives
the group element gi(u) such that u = σi(p)gi(u).

Proof that σ∗i ωi = Ai: let X ∈ TpM . Then σi∗X ∈ Tσi(p)P , and if we note that gi = e at σi(p)
by the properties of the canonical local trivialisation we find

σ∗i ωi|p(X) = ωi|σi(p)(σi∗X) = π∗Ai(σi∗X) + dgi(σi∗X)

= Ai(π∗σi∗X) + dgi(σi∗X)

but σi as a section satisfies π ◦ σi = id, hence π∗ ◦ σi∗ = id∗; also as gi = e along σi∗X we have
dgi(σi∗X) = 0, so we find σ∗i ωi(X) = Ai(X) as wanted.

Proof that ωi satisfies properties of a connection one-form: first we show that ωi(A
#) = A.

First note that if A# ∈ VuP then π∗A = 0 by definition. Hence we just have

ωi(A
#)(u) = (g−1

i dgi)(A
#)(u) = g−1

i (u)A#(gi(u)) = g−1
i (u)

d

dt
gi(u exp(tA))

˛̨̨
t=0

= g−1
i (u)gi(u)

d

dt
exp(tA)

˛̨̨
t=0

= A
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Secondly, we want to show R∗
hω = Adh−1ω for h ∈ G. So let X ∈ TuP , then we have

R∗
hωi|u(X) = ωi|uh(Rh∗X) = g−1

i (uh)Ai(π∗Rh∗X)gi(uh) + g−1
i (uh)dgi(uh)(Rh∗X)

= h−1g−1
i (u)Ai(π∗X)gi(u)h+ h−1g−1

i (u)
d

dt
gi(γ(t)h)

˛̨̨
t=0

= h−1g−1
i (u)Ai(π∗X)gi(u)h+ h−1g−1

i (u)
d

dt
gi(γ(t))

˛̨̨
t=0

h

= h−1g−1
i (u)Ai(π∗X)gi(u)h+ h−1g−1

i (u)dgi(u)(X)h

= h−1ωi(X)h

where we have used that πRhX = πX, and that gi(uh) = gi(u)h, as can be seen by considering that
σi(p)gi(uh) = uh so σi(p)gi(u)h = uh, and we also had that γ(t) was a curve through γ(0) whose
tangent vector at u was X.

We now must ensure that on an intersection Ui ∩Uj of open sets, we have ωi = ωj . First we note that if σi,
σj are local sections over Ui, Uj and X ∈ TpM with p ∈ Ui ∩ Uj we have

σj∗X = Rtij∗(σi∗X) + (t−1
ij dtij(X))#

where tij is the transition function between the trivialisations over Uj and Ui.

Proof: We take a curve γ : [0, 1] → M with γ(0) = p and d
dt
γ
˛̨̨
t=0

= X. Now we have σj(p) =

σi(p)tij(p), hence

σj∗X =
d

dt
σj(γ(t))

˛̨̨
t=0

=
d

dt
[σi(γ(t))tij(γ(t))]

˛̨̨
t=0

=
d

dt
σi(γ(t))

˛̨̨
t=0

tij(p) + σi(p)
d

dt
tij(γ(t))

˛̨̨
t=0

= Rtij∗(σi∗X) + σj(p)t
−1
ij (p)

d

dt
tij(γ(t))

˛̨̨
t=0

Now, t−1
ij (p)dtij(X) = t−1

ij (p) d
dt
tij(γ(t))

˛̨̨
t=0

= d
dt

[t−1
ij (p)tij(γ(t))

˛̨̨
t=0
∈ Te(G) ∼= g, so this must equal

(t−1
ij dtij(X))# at σj(p).

Let us now apply ω to the above expression. We have

ωσj∗X = ωRtij∗(σi∗X) + ω(t−1
ij dtij(X))#

⇒ σ∗j (ω(X)) = R∗tij
ω(σi∗X) + t−1

ij dtij(X)

and by property ii) of the connection one-form we obtain

σj∗(ω(X)) = t−1
ij σ

∗
i ω(X)tij + t−1

ij dtij(X)

or
Aj = t−1

ij Aitij + t−1
ij dtij

which gives the necessary transformation property for the Ai.
As an example, suppose we have two local sections σ1 and σ2, related by σ2(p) = σ1(p)g(p) for some

g(p) ∈ G, then the local forms are related by

A2 = g−1A1g + g−1dg

which is an example of a gauge transformation.
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4 Horizontal lifts and parallel transport

Given γ : [0, 1]→M a curve through the base space M then we define a horizontal lift of γ to be a curve
γ̃ : [0, 1]→ P such that π ◦ γ̃ = γ and the tangent vector to γ̃ is horizontal, i.e. an element of Hγ(t)P . From
the definition of the connection one-form, if X̃ is tangent to the γ̃ then ω(X̃) = 0. This gives an ordinary
differential equation for the horizontal lift and so locally there exists a unique solution. Hence if we have
γ : [0, 1]→M and u0 ∈ π−1(γ(0)) then there exists a unique horizontal lift γ̃(t) in P such that γ̃(0) = u0.

Proof: let Ui a chart containing γ and choose a section σi over Ui. If the horizontal lift exists it
can be expressed as γ̃(t) = σi(γ(t))gi(t), where gi(t) ≡ gi(γ(t)) ∈ G. Choose our section such that

σi(γ(0)) = ˜γ(0), so gi(0) = e. Let X be a tangent vector to γ(t) at t = 0, then X̃ = γ̃∗X is tangent
to γ̃ at u0. Applying the above result relating trivialisations σi and σj with σj = γ̃ and tij = gi we
find

X̃ = Rgi(t)∗(σi∗X) + (g−1
i (t)dgi(X))#

and applying ω,

ω(X̃) = 0 = g−1
i (t)ω(σi∗X)gi(t) + g−1

i (t)
d

dt
gi(t)

so we obtain
d

dt
gi(t) = −ω(σi∗X)gi(t)

or as ω(σi∗X = σ∗i ω(X) = Ai(X) we have locally

d

dt
gi(t) = −Ai(X)gi(t)

with formal solution for gi(0) = e and local coordinates xµ

gi(γ(t) = P exp

„
−
Z t

0

Aiµ
dxµ

dt
dt

«
= P exp

 
−
Z γ(t)

γ(0)

Aiµ(γ(t)dxµ
!

where P is a path-ordering operator.

If γ̃′(t) another horizontal lift of γ with γ̃′(0) = γ̃(0)g then γ̃′(t) = γ̃(t)′g for all t.
Given a curve γ : [0, 1] → M and u0 ∈ π−1(γ(0)) then the unique horizontal lift gives a unique point

u1 = γ̃(1) ∈ π−1(γ(1)), i.e. starting at u0 we follow the horizontal lift to arrive at the unique endpoint
u1. This point u1 is called the parallel transport of u0 along γ. This defines a map Γ(γ) : π−1(γ(0)) →
π−1(γ(1)) which commutes with the right action. We can also define an inverse, Γ−1(γ) = Γ(γ−1) where
γ−1(t) = γ(1− t), and a composition, Γ(β) ◦ Γ(α) = Γ(α ∗ β) where α(1) = β(0) and α ∗ β is the path given
by α(2t) for 0 ≤ t < 1/2 and β(2t− 1) for 1/2 ≤ t ≤ 1.

It is clear that given two paths α and β with the same start and end points, and same initial data u0,
that the end points of the horizontal lifts may not be equal, α̃(1) 6= β̃(1). In particular if we consider a loop
γ, i.e. γ(0) = γ(1) then we may have γ̃(0) 6= ˜γ(1). Thus this loop defines an action τγ : π−1(p)→ π−1(p) on
the fibre over p = γ(0). This action is compatible with the right action, τγ(ug) = τγ(u)g.

Let Cp(M) denote the space of all loops γ(t) with γ(0) = γ(1), then the holonomy group at u is

Φu = {g ∈ G : τγ(u) = ug, γ ∈ Cp(M)}

i.e. the set of elements in G corresponding to the transformations of u induced by the horizontal lifts of
loops based at p. The identity element is defined from the constant loop c : [0, 1]→ p, and composition and
inverses follow from the above definitions.

5 Curvature

Recall the exterior derivative d which acts on r-forms to give (r + 1)-forms. An r-form η is an alternating
real-valued form acting on r vectors: η : TM ∧ · · · ∧ TM → R. We can generalise this to vector valued

6



r-forms φ ∈ Ωr(P )⊗ V , φ : TP ∧ · · · ∧ TP → V , with V a k-dimensional vector space. Our general form of
φ is φ =

∑k
a=1 φ

a ⊗ ea with {ea} a basis for V and φa ∈ Ωr(P ).
We define the covariant derivative of φ ∈ Ωr(P )⊗ V by

Dφ(X1, . . . , Xr) = dφ(XH
1 , . . . , X

H
r )

where XH
i is the horizontal component of the tangent vector Xi ∈ TuP and dφ = dφa ⊗ ea.

The covariant derivative can be thought of as an extension of the usual derivative that takes into account
the non-flat nature of the manifold. It leads to the idea of the curvature two-form Ω which is the covariant
derivative of the connection one-form ω:

Ω = Dω ∈ Ω2(P )⊗ g

It satisfies
R∗gΩ = g−1Ωg

Proof: First note that (Rg∗X)H = Rg∗X
H and dRg∗ = Rg∗d. Then we have

R∗
gΩ(X,Y ) = Ω(Rg∗X,Rg∗Y ) = dω((Rg∗X)H , (Rg∗Y )H)

= dω(Rg∗X
H , Rg∗Y

H)

= dR∗
gω(XH , Y H)

= d(g−1ωg)ω(XH , Y H)

= g−1dωω(XH , Y H)g

= g−1Ω(X,Y )g

where g is constant so dg = 0.

We can obtain a local form of the curvature by pulling back via a local section: F = σ∗Ω. This local form
is related to the local connection form via

F = dA+A ∧A

with
F(X,Y ) = dA(X,Y ) + [A(X),A(Y )]

for X,Y tangent vectors. In terms of local coordinates xµ, F = 1
2Fµνdx

µdxnu, with

Fµν = ∂µAν − ∂νAµ + [Aµ,Aµ]

Note that in physics Aµ = iAµ where i2 = −1 and Aµ is called the gauge potential or gauge field. For the
local curvature form we have Fµν = iFµν , with F representing, for instance, physically observable fields.

6 Monopole bundle

A monopole is a hypothetical particle carrying magnetic charge. They can be described using a principal
U(1) bundle over the sphere S2, where U(1) is the group of complex numbers of modulus 1 (and is isomorphic
to the circle S1). We cover the sphere with two coordinate patches:

UN =
{

(θ, φ) : 0 ≤ θ < π

2
+ ε, 0 ≤ φ < 2π

}
US =

{
(θ, φ) :

π

2
− ε ≤ θ < π, 0 ≤ φ < 2π

}
Our trivialisations can be written as

φ−1
N (u) = (p, eiαN ) ∈ UN × U(1) φ−1

S (u) = (p, eiαS ) ∈ US × U(1)
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for π(u) ∈ p. The intersection UN ∩ US is an ε-neighbourhood of the equator and so homotopic to S1. The
transition function tNS ∈ U(1) can be written as eiΛNS , with eiαN = eiΛNSeiαS . Physically the magnetic
monopole field ~B = g~r

r3 is given by the curl of a vector potential ~A, ~B = ~∇× ~A which motivates our definition
of a connection.

It may be instructive to start off in Cartesian coordinates. Consider the vector potentials

~AN =
(
− gy

r(r + z)
,

gx

r(r + z)
, 0
)

~AS =
(

gy

r(r − z)
,
−gx

r(r − z)
, 0
)

where r =
√
x2 + y2 + z2. It can be directly verified that these yield a magnetic field ~B = g~r

r3 .

Proof: First, note that ∂r
∂xi

= xi
r

, for xi = x, y, z. We need

∂

∂z

1

r(r + z)
= − 1

r2(r + z)2

“
2r
z

r
+ r + z

z

r

”
= − 1

r3(r + z)2
(r + z)2 = − 1

r3

and

∂

∂xi

xi
r(r + z)

= − xi
r2(r + z)2

“
2r
xi
r

+ z
xi
r

”
+

1

r(r + z)
= − x2

i

r3(r + z)2
(2r + z) +

1

r(r + z)
=

for xi = x, y. Then we find that“
~∇× ~AN

”
x

= − ∂

∂z

gx

r(r + z)
=
gx

r3“
~∇× ~AN

”
y

=
∂

∂z

−gy
r(r + z)

=
gy

r3

“
~∇× ~AN

”
z

=
∂

∂x

gx

r(r + z)
+

∂

∂y

gy

r(r + z)
=

2g

r(r + z)
− 1

r3(r + z)2
(2r + z) (x2 + y2)

=
2g

r(r + z)
− 1

r3(r + z)2
(2r + z) (r2 − z2)

or“
~∇× ~AN

”
z

=
g

r3(r + z)2
`
2r2(r + z)− (2r + z)(r − z)(r + z)

´
=

g(r + z)

r3(r + z)2
`
2r2 − 2r2 + 2zr − zr + z2´

so “
~∇× ~AN

”
z

=
gz

r3

The calculation for AS is entirely similar.

Now let us write AN as:
AN = − gy

r(r + z)
dx+

gx

r(r + z)
dy

and from x = r sin θ cosφ and y = r sin θ sinφ we have dx = r cos θ cosφdθ − r sin θ sinφdφ and dy =
r cos θ sinφdθ + r sin θ cosφdφ, hence with z = r cos θ

AN = −g sin θ sinφ
1 + cos θ

(cos θ cosφdθ − sin θ sinφdφ) +
g sin θ cosφ

1 + cos θ
(cos θ sinφdθ + sin θ cosφdφ)

⇒ AN =
g sin2 θ(sin2 φ+ cos2 φ)

1 + cos θ
dφ =

g(1− cos2 θ)
1 + cos θ

dφ = g(1− cos θ) dφ

and similarly
AS = −g(1 + cos θ) dφ
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This gives us our two local connection forms:

AN = ig(1− cos θ) dφ AS = −ig(1 + cos θ) dφ

(Note that there is no group component, however representing an element of U(1) by eiϕ we see that under
a gauge transformation these forms pick up a term e−iϕdeiϕ = idϕ, so in fact we have

AN = ig(1− cos θ) dφ+ idϕ

and similarly for AS . Observe the action of this on α ∂
∂ϕ , the fundamental vector field generated by iα ∈ u(1):

AN (iα)# = iα
∂

∂ϕ
dϕ = iα

and again similarly for AS .)
We now wish to find a transition function tNS defined on UN ∩US such that the two potentials agree on

the overlap. Under the transition tNS , AS → t−1
NSAStNS + t−1

NSdtNS . Writing tNS = eiΛNS and using the
fact that U(1) is abelian, we find

AS → AS + idΛNS

and we want this to equal AS on the overlap, i.e.

ig(1− cos θ) dφ = −ig(1 + cos θ) dφ+ idΛNS

⇒ 2ig dφ = idΛNS ⇒
dΛNS
dφ

= 2g

hence we find that
tNS = e2igφ

choosing the phase such that the constant of integration is zero. Now, we want the transition function to be
single-valued, i.e. e2igφ = e2ig(φ+2π) = e4πige2igφ, hence 4πg must be an integer multiple of 2π, so we find
that

g =
n

2
n ∈ Z

This also shows that the transition function is characterised by the integer 2g giving the number of times
we wrap the southern equator around the northern, and so by the element 2g of the fundamental group of
S1. The quantity 2g also gives the monopole charge. Note that for g = 0 the transition function is just the
identity and the bundle is in fact the trivial product S2 × U(1).

We can also compute the local curvature form, F = 1
2Fµνdx

µ ∧ dxν , where

Fµν = ∂µAν − ∂νAµ + [Aµ,Aν ]

As U(1) is abelian the commutator vanishes, and we are left with

F =
1
2

[(
∂Aθ
∂φ
− ∂Aφ

∂θ

)
dφ ∧ dθ +

(
∂Aφ
∂θ
− ∂Aθ

∂φ

)
dθ ∧ dφ

]
but Aθ = 0 and Aφ = ig(1− cos θ)⇒ ∂θAφ = ig sin θ (for A = AN ), and we get

F = ig sin θ dθ ∧ dφ

and in fact we obtain the same result for A = AS , a consequence of the abelian nature of U(1).
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6.1 Monopole bundle as Hopf fibration

The Hopf fibration is a famous fibre bundle where the base space is S2, the fibre is S1 and the total space
is S3. It is in fact equivalent to the monopole bundle with g = 1/2 (i.e. the transition function is eiφ). It is
convenient to view the spheres involved in terms of complex numbers:

S1 = {λ ∈ C : |λ| = 1}

S3 = {(z1, z2) : |z1|2 + |z2|2 = 1, z1, z2 ∈ C}

S2 = CP 1 = {(z1, z2) : (z1, z2) ∼ (λz1, λz2), z1, z2 ∈ C, λ ∈ C− 0}

where CP 1 is the complex projective line, i.e. the space of all complex lines through the origin in C2. It
is isomorphic to C with a point at infinity attached which is isomorphic to the Riemann sphere (recall that
the Riemann sphere is formed by identifying C ∼= R2 ⊂ R3 and projecting every complex number to the unit
sphere, with the north pole representing the point at infinity).

Now viewing S2 as the projective space CP 1 means that when we project from S3 to S2 we will have
that points in S3 differing only by an overall scaling will end up at the same point in S2. In particular we
define the projection π : S3 → S2 by π−1([z1, z2]) = {(λz1, λz2) : |λ| = 1} = S1, where the condition |λ| = 1
ensures that the preimage lies in S3 (i.e. has norm one). What this is saying is that we when we project from
(z1, z2) ∈ S3 to the equivalence class of (z1, z2) ∈ CP 1 ∼= S2 an entire set of points from S3 parametrised by
a unit complex number λ end up in the same equivalence class.

In general we would write

π−1([z1, z2]) =

{
λ(z1, z2)√
|z1|2 + |z2|2

: |λ| = 1

}
= S1

Let us now take as two charts on the sphere the regions UN and US on CP 1, corresponding to complex
numbers lying “within” in the Riemann sphere (i.e. inside the region bounded by the intersection of the
Riemann sphere and the complex plane) and to complex numbers lying “outside” the Riemann sphere.
Namely we have

UN =
{

[z, 1] : |z| =
∣∣∣∣z1

z2

∣∣∣∣ ≥ 1
}
⊂ {[z1, z2] : z2 6= 0}

US =
{

[1, z] : |z| =
∣∣∣∣z2

z1

∣∣∣∣ ≥ 1
}
⊂ {[z1, z2] : z1 6= 0}

and local trivialisations defined by

φN ([z, 1], λ) =

(
[z, 1],

λ(z, 1)√
|z|2 + 1

)

φS ([1, z], λ) =

(
[1, z],

λ(1, z)√
1 + |z|2

)
(where we have explicitly included the base point on the right-hand-side). Now consider

([1, z], λ)
φS−→

(
[1, z],

λ(1, z)√
1 + |z|2

)
=

(
[1, z],

z

|z|
λ(z−1, 1)√
1 + |z−1|2

)
UN−→

(
[z−1, 1],

z

|z|
λ(1, z−1)√
1 + |z−1|2

)
φ−1

N−→
(

[z−1, 1], λ
z

|z|

)
as on the intersection UN ∩ US the point [1, z] ∈ US corresponds to the point [z−1, 1] ∈ UN , so we see
that tNS = z

|z| i.e. a unit complex number, so tNS = eiφ, corresponding to the monopole bundle with unit
monopole charge (recall that S1 ∼= U(1)).
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7 Instanton bundle

One of the simplest non-abelian generalisations of the monopole bundle takes SU(2) as the gauge group
and S4 as the base space. This corresponds to the description of instantons, which arise as energy-
minimising solutions of the field equations arising in Yang-Mills theory (which is a non-abelian generalisation
of electromagnetism using SU(2)). In reality instantons are defined on R4 but it is simpler to consider the
one-point compactification of R4 which is S4. As before we take two open sets

UN = {(x, y, z, t) : x2 + y2 + z2 + t2 < R2 + ε}

US = {(x, y, z, t) : x2 + y2 + z2 + t2 > R2 − ε}

with the intersection UN ∪US giving an ε-neighbourhood of S3. The transition function is then a map from
S3 to SU(2) but as an element of SU(2) can be written(

u v
−v u

)
|u|2 + |v|2 = 1

if we take u = t + iz, v = y + ix we find that in fact SU(2) ∼= S3, and hence the transition function will
correspond to an element of the homotopy group π3(S3) ∼= Z.

The transition function corresponding to 1 ∈ π3(S3) is the map

f : (x, y, z, t) 7→ 1
R

(
t+ iz y + ix
−y + ix t− iz

)
R =

√
x2 + y2 + z2 + t2

while that corresponding to n ∈ π3(S3) is given by fn.

7.1 Instanton bundle as Hopf fibration

There exists a corresponding Hopf fibration for the instanton bundle too, this time consisting of fibring S3

over S4 with total space S7. The construction is practically identical to that for the monopole bundle except
with quaternions instead of complex numbers. We view S3 as the space consisting of unit quaternions

S3 = {q ∈ H : |q| = 1}

and S7 as
S7 = {(q1, q2) ∈ H : |q1|2 + |q2|2 = 1}

while S4 corresponds to the quaternionic projective line

S4 ∼= HP 1 = {(q1, q2) : (q1, q2) ∼ (λq1, λq2), q1, q2 ∈ H, λ ∈ H− 0}

Proceeding as before we have a projection π : S7 → S4 with π−1([q1, q2]) = {(λq1, λq2) : |λ| = 1} ⊂ S7.
Taking similar local charts and trivialisations we find that the transition map for this Hopf bundle is given
by a unit quaternion, hence by an element of S3 ∼= SU(2), and so by the unit element of π3(S3).
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