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The purpose of these notes is to compute K-groups of various spaces and outline some useful methods
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1 K-theory

We begin by defining the essential objects in K-theory: the unreduced and reduced K-groups of vector
bundles over compact Hausdorff spaces. In doing so we need the following two equivalence relations: firstly
we say that two vector bundles E and E′ are stably isomorphic denoted by E ≈S E′ if they become
isomorphic upon addition of a trivial bundle εn: E ⊕ εn ≈ E′ ⊕ εn. Secondly we have a relation ∼ where
E ∼ E′ if E ⊕ εn ≈ E′ ⊕ εm for some m, n.

Unreduced K-groups: The unreduced K-group of a compact space X is the group K(X) of virtual
pairs E1−E2 of vector bundles over X, with E1−E′1 = E2−E′2 if E1⊕E′2 ≈S E2⊕E′2. The group operation
is addition: (E1 −E′1) + (E2 −E′2) = E1 ⊕E2 −E′1 ⊕E′2, the identity is any pair of the form E −E and the
inverse of E − E′ is E′ − E. As we can add a vector bundle to E − E′ such that E′ becomes trivial, every
element of K(X) can be represented in the form E − εn.

Reduced K-groups: The reduced K-group of a compact space X is the group K̃(X) of vector bundles
E over X under the ∼-equivalence relation. The group operation is addition, the identity element is the
equivalence class of ε0, and existence of inverses follows as these are vector bundles over a compact space.

These groups are related quite simply: K̃(X) is the kernel of the map restricting K(X) to a point. We also
have a natural homomorpism sending E − εn ∈ K(X) to the equivalence class of E in K̃(X). This is a
surjective map and its kernel consists of elements E ∼ ε0 which means that E ≈s εm for some m and so the
kernel is the subgroup {εm − εn} ≈ Z of K(X), hence K(X) ≈ K̃(X)⊕ Z.

2 Useful tools

2.1 General topological and vector bundle constructions

We first define some frequently occurring topological constructions.

Wedge product: The wedge product X ∨ Y of two topological spaces X and Y is the space formed by
taking the disjoint union of X and Y and identifying one point on X with a point on Y : X ∨Y = X tpt Y =
X t Y/(x0 ∼ y0).

Example: The wedge product of two circles is a figure of eight.

Smash product: The smash product X ∧ Y of two topological spaces X and Y is the space formed
by taking the product of X and Y and then quotienting by the wedge product of X and Y , X ∧ Y =
X × Y/X ∨ Y = X × Y/{x0} × Y tX × {y0}.

Example: The smash product of two circles is a sphere. To see this we first note that S1 × S1 gives the
torus:
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and then quotienting by S1 ∨ S1 means identifying the edges of the square in the above diagram, and so we
obtain a sphere.

Example: It holds in general that Sm ∧ Sn = Sm+n. We can prove this by considering Sn as a cell
complex consisting of an n-disc Dn and a point x0 with attaching morphism sending ∂Dn → x0. Then
Sn×Sm is a cell complex whose cells are the products of the cells in Sn and Sm: Sn+m = Dn×Dm ∪Dn×
y0 ∪ x0 ×Dm ∪ x0 × y0 ∪ x0 × y0, and in the middle of this we see we have Sn ∨ Sm = Dn × y0 ∪ x0 ×Dm,
so quotienting by the wedge gives the space Dn×Dm ∪ pt = Dn+m× pt = Sm+n with attaching morphisms
as before.

Cone: The cone CX over X is the space formed by taking the direct product of X and the interval
I = [0, 1] and collapsing one end to a point: CX = X × I/(X × {1}). Note that CX is contractible.

Suspension: The suspension SX of a space X is the space formed by taking the union of two copies
of the cone over X, or equivalently the space formed by attaching I both “above” and “below” X and then
collapsing X to a point, which can also be written as SX = X × I/(X × {0} tX × {1}).

Example: The suspension of a zero sphere S0 = {x0, x1} consists of two lines (one over each point in
S0) joined at 0 and 1, giving a circle. Similarly, the suspension of S1 is a cylinder with the top and bottom
circles collapsed to points, giving the sphere S2. In fact SSn = Sn+1 in general.

Reduced suspension: The reduced suspension ΣX is the suspension of X quotiented by {x0} × I for
some x0 ∈ X, ΣX = X × I/(X ×{0}∪X ×{1}∪ {x0}× I). It is homotopically equivalent to the unreduced
suspension.

Example: The reduced suspension of any space X in fact equals the smash product of X with S1. To
see this we view S1 as an interval with the endpoints identified, S1 = I/∂I = I/({0} ∼ {1}), and write
X ∧ S1 = X × S1/X ∨ S1 = X × I/X ∨ S1 tX × ∂I = X × I/X × {0} tX × {1} t {x0} × I where x0 was
the point on x0 identified with the point 0 ∼ 1 on S1 in the wedge product.

Example: The reduced suspension of a wedge product is the wedge product of the reduced suspensions of
the two spaces involved: Σ(X∨Y ) = ΣX∨ΣY . This follows as (X∨Y )×I = X×ItY ×I/({x0}×I ∼ {y0}×I)
and then quotienting by X ∨ Y × {0} tX ∨ Y × {1} t (x0, y0)× I gives ΣX ∨ ΣY .

Example: Denote by X+ the space X with a point adjoined, then ΣX+ = ΣX∨S1. This is as Σ(Xtpt) =
X × I t pt× I/(X t pt)×{0}t (X t pt)×{1}t (x0 t pt)× I so the first two quotients give the suspension of
X with an extra line attached (resulting from collapsing the pt× I factor to the space at pt× 0 and pt× 1),
while the next quotient collapses the two ends of this line to the same point, giving ΣX ∨ S1.

n-fold suspension: We define the n-fold suspension (or reduced suspension) iteratively: SnX =
SS . . . S︸ ︷︷ ︸

n

X.

Example: The n-fold reduced suspension ΣnX equals the smash product of an n-sphere Sn with X:
ΣnX = Sn ∧X.

We turn now to vector bundles.

Pullback bundles: Given two spaces X and Y with a map f : X → Y and a vector bundle E → Y we
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can form a pullback bundle f∗(E) using the definition f∗(E) = {(x, v) : x ∈ X, v ∈ E, f(x) = p(v)}, i.e. the
fibre over the point x in X is the fibre over the point f(x) in Y .

Example: Consider the diagonal map ∆ : X → X × X,x 7→ (x, x) and let E be a vector bundle over
X ×X. Then ∆ induces a pullback bundle ∆∗(E) with the fibre over x ∈ X corresponding to the fibre over
(x, x) ∈ X ×X.

Example: Let f2 be the map from the circle to itself defined by f2(z) = z2, for z ∈ S1. We define the
Mobius bundle M → S1 to be the quotient of I ×R by the identification (0, t) ∼ (1,−t), with the projection
onto I giving a vector bundle over the circle (as we have 0 ∼ 1). We can also view the Mobius bundle as the
bundle S1 × R with the identification (z, t) ∼ (−z,−t). Then the pullback is f∗2 (M) = {(z, v) ∈ S1 ×M :
f2(z) = z2 = p(v)}. Now, the map f2 winds the circle around itself twice, so that each point z in M has as
a preimage two points in S1 (one coming from the first “half” of the circle and the other coming from the
second “half”). As the Mobius bundle has one twist (over the point 0 ∼ 1) the pullback f∗2M has two twists
(one over 0 ∼ 1 and one in the middle). These two twists cancel out to give the trivial bundle S1 × R.

Example: In general for the map fn : z 7→ zn we have that the pullback of the Mobius bundle is the
trivial bundle for even n (an even number of twists) and the Mobius bundle again for odd n (an odd number
of twists).

2.2 Ring structures, exact sequences and Bott periodicity

The tensor product of two vector bundles p1 : E1 → X and p2 : E2 → X consists of disjoint union of the
tensor products of the fibres p−1

1 (x) ⊗ p−1
2 (x) with topology defined in a certain way. In a more concrete

realisation, if g1
αβ and g2

αβ are transition functions for E1 and E2 then E1 ⊗ E2 is the vector bundle whose
transition functions are the tensor products of the transition functions of E1 and E2, g1

αβ ⊗ g2
αβ .

Example: The tensor product of two trivial bundles εn and εm over X is the trivial bundle εnm over X.
Note that the dimension of the tensor product is the product of the dimensions.

The tensor product gives us a natural ring structure on K(X), with multiplication defined by (E1 −
E′1)(E2 − E′2) = E1 ⊗ E2 + E′1 ⊗ E′2 − E1 ⊗ E′2 − E′1 ⊗ E2. The multiplicative identity is the trivial line
bundle. The reduced group K̃(X) is also a ring.

A map f : X → Y induces a map f∗ : K(Y ) → K(X) such that E − E′ ∈ K(Y ) is mapped to f∗(E) −
f∗(E′) ∈ K(X). This map is a ring homomorphism, as is the induced map on reduced groups (modulo some
technicalities about base-pointed spaces).

External product: The external product µ : K(X) ⊗ K(Y ) → K(X × Y ) is defined by µ(a ⊗ b) =
p∗1(a)p∗2(b) where a ∈ K(X), b ∈ K(Y ) and p1 and p2 are the projections from X × Y onto X and Y
respectively, and the multiplication on the right-hand side is the usual ring multiplication in K(X ×Y ). We
will also write a ∗ b ≡ µ(a⊗ b).

External product theorem: The external product µ : K(X)⊗K(S2)→ K(X×S2) is an isomorphism.

Example: It is important to gain a good understanding of K(S2). Note that the sphere is isomorphic to
the complex projective line, S2 ≈ CP 1, and that the canonical line bundle H over CP 1 satisfies H⊗H⊕1 =
H ⊕ H, which in K(S2) can be written H2 + 1 = 2H or (H − 1)2 = 0. This gives us a natural ring
homomorphism Z[H]/(H − 1)2 → K(S2) where Z[H]/(H − 1)2 is the ring of polynomials in H with integer
coefficients, modulo the relation (H − 1)2 = 0. This means we can define a homomorphism µ′ : K(X) ⊗
Z[H]/(H − 1)2 → K(X) ⊗K(S2) → K(X × S2) with the second map being the external product. In fact
we can prove that this is a ring isomorphism (which also proves the external product theorem). If we take
X = pt we find that K(S2) ≈ Z[H]/(H − 1)2 as a ring, and K(S2) ≈ Z⊕Z as a group. It is generated by 1
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and H, or equivalently by 1 and (H−1), as we can write a general element as n+mH = (n+m)+m(H−1).
As K̃(S2) is the kernel of the restriction K(S2)→ K(pt) and K(pt) is clearly generated by the trivial bundle
1 we see that K̃(S2) = Z, with generator (H − 1) and trivial multiplication.

To display the full power of the external product theorem we must first investigate exact sequences of
K-groups. Recall that a sequence of groups and homomorphisms

G1
f1−→ G2

f2−→ . . .
fp−1−→ Gp

is exact if for all 1< i< p, ker fi = im fi−1 (i.e. everything that gets mapped into Gi by fi gets mapped to
the identity in Gi+1 by the next map). If the sequence

0→ G1
f1−→ G2

is exact then f1 is injective (and conversely); if the sequence

G1
f1−→ G2 → 0

is exact then f1 is surjective (and conversely), and if the sequence

0→ G1
f1−→ G2

f2−→ G3 → 0

is exact and there exists a homomorphism g : G3 → G2 such that f2 ◦ g = id : G3 → G3 then the sequence
is said to be split exact and G2

∼= G1 ⊕G3.

Proposition: If X is compact Hausdorff and A ⊂ X a closed subspace then the inclusion map i : A→ X
and the quotient map q : X → X/A induce an exact sequnce

K̃(X/A)
q∗−→ K̃(X) i∗−→ K̃(A)

Proposition: If A is contractible then the quotient map q : X → X/A induces a bijection between
isomorphism classes of n-dimensional bundles over X/A and isomorphism classes of n-dimensional bundles
over X.

The two preceding propositions allow us to construct a long exact sequence of K-groups. We start with the
inclusion A ↪→ X and add spaces by at each step forming the union of the preceding space with the cone
of the space two steps back. We then also quotient out by the most recently attached cone, giving us the
following sequence of inclusions (horizontal maps) and quotients (vertical maps):

A ↪→ X ↪→ X ∪ CA ↪→ (X ∪ CA) ∪ CX ↪→
(

(X ∪ CA) ∪ CX
)
∪ (X ∪ CA) ↪→ . . .

↓ ↓ ↓
X/A SA SX

Cones are contractible, so the vertical maps induce isomorphisms of reduced K-groups. So for instance we
have the inclusion A → X → X ∪ CA, but the quotient X ∪ CA → X/A induces an isomorphism between

K̃(X ∪ CA) and K̃(X/A) so this gives an exact sequence K̃(X/A)
q∗−→ K̃(X) i∗−→ K̃(A). This sequence

is then extended using the inclusion X ∪ CA → (X ∪ CA) ∪ CX, where K̃(X ∪ CA) ≈ K̃(X/A) and
K̃((X ∪ CA) ∪ CX) ≈ K̃(SA), and so on, giving us the following long exact sequence:

· · · → K̃(S(X/A))→ K̃(SX)→ K̃(SA)→ K̃(X/A)→ K̃(X)→ K̃(A)

We can immediately put this sequence to use.
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Example: Consider a wedge product X = A ∨B and the long exact sequence in terms of X and A:

· · · → K̃(SB)→ K̃(SX)→ K̃(SA)→ K̃(B)→ K̃(X)→ K̃(A)

In particular let us consider the last three terms:

K̃(B)
q∗−→ K̃(X) i∗−→ K̃(A)

where i : A → A ∨ B is the inclusion of A in X and q : A ∨ B → B is the quotient map collapsing A to a
point. Now let q′ be the quotient map collapsing B to a point, then the composition q′ ◦ i is the identity on
A and so induces the identity i∗ ◦ q′∗ on K̃(A), implying that i∗ is surjective and q′∗ is injective. Similarly,
let j be the inclusion of B in X, then the composition q ◦ j is the identity on B and so induces the identity
j∗ ◦ q∗ on K̃(B), meaning that q∗ is injective. Thus we get a split exact sequence, and find that

K̃(A ∨B) ∼= K̃(A)⊕ K̃(B)

Example: Consider the smash product X ∧ Y = X × Y/X ∨ Y and the long exact sequence for X × Y
and X ∨ Y .

· · · → K̃(S(X ∧ Y ))→ K̃(S(X × Y ))→ K̃(S(X ∨ Y ))→ K̃(X ∧ Y )→ K̃(X × Y )→ K̃(X ∨ Y )

Now the suspension is homotopically equivalent to the reduced suspension so using this and the preceding
example we have

K̃(S(X ∨ Y )) ≈ K̃(Σ(X ∨ Y )) ≈ K̃(ΣX ∨ ΣY ) ≈ K̃(ΣX)⊕ K̃(ΣY ) ≈ K̃(SX)⊕ K̃(SY )

and also
K̃(X ∨ Y ) ≈ K̃(X)⊕ K̃(Y )

This means we have K̃(X × Y ) i∗−→ K̃(X ∨ Y ) ≈ K̃(X) ⊕ K̃(Y ). Now we can show this map is surjective,
reasoning as follows. Let q′ and q be the projections from X ∨ Y onto X and Y (using the notation of the
previous example). Then define projections p1 and p2 from X × Y to X and Y respectively, then using the
inclusion i : X ∨ Y → X × Y we see that projecting from X ∨ Y onto X or Y is the same as first including
X ∨ Y into X × Y and then projecting out the factors, i.e.

q′ = p1 ◦ i q = p2 ◦ i

Now in fact the induced map q′∗ ⊕ q∗ : K̃(X) ⊕ K̃(Y ) → K̃(X ∨ Y ) is an isomorphism (again from the
previous example), and can also be written

q′∗ ⊕ q∗ = i∗p∗1 ⊕ i∗p∗2 = i∗(p∗1 ⊕ p∗2)

hence i∗ is a surjection and p∗1 ⊕ p∗2 together with the suspended maps Sp∗1 ⊕ Sp∗2 gives us a splitting of the
exact sequence such that

0→ K̃(X ∧ Y )→ K̃(X × Y )→ K̃(X)⊕ K̃(Y )→ 0

and so
K̃(X × Y ) ≈ K̃(X ∧ Y )⊕ K̃(X)⊕ K̃(Y )

and also
K̃(S(X × Y )) ≈ K̃(S(X ∧ Y ))⊕ K̃(SX)⊕ K̃(SY )

Reduced external product: We can use this last example to obtain a version of the external product
for reduced K-groups. Suppose a ∈ K̃(X) = ker (K(X) → K(x0)) and b ∈ K̃(Y ) = ker (K(Y ) → K(y0)).
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Then their external product is a ∗ b = µ(a ⊗ b) = p∗1(a)p∗2(b) ∈ K(X × Y ), with p∗1(a) restricting to
zero in K(x0 × Y ) and p∗2(a) restricting to zero in K(X × y0), i.e. p∗1(a)p∗2(b) is zero in K(X ∨ Y ), and
a ∗ b ∈ K̃(X × Y ) as it is in the kernel of K(X × Y ) → K(x0 × y0). From the short exact sequence
0 → K̃(X ∧ Y ) → K̃(X × Y ) → K̃(X) ⊕ K̃(Y ) → 0 we see that a ∗ b is in the kernel of the map from
K̃(X × Y ) → K̃(X ∨ Y ) ≈ K̃(X) ⊕ K̃(Y ) and so in the image of the preceding map: it follows that a ∗ b
pulls back to a unique element of K̃(X ∧ Y ). Hence we have a reduced external product

K̃(X)⊗ K̃(Y )→ K̃(X ∧ Y )

This can also be seen by writing K(X) = K̃(X)⊕ Z, K(Y ) = K̃(Y )⊕ Z and considering

K(X)⊗K(Y ) ≈ K̃(X)⊗ K̃(Y ) ⊕K̃(X)⊕ K̃(Y )⊕ Z
↓ ↓

K(X × Y ) ≈ K̃(X ∧ Y ) ⊕K̃(X)⊕ K̃(Y )⊕ Z

using that G⊗ Z ∼= G for an abelian group G, and so we see that the by restricting the unreduced external
product to K̃(X)⊗ K̃(Y ) we get the reduced external product.

Bott periodicity: Now, as Sn∧X ≈ ΣnX and the full suspension Sn is related to the reduced suspension
Σn by a quotient map of a collapsible subspace we have an isomorphism K̃(SnX) ≈ K̃(Sn ∧X). Now, from
the external product theorem we know that K(X)⊗K(S2)→ K(X ×S2) is a ring isomorphism, and so the
restriction of this to reduced groups K̃(X) ⊗ K̃(S2) → K̃(X ∧ S2) = K̃(S2X) is an isomorphism. In fact
we can go further. Consider the map β : K̃(X)→ K̃(S2X) defined by β(a) = (H − 1) ∗ a where a ∈ K̃(X)
and (H − 1) is the canonical line bundle over S2 ≈ CP 1. This is a composition K̃(X)→ K̃(S2)⊗ K̃(X)→
K̃(S2X). The first map in the composition is a 7→ (H − 1)⊗ a and is an isomorphism as (H − 1) generates
K̃(S2), and the second map is an isomorphism from the external product theorem, hence we have Bott
periodicity:

K̃(X) ≈ K̃(S2X)

3 Examples

3.1 Point

A vector bundle over a point is just a single copy of Cn and so K(pt) = {Cn − Cp} ≡ {n − p} ∼= Z. The
multiplication on this group is the usual multiplication on Z, for if we represent the equivalence class of
(n−p) simply by m ≡ Cm−C0 where m = n−p then the tensor product of bundles gives m ·r ≡ Cm⊗Cr =
Cmr = mr. The reduced group is the kernel of the restriction K(pt) → K(pt) which is the identity, and so
K̃(pt) = 0.

3.2 S0

A vector bundle over S0 = {x0, x1} consists of one copy of Cm over x0 and one copy of Cp over x1 (note
m 6= n in general as S0 is not connected). It follows that K(S0) = {m − n, p − q} ∼= Z ⊕ Z where m − n
represents the equivalence class of Cm − Cn. The ring structure is the usual multiplication on Z on each
factor.

The reduced group K̃(S0) is the kernel of the restriction K(S0) → K(x0), i.e. the kernel of the map
sending {Cm − Cn,Cp − Cq} to {Cm − Cn}. The kernel consists of those elements with m = n, hence
K̃(S0) = {0,Cp − Cq} ≡ {p− q} ∼= Z, and the ring structure is the usual multiplication on Z.
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3.3 S1

All complex bundles over S1 are trivial, hence K(S1) = {Cm−Cn} ∼= Z as before with usual multiplication,
and K̃(S1) = 0.

3.4 S2

The sphere S2 was discussed previously, however we may as well repeat the results. We have that K(S2) ≈
Z⊕Z as a group and K(S2) ≈ Z[H]/(H − 1)2 as a ring. We can write this as {n+m(H − 1) : m,n ∈ Z} ≡
(n,m), and the ring structure is given explicitly by (n+m(H−1))(p+q(H−1)) = nm+(mp+nq)(H−1), so
in short, (n,m)(p, q) = (n, p,mp+nq). The reduced group K̃(S2) is the kernel of the restriction (n,m)→ n

and so K̃(S2) = Z, generated by (H − 1) and with trivial multiplication.

3.5 Sn

From Bott periodicity it follows that K̃(S2n+1) = 0 and K̃(S2n) = Z (generated by the n-fold reduced
external product (H − 1) ∗ · · · ∗ (H − 1), so multiplication is trivial). Then for odd-dimensional spheres we
have K(S2n+1) = Z with usual multiplication, while for even-dimensional spheres we have K(S2n) = Z⊕ Z
with the same ring structure as S2.

3.6 Torus

The torus T 2 = S1×S1. We know from the long exact sequence for a pair (X×Y,X ∨Y ) that K̃(X×Y ) ≈
K̃(X ∧ Y )⊕ K̃(X)⊕ K̃(Y ), so with X = Y = S1 we have

K̃(T 2) ≈ K̃(S2)⊕ K̃(S1)⊕ K̃(S1) = K̃(S2) = Z

as S1 ∧ S1 = S2 and K̃(S1) = 0. In fact the above isomorphism is a ring isomorphism, so the ring structure
on K̃(T 2) is that on K̃(S2), i.e. trivial multiplication. We then have K(T 2) = K̃(T 2)⊕Z = Z⊕Z, with the
same ring structure as K(S2).

Note that this example shows that the torus and the sphere S2 have the same K and K̃(K) groups - to
distinguish between them in K-theory we must introduce additional K-groups, which we will do in the next
section.

3.7 Wedge of spheres

Consider a wedge of spheres Sn ∨ Sm. We have

K̃(Sn ∨ Sm) = K̃(Sn)⊕ K̃(Sm)

so that

K̃(Sn ∨ Sm) =


Z⊕ Z n,m even
Z one of n,m even
0 n,m odd

with ring structure being trivial in all cases (i.e. (p, q)(r, s) = (0, 0) if both n and m even and pq = 0 if only
one even). We also have

K(Sn ∨ Sm) =


Z⊕ Z⊕ Z n,m even
Z⊕ Z one of n,m even
Z n,m odd

If both n,m odd then the ring structure is the usual multiplication on Z, if one is even and one is odd then the
ring structure is the same as in S2, and if both are even then the ring structure is given by Z[α, β]/(α2, β2)
where α and β are the generators of K̃(Sn) and K̃(Sm).
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4 Cohomology

A cohomology theory is a theory assigning to a topological space X a sequence hp(X) of abelian groups,
satisfying certain axioms known as the Eilenberg-Steenrod axioms. A generalised cohomology theory
drops the dimension axiom, which states that hp(pt) = 0 for p 6= 0. If we define K̃0(X) ≡ K̃(X), K̃−1(X) =
K̃(SX) and in general K̃−p(X) = K̃(SpX), then we can view K-theory as a cohomology theory. We
can also introduce relative groups by letting K̃−p(X,A) = K̃(Sp(X/A)) Owing to Bott periodicity we have
K̃−2 = K̃0(X), and from the long exact sequence derived above we have the following 6-term exact sequence:

K̃0(X,A) −→ K̃0(X) −→ K̃0(A)
↑ ↓

K̃−1(X,A) ←− K̃−1(X)←− K̃−1(A)

It is useful to accumulate all the information we can find from K-groups into a single object: K̃∗(X) =
K̃0(X) ⊕ K̃−1(X). From the external product we have an induced multiplication K̃∗(X) ⊗ K̃∗(Y ) →
K̃∗(X ∧ Y ), and we can use this to construct a product on K̃∗(X) by composing the external product with
the map induced by the diagonal mapping ∆ : X → X ∧X,x 7→ (x, x). The result is a composition

K̃∗(X)⊗ K̃∗(X) −→ K̃∗(X ∧X) ∆∗

−→ K̃∗(X)

which makes K̃∗(X) into a ring.

Example: The above multiplication when restricted to the K̃0(X) factor in K̃∗(X) is just the usual

multiplication on K̃(X). To see this, note that this multiplication is K̃(X)⊗ K̃(X)
µ→ K̃(X ∧X) ∆∗

→ K̃(X)
where the first map is (a, b) 7→ p∗1(a)p∗2(b) with p1 and p2 being the projections onto the first and second X

factors in X ∧ X. The multiplication here is the usual product in K̃(X ∧ X) and the fibre over the point
(x1, x2) ∈ X ∧X is the tensor product of the fibres over x1 ∈ X and x2 ∈ X (as p∗1 pulls back the fibre over
x1 ∈ X to {x1} ∧X and similarly for p∗2). Finally the diagonal map pulls back the fibre over (x, x) ∈ X ∧X
to the point x in X - and hence with respect to the given composition means that the fibre over x ∈ X
consists of the tensor product of the fibre in a over x with the fibre in b over x, and this is just the usual
tensor product of a and b.

The relative form of the external product is a map K̃∗(X,A)⊗K̃∗(Y,B)→ K̃∗(X/A∧Y/B). When composed
with the relativised diagonal map X/(A ∪ B) → X/A ∧ X/B we get a product K̃∗(X,A) ⊗ K̃∗(X,B) →
K̃∗(X,A ∪B).

Example: If X is a union of two contractible subspaces, X = A∪B, then we have K̃(X) ≈ K̃(X/A) and
K̃(X) ≈ K̃(X/A), and as a result the product K̃∗(X)⊗ K̃∗(X)→ K̃∗(X) can be written as a composition
K̃∗(X,A)⊗ K̃∗(X,B)→ K̃∗(X,A ∪B)→ K̃∗(X), but the middle group is K̃∗(X,A ∪B) ≈ K̃∗(X,X) = 0
and so the multiplication on K̃∗(X) is trivial.

Example: In general if X can be written as the n-fold union of contractible subspaces then all n-fold
products in K̃∗(X) are trivial.

Let us now note a neat way to recover the unreduced K-groups given the reduced K-groups. We define
K−p(X) ≡ K̃−p(X+) where X+ is X with a point adjoined. This means that

K0(X) = K̃0(X+) = Ker (K(X+)→ K(+) = K(X)

so this definition agrees with our previous definition of K(X) and K̃(X), and

K−1(X) = K̃−1(X+) = K̃(SX+) = K̃(ΣX+) = K̃(ΣX ∨ S1) = K̃(ΣX)⊕ K̃(S1) = K̃(SX) = K̃−1(X)
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For a pair (X,A) with A 6= ∅ then we define K−p(X,A) = K̃−p(X,A), and can write the same 6-term exact
sequence for unreduced groups. We also have a product K∗(X) ⊗K∗(Y ) → K(X × Y ) and by composing
with the diagonal map ∆ : X → X ×X we obtain a ring structure on K∗(X).

Note that from this definition we find that K−2(pt) = K̃−2(pttpt) = K̃−2(S0) = K̃(S2S0) = K̃(S2) = Z
so K-theory is a generalised cohomology theory.

Example: For even-dimensional spheres, K̃−1(S2n) = K̃(S2n+1) = 0, while for odd-dimensional spheres
K̃−1(S2n+1) = K̃(S2n+2) = Z, so for all spheres, K̃∗(Sn) = Z. It follows that K−1(S2n) = 0 and
K−1S2n+1 = Z so that K∗(Sn) = Z⊕ Z for all spheres.

Example: For the torus T 2 we look at the split exact sequence 0 → K̃(S(X ∧ Y )) → K̃(S(X × Y )) →
K̃(SX)⊕K̃(SY )→ 0 withX = Y = S1, so that K̃−1(T 2) = K̃(SS2)⊕K̃(SS1)⊕K̃(SS2) = K̃(S2)⊕K̃(S2) =
Z ⊕ Z so that K̃∗(T 2) = Z ⊕ Z ⊕ Z, and also K−1(T 2) = Z ⊕ Z so K∗(T 2) = Z ⊕ Z ⊕ Z ⊕ Z. Thus we see
that the torus and sphere S2 do indeed have distinct K-groups when looked at from this viewpoint.
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