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I’m impressed that such things can be understood in such a general way - Albert Einstein

1 Introduction

This as close as I can get to explaining Noether’s theorem as it occurs in second year Mechanics.

2 Noether’s theorem

Consider a Lagrangian L(qi, q̇i, t), with equations of motion ∂L
∂qi

= d
dt
∂L
∂q̇i

. Let qi(t) 7→ q′
i(t) = qi(t)+εδqi(t) be

a (continuous) transformation of the generalised coordinates qi that leaves the equations of motion unchanged.
The condition that the equations of motions are unchanged is equivalent to requring that the action S =∫
Ldt be invariant, or more generally be changed by no more than an additive constant term (as the equations

of motion are derived from δS = 0 such a term will vanish).
This means we can allow the Lagrangian to vary by no more than an overall total time derivative,

L 7→ L′ = L+α d
dtJ . This is because the overall time derivative will integrate out immediately in the action,

leaving just an additive constant, and so does not affect the equations of motion:

S =
∫
L′ dt =

∫ (
L+ α

d

dt
J

)
dt =

∫
Ldt+ αJ(t2)− αJ(t1)⇒ δS = δ

∫
Ldt

We could then formally state the theorem as follows:

Theorem (Noether) Let qi(t) 7→ q′
i(t) = qi(t)+εαδqi(t) be an infinitesimal transformation of the generalised

coordinates, parametrised by the (infinitesimal) quantities εα such that under this transformation L 7→ L′ =
L+ εα

d
dtJ , then the quantities jα given by

jαεα =
∂L

∂q̇i
δqiεα − Jεα

are conserved.

Proof. Consider the variation in the Lagrangian caused by the change in the coordinates and their velocities:

δL =
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

=
∂L

∂qi
δqi +

∂L

∂q̇i

d

dt
δqi

=
∂L

∂qi
δqi +

d

dt

(
∂L

∂q̇i
δqi

)
−
(
d

dt

∂L

∂q̇i

)
δqi

=
d

dt

(
∂L

∂q̇i
δqi

)
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where we have used the equations of motion to eliminate two of the terms. Now for each α, this variation
multiplied by εα must be equal to the corresponding change εα d

dtJ in the Lagrangian, so

εα
d

dt

(
∂L

∂q̇i
δqi

)
= εα

d

dt
J

and this implies
d

dt

(
∂L

∂q̇i
δqi − J

)
= 0

hence
jα =

∂L

∂q̇i
δqi − J

is conserved, or taking into account that the index α refers to numerous transformations we should write

jαεα =
∂L

∂q̇i
δqiεα − Jεα

3 Notes

The important thing to note is that there is a separate conserved quantity for each εα - where α is used to
index the different transformations. Note also that this formulation of the theorem does not really take into
account transforming time, though we can sort of handle this - see the energy example below. Note also
what the theorem essentially means is that for every continuous symmetry there corresponds a conserved
quantity, which is a really cool result.

4 Examples

4.1 Energy

Let t 7→ t+ε be an infinitesimal time translation. Under this, qi(t) 7→ q′
i(t) ≈ qi(t)+εq̇i(t) (Taylor expansion),

and L 7→ L′ ≈ L+ ε ddtL. Hence in this case we have J = L, and the conserved quantity (only one) is

j =
∂L

∂q̇i
δqi − L ≡ E

4.2 Momentum

Let qi(t) 7→ q′(t) = qi(t) + εi be an infinitesimal spatial translation, and let L be invariant, i.e. δL = 0 or
J = 0, and so we have the conserved quantities

ji =
∂L

∂q̇i
≡ pi

This requires that the coordinates only appear in the Lagrangian as differences of coordinates (qi − qj), so
that it does not change under spatial translation. For instance momentum is not conserved for the harmonic
oscillator, L = 1

2mẋ
2 − 1

2mω
2x2.
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4.3 Angular momentum

Let qi(t) 7→ q′
i(t) = qi(t) + εijqj (summing over j) where εij = −εij (the infinitesimal generators of the

rotation group SO(n) are n × n skew-symmetric matrices. This can be seen by observing that a rotation
~x 7→ A~x preserves norms, so |~x|2 = ~xt~x 7→ (A~x)tA~x = ~xtAtA~x = ~xt~x so AtA = I - i.e. rotation matrices are
orthogonal. Now infinitesimally we let A = I + ε, then we have (I + ε)t(I + ε) = I + εt + ε to first order,
hence we must have εt = −ε). The conserved quantities are then given by

jijεij =
∂L

∂q̇i
εijqj = εijpiqj

There is a sum over i and j here. As εij is skew-symmetric so too is jij (because it has the same index),
note that every jij term then occurs twice (that is, jijεij = jjiεji) so we put a factor of half in front on the
left-hand side, at the same time rewriting the right-hand side so that we have

1
2
jijεij =

1
2
εij(piqj − pjqi)

(this should all make sense if you think for a moment about the summations and the skew-symmetry). We
can then read off the conserved quantities to be:

jij = piqj − pjqi

Note that jij is an n × n skew-symmetric matrix, so the entries on the diagonal are all zero, reducing the
number of free entries in the matrix by n, and also the entries above the diagonal are equal to minus those
below the diagonal, further dividing the number of free entries by two, hence the number of conserved
quantities in this case is 1

2n(n− 1).
In three dimensions, n = 3 giving three conserved quantities,

j12 = p1q2 − p2q1 = −M3 j23 = p2q3 − p3q2 = −M1 j31 = p3q1 − p1q3 = −M2

corresponding to the different components of angular momentum (M1 being angular momentum about the
x-axis and so on).
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