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Notes by Chris Blair
October 4, 2010

Some notes for the Complex Analysis course; also includes
solutions to some exercises from the book by Palka.

1 Power series

Power series If f is holomorphic in Ag(a) then we can write

f(Z) :ch(z_a)n Cpn = ! M O<’I"<R (11)

>0 2w Joa,(a) (C—a) !

The radius of convergence is R: the power series converges inside Ag(a) and diverges outside it. We may

differentiate termwise:
f(z) = Z can(z —a)" ! (1.2)

n>1
which gives us the expression
k! f(Q)d¢
R (q) = —— 1.3
@ =g [ (13)
which also tells us that ¢, = & f*(a).
Cauchy estimates Take the above formula for f(*)(a), and bound it using |( — a| = r and M =
SUPA (o) | fI:
kM d kIM
|f®)(a)] < : ¢ < (1.4)
21 Joa,(a) T r
Hence we find the Cauchy estimate:
kM
[F P (a) < == (1.5)

Liouville’s Theorem If f is holomorphic and bounded in C then f is constant.

Proof of Liouville’s Theorem As f is holomorphic in C it is holomorphic in any disc Ar(0). Arguing
as for the Cauchy estimates and letting M = supc f(z) (which exists as f is bounded) we have

k) KM
20 < — (1.6)

This holds for all R, letting R — oo we have that |f(*)| — 0 for all £ > 0, so f*)(0) = 0 for all £ > 0 and

from the Taylor series

(n)
f =3 0 ) (1.7

we see that f(z) is constant. O



Application of Cauchy Estimates (Palka 8.29) Let f(z) be holomorphic in C, and |f(z)| < c[z|* +d
where ¢, A and d are positive real numbers. We will show that f(z) is necessarily a polynomial of degree at
most A. In a disc Ag(0) the Cauchy estimates give

|F™(0)] < R (cR’\+d) =nl (cR*" +dR™") (1.8)

This holds for any disc Ag(0), letting R go to infinity we see that if n > X then |f(™| — 0. Considering the

Taylor series at the origin
=D 0" =3 " (0) (1.9)
n=0 n=0
where m < A, so we see that f(z) is a polynomial of degree at most .
Application of Liouville’s Theorem (Palka 8.32) Let f(z) be holomorphic in C, and |f(z)| < me®*

for all z = x 4 iy, where m and « are positive real numbers. We wll show that f is necessarily of the form
f(z) = Ae** for some constant A. Consider the function f(z)/e®*. This is holomorphic in C (as e** # 0

for all complex numbers z). We also have |f(z)/e**| = |f(2)|/]e**| < me*®/e*® = m using the fact that
le*| = |e*| - |e¥| = |e®|. Hence f(z)/e®* is holomorphic and bounded, and so constant. We conclude that
f(z) = Ae>*.

Application of Liouville’s Theorem (Palka 8.33) Let f(z) be holomorphic in C, and f # constant.
Then f(C) is dense. If this were not so then there would exist some point wy and some € > 0 such that
f(z) & Ac(wp) for all z € C, i.e. |f(2) —wo| > e. Define g(z) = 1/(f(z) — wo), then g(z) is holomorphic
in C, and |g(2)| = 1/|f(2) — wo| < 1/e so that g is bounded. Hence by Liouville g(z) is constant, and so
f(z) =wo + 1/g(z) is constant too, a contradiction.

Fundamental Theorem of Algebra If P(z) = a,z" + - -+ a121 + ap a polynomial of positive degree
n # 0 then 3zp € C such that P(z) = 0.

Proof of Fundamental Theorem of Algebra Now, P(z) is holomorphic in C. Let f(z) = 1/P(z) and
assume P(z) # 0 Vz so that f(z) is holomorphic in C. We will show that f(z) is bounded, hence constant,
implying that P(z) is constant, and so obtaining a contradiction. Consider

Ay 271 ag 1
PG = o)1+ 2 L
an 2 an 2
. X (1.10)
>|anz"|-’1— o=t 2 L ‘
anp 2" an 2"
Now 3R such that V|z| > R, |2 Zznl +-+ g2 X < 1/2, so that |[P(2)| > i|a,z"| > %lan|R", and
1f(z)| < 2/|an|R"™. Also, for all |z| < R we use the fact that f is holomorphic and hence bounded on
compact sets to conclude that |f| is bounded for all z € C, and so constant by Liouville’s theorem. O

Cauchy-Hadamard formula for radius of convergence The radius of convergence of a power series
is given by R = (lim,, _s0|cn|*/™) ™", where limf = limsup f. To see this is true, consider first |2| < R. Then
there exists 71,79 such that |z] < r; <712 < R. Now, mnﬂoo|cn|l/" =1/R > 1/rq, so there exists N such
that for all n > N, [e,|Y/™ < 1/rg 50 |en| < 1/7%, and |c,2™| < (r1/re)™. But ri/ra < 1,80 3, (r1/r2)" is
convergent and hence so is the power series ) ¢,2" (by the comparison test).

Now consider |z| > R. Then there exists R; such that |z| > Ry > R. Now, lim,, o |ca|"/" = 1/R > 1/Ry,
so there exists a subsequence (ny) such that |c,, |'/™ > 1/Ry, 50 |cp, | > 1/RY, and |e,, 2™ | > (R1/Ry)™ =
1. Hence by the nth term test the power series diverges.



Uniform and compact convergence A sequence of functions f,, — f uniformly on a set K if Ve > 03N
such that Vn > N, |fn(2) — f(2)| < &, Vz € K. We say that f, — f compactly on K if it converges uniformly
on every compact subset.

Lemma Let Q = {|z| < R}, then f, — [ uniformly on every {|z| < r}, r < R if and only if f, — [
uniformly on all compact K C Q.

Proof of lemma Suppose f,, — f uniformly on every compact K C €2, then it follows automatically that
fn — f uniformly on every {|z| < r}, r < R, as these are compact sets.

Conversely, let f,, — f uniformly on every {|z| <r}, r < R. Let K C Q be a compact set. Then for all
zo € K consider the discs {|z| < |z9| + €}, where we have chosen £ > 0 such that |zg| + & < R (possible as §2
is open). These discs give a covering of K, as K is compact we can choose a finite subcovering. In fact pick
the point z; € K which gives the disc A, = {|z| <[] + €} of maximum radius. Then K C A, C ©, and
as f, — f uniformly on discs, f,, — f uniformly on K. O

Weierstrass’ Theorem Let f,, be holomorphic in Q Vn, and f, — f uniformly on every compact subset
K C Q. Then f is holomorphic in Q and f], — f' uniformly on compact subsets.

Proof of Weierstrass’ Theorem The first part of the proof uses Morera’s theorem, if |, an fdz =0 for
all triangles A C €2, then f holomorphic in Q. As f,, is holomorphic in €, f an Jndz = 0 for all such triangles.
These triangles are compact subsets, hence f,, — f uniformly on each A, i.e. for all € > 0 there exists N such
that ¥n > N, |fn(z) — f(2)| <€ for all z € A. Now consider [, (f — fn)dz < maxpa |f — fu| - length (OA).
For n — oo, maxap |f — ful — 0, 50 [y5 fudz — [,A fdz, and so [\ fdz = 0. As a uniform limit f is
continuous on each compact set, and f is continuous on 2. Then by Morera f is holomorphic on .

The second part of the proof looks more involved, so I'll do it later. O

Laurent Series The Laurent series expansion of a function f(z) which is holomorphic in r < |z —a| < R

f&) =Y ez—a) = F(Q)dc

= ————7r <p<R (1.11)
= 2mi Jop, () (¢ —a)"t?

We can write this series as

ch(z—a)” = ch(z—a)"—l—ch(z—a)" (1.12)

nez n<0 n>0

where the sum over negative integers constitutes the principal part of the Laurent series. The Laurent series
will converge if both these series converge. Now, R is the radius of convergence of ) . cn(2 —a)”, while we

can write ) _oco(z —a)" =3 oc_ml/(z —a)™, which converges for [1/(z —a)| < R =1/r, and hence
converges for |z —a| > r.
2 Zeros
Order of zero We define the order of zero or order of vanishing of a function f(z) at zg to be
ord(zp) = min{n|f™ () # 0} (2.1)

An equivalent definition using power series is ord s(zy) = min{n|c,, # 0}, where we have expanded in a power
series about zg. Note that if f(z9) # 0, then ords(z9) = 0. The multiplicity of f at zo is the zero order of

f(2) = f(=0)-



Examples of multiplicities (Palka 5.1) i) f(z) = ¢*(®>5*~1 at 2z = 0: we have f(0) = 1. Expanding
in a power series about 0, f(z) = 1+ z(cosz — 1) + 22%(cosz — 1) +--- =1 = —22% + ... so the lowest
non-vanishing coefficient is that multiplying 23, hence the multiplicity is 3.

i) f(z) = 28% at z = 1. we have f(1) = 1. Use Logf(z) = (Logz)? and differentiate, hence
1/f(2)f'(2) =2Log z/z = f'(z) = 2f(2)Logz/z and f’(1) = 0. Differentiating again, f”(z) = 2f'(z)Log z/z+
2f(2)/2% — 2f(2)Log z/2? and now f”(1) = 2, hence the multiplicity is 2.

v) f(z2) = (1+22—€*)3 at z=0: f(0) = 0. Expanding in a power series, 1 4+ 22 — e* = —24/2 + ...
and so the multiplicity at 0 is 12.

Factorisation lemma Let f be holomorphic in Q and zy € Q. Let d = ords(zy) < oo, then f(z) =
(2 — 20)%9(2), where g(z) holomorphic in Q and g(zo) # 0.

Proof of factorisation lemma In a disc A centred at zp, we can expand f in a power series:
o0
f(z)= ch(z —20)" =ca(z — 20) 4+ en(z —2)" + ...
n=0

= (Z—Zo)d(0d+cd+1(z—zo)—|—...)

=g(=)

and we see that g(z9) = ¢q # 0. O

Corollary Let f holomorphic in 0, and zo € Q, d = ords(z9) < oo, then f(z) = (h(z))? in some
neighbourhood of zy, with h(z) holomorphic in the same neighbourhood.

Proof of corollary Let h(z) = (z — 20)(g(2))"/% To see that we can take a branch of the dth root,
consider a ray R through zero such that g(zp) € R, and let U = C\R, then z'/¢ has a branch p(w), w # R,

o(w)? = w. Now g(2) continuous at zo implies that g(z) ¢ R for z in some neighbourhood of 2, so that
g(2)"¢ = ©(g(2)) a branch of g(z)'/<. O

Identity Principle Let f,g holomorphic in Q, Q@ connected, and f(z) = g(z) for all z € A C Q where A
has limit points in Q, then f = g in Q. (Note that to say A has limit points in € is to say that there erists
a sequence zp, — 2o, Zn % 20, 2n € A, 20 € Q).

Proof of Identity Principle Consider h = f—g. Suppose zg a limit point of A, and let d = ord},(29) < oo,
so that h(z) = (2 — 20)%G(2), where g(29) # 0 and g(z) has no zeros near z;. This implies that zy is an
isolated zero of h, and so zp not a limit point of h|4 = 0. This is a contradiction and implies that d = oo
and so h = 0 in some neighbourhood of zj.

Now consider the set U = {a € Q|h = 0 in some neighbourhood of a}, which is obviously open. If z; is
in the limit set of U then zg € U by the first part of the proof (i.e. if zp a limit point of U (where h = 0)
then A = 0 in a neighbourhood of zg). This means that U is closed; hence U is open-closed and non-empty
which implies that U = Q (as otherwise we could partition € into U and Q\U; the former is open and the
latter is the complement of U, which is closed, in 2 and hence open, but by hypothesis € is connected so
this is a contradiction) and hence h = 0 on €. O

3 Singularities

Singularity A singularity of a function f is any point a where it is not defined or not holomorphic. A
singularity is called isolated if f is holomorphic in some A.(a)\{a}. An isolated singularity is called removable

if f has a holomorphic extension fwhich is holomorphic at zp and f|a_(a)\{a} = f-



Somewhat surprising (to me at least) example of removable isolated singularity The function
f(2) = z/z is not defined at z = 0, but admits the holomorphic extension f(z) = 1.

Example of a non-isolated singularity The function f(z) = 1/sin(1/z) has singularities when 1/z =
7wk, k € Z, i.e. for z = 1/(nk), k € Z. The singularity at z = 0 is in fact not isolated, as we can always find
another singularity arbitrarily close to 0.

Riemann extension theorem If f has an isolated singularity at a € Q and f is bounded in 2, then the
singularity is removable.

Proof of Riemann extension theorem Consider the Laurent series expansion f(z) = >, ., ca(2 —a)"
in A.(a)\{a}, where

1 f(Qd¢

Cp v |Cn| <

1 1 SUPaas ) 1,
270 Jons(a) (C —a)mtt

S (3.1)

For n < 0 |¢y| — 0 as § — 0 (using that |f] is bounded, hence sup |f|/é™ — 0). Hence ¢, =0 for all n < 0

and f has the form f(z) =) -, cn(2—a)" for all z € ain A_(a). This defines f(z) a holomorphic extension
of f which can be extended to z = a, and so the singularity is removable. O

Pole An isolated singularity a is called a pole is lim,_., f(z) = oco.

Theorem Let f has an isolated singularity at a, then f has a pole at a < the Laurent series of f about a
has a non-zero and finite principal part.

Proof of theorem (=) Let f have a pole at a, and consider g(z) = 1/f(z), then g(z) is holomorphic in
some Ags(a)\{a} and g(z) — 0 as z — a so g is bounded (for suitable §) and by the Riemann extension
theorem g has a holomorphic extension g(z). We can factorise §(z) = (2 — a)%p(z), w(a) # 0, so f(z) =
(1/(z — a)?)(1/¢(2)). Now 1/p(2) is holomorphic in some neighbourhood of a so we can write 1/¢(z) =
> n>0Cnl(z —a)", and hence f(2) 37, 54 cn(z — a)yn=? = > om>—dCmtd(z —a)™.

(<) Let the Laurent series of f at a by f(2) =, _,cn(2—a)". with d > 0. Then clearly lim,_., f(z) =

oo as we can write f(2) =Y, - _jen(z —a)" 4/ (z —a) and lim, ., Y3, o _sen(z—a)" P =c 4#0. O
Pole order If f has a pole at a with f(z) =>_,5_;ca(z —a)" then the order of the pole at a is d.

Combining singularities (Palka 5.20) Suppose that f has a pole at a of order d; and g has a pole
at a of order dy. We can expand them both in Laurent series as f(z) = > -, ca(z —a)" and g(z) =
Y ons—_d, Cn(z —a)™. Consider the sum f +g. Clearly we could have ¢, = —¢;, for some (or all) —d < n <0,
so that either f + ¢ wil have a pole of order less than max(d;,ds) or it will have a removable singularity at
a. Next consider the product fg. Multiplying the Laurent series together we see that we will always have
a leading term c¢_g,cg,(2 — a)~% 7% and thus a pole of order d; + dy at a. Finally consider the quotient
g/ f. This is holomorphic in some A.(a)\{a}. Write g(z) = (2 —a) "9 p(2) and f(2) = (z —a) ") (z) where
¢(a) # 0 and ¥(a) # 0. Hence g/f = (2 —a)®~%¢(z)/1(z), which has a pole of order dy —d; at a if dy < da
and a removable singularity at a if d; > ds.

Application of the Riemann extension theorem and Liouville’s theorem (Palka 5.27) Let f
and ¢g be holomorphic in C and let |g(z)| < |f(2)|]. We will show that g(z) = ¢f(z) for some constant c.
Consider the quotient g(z)/f(z) (note that if f = 0 then g = 0 and the result holds trivially, we assume
f # 0 from now on). This is holomorphic except for points where f(z) is zero (these are isolated as f(z) Z 0
is holomorphic). As |g(z)/f(z)| < 1 we see that g(z)/f(z) is bounded and so by the Riemann extension



theorem can be extended to a holomorphic function at any possible singularities. The extended function is
bounded and holomorphic in C and so constant by Liouville’s theorem. We conclude that g(z) = cf(2).

Meromorphic A function f is called meromorphic in Q if it is holomorphic in Q\ A where A C Q discrete
and f has a pole at all points a € A. We denote by M(Q) the space of functions which are meromorphic in
Q.

Examples of meromorphic functions All rational functions (ratios of two polynomials) are meromor-
phic on C. The function f(z) = 1/sin(1/z) is meromorphic on C\{0}.

Meromorphic functions on () form a ring

Essential singularity A singularity of a function f is called essential if it is neither removable nor a pole.
We have that f has an essential singularity at a < the principal part of the Laurent series expansion of f
about a is infinite.

Casoratti-Weierstrass Theorem If f has an essential singularity at a then f(Ac(a)\{a}) is dense in C
for all small e.

Proof of Casoratti-Weierstass Theorem If f(A.(a)\{a}) is not dense in C then there exists wy € C
and § > 0 such that |f(z) — wg| > ¢ for all z € A.(a)\{a}. Define g(z) = 1/(f(z) — wo), then g(z) has a
singularity at a but |g(z)] < 1/6, so g is bounded and this singularity is removable. Also 1/¢g must have
an isolated singularity at a, which is either a pole or a removable singularity, and so the singularity of
flz)= g(z) 4wy at a is either a pole or a removable singularity, contradicting the fact that a is an essential
singularity. O

Great Picard Theorem Another remarkable result: if f has an essential singularity at a then C\ f(Az(a)\{a})
has at most one point.

Example of essential singularity The functions f(z) = e!/#, g(2) = sin1/z and h(z) = cos 1/z all have
essential singularities at 0, as can be seen from writing out the power series definitions of these functions
and noting that they give a Laurent series with infinite principal part.

4 Argument Principle

Theorem Let f € M(Q), D C Q a simple region, v = 0D, and let f have no poles or zeros on . Then

1 [ 1e)
2mi J., f(2)

where ay, is a zero or pole.

dz = Z ord¢(aj) = number of zeros - number of poles of fin Q2 (4.1)

Proof of theorem We use the residue theorem which tells us that
1 / ') 7(2)

— dz = Res,, =——= 4.2

2wt J, 7o) 2 = LR (42)

Now, for a a pole or zero we can expand f(z) = (z — a)%p(z) where d = ords(a) is either the zero order or
minus the pole order at a. Hence f'(z) = d(z — a)?'¢(2) + (2 — a)¢'(z) and so
f'z) _d ()

fo) z—a g

(4.3)

~—



which has residue at d = ords(a) at a. O

Rouché’s Theorem Let F, f € M(Q), D C Q a simple region and D C Q, v = 0D and |f(2)| < |F(2)]
on vy, and let f and F have no poles on . Denote by ng the number of zeros minus the number of poles of
F, then npyy =np.

Proof of Rouché’s Theorem Note that |F'(z)| > |f(z)| > 0 so F has no zeros on +; similarly, |F + f| >
|F'| —|f] > 0 so F'+ f has no zeros on . Define

1 / F/(2) + tf'(2)

plt) =5~ Fo) s ife) 0<t<1 (4.4)

so that ¢(0) = np and p(1) = npyy. We have |F +tf| > |F| —t|f| > 0, so F 4+ tf has no zeros on v, and
hence (t) € N for all t. As the integrand in the definition of ¢(t) is continuous in both z and ¢, p(¢) is also
continuous and hence it must be constant (as it is valued in the natural numbers), hence the result. O

Open Mapping Theorem Let f holomorphic in 2, Q connected and f # constant, then f(Q) is open.

Proof of Open Mapping Theorem Let wy € f(€), so that wyg = f(2¢) for some 2y € Q. As f #
constant we have that f # wo in any neighbourhood of 2y, so that ords_.,,(20) = d # co. We can factorise
f(2) —wo = (2 — 20)%p(2) with ¢(z9) # 0. We now want to count the number of solutions of f(z) = w for
w near wy.

Now, f(z9) = wo implies that f(z) —wo has a zero of order d at zp. Let D = A.(z) be such that D C Q
and ¢(z) # 0 on D. Then f(2) — wq has no zeros on D and d zeros in D. Now as f(z) — wp is continuous,
| f(2) — wp| has a minimum on 90D, so there exists § > 0 such that |f(z) — wg| > J for z € dD. Take u € C
such that |u| < d and set f(g) = for all z € C. Then |f| < |f(2) — wo| on dD, and by Rouché’s theorem,
f(z) —wo and f(2) — wo + f(z) have the same number of zeros. Hence f(z) = wg — u has a solution for all
u such that |u| < §, and so As(wp) C f(2) and so f(Q) is open. O

Univalence Theorem Let f holomorphic in Q, zo € Q then f injective in some neighbourhood of zg

& f'(20) # 0.

Proof of Univalence Theorem (<) Suppose that f'(z0) # 0. Let wyg = f(z0), then f(z) — wy =
(z — z0)p(2) with p(z0) # 0, and f(2) = w < (2 — 20)p(2) + wo — w = 0 for w near wy. Take A (zp)
such that ¢(z) # 0 on A.(2g), then (z — 29)p(z) has one zero in A.(z9). Now |f(2)] < |(z — 2z0)¢(2)| on
0A(20) and |(z — 20)¢(2)| # 0 on OA.(20). Denote § = minga_(z,) |(z — 20)(2)| > 0 and take w such that
|w—wp| < §. Then f(z) = w has one solution in A (zg) (by Rouché’s theorem for (z —zg)¢(z) and w —wy).
Choose a neighbourhood U of zy such that if z € U then |f(z) — wg| < ¢ by continuity, then f is injective
inU.

(=) Let f be injective in some neighbourhood of zy, so that then f # constant in that neighbourhood.
Suppose that f(z0) = 0 so that ord(,)_q,(20) = d > 1 and we can factorise f(z) — wo = ¥(z)?. Choose U
a neighbourhood of zg such that f injective in U, ¢ holomorphic in U and ¢ # constant. Then 1 (U) is open
and 1)(29) = 0. Hence there exists A.(0) C ¢(U). Take 71 = £/2 and 72 = age/2 where oy # 1 and o = 1.
Then 71 # 79 € A-(0) C ¥(U) but 7{ = 75, and so there exists 21,22 € U such that 1(z1) = 71, ¥(22) = To.
Now 21 # 2z but f(z1) = ¥(21)? = ¥(22)% = f(22) and so f is not injective, a contradiction. O

Inverse Function Theorem Let f holomorphic in Q, f injective then f(Q) open, then f=1: f(Q) — Q
holomorphic.



Proof of Inverse Function Theorem That f() is open follows from the Open Mapping theorem. As f is
injective there exists an inverse f=1 : f(Q) — Q. Now f~! is continuous if for all U open (f~1)~3(U) = f(U)
open, which is true. We will use the Univalence Theorem to show that lim f~1(w) — f =1 (wq)/(w —wp) exists.
Now, this equals limy ., (2 — 20)/(f(2) — f(wo), and we know that lim,_,.,(f(z) — f(20))/(z — z0) exists
and is non-zero (by the Univalence Theorem). We also need w — wyg as z — zg but this holds by continuity,

hence ) )
- —f 1 1
w—wo w — Wo hmz—>zo 7]"(2;:5(520) f (ZO)
exists, and f~! is C-differentiable and so f~! is holomorphic. O

5 Riemann Mapping Theorem

Lemma
Proof of lemma
Riemann Mapping Theorem If Q) C C, Q # C, then there exists a biholomorphic map f : Q) — A.

Outline of proof of Riemann Mapping Theorem

6 Mobius transformations and automorphisms

Riemann sphere We obtain the Riemann sphere by adding the point at infinity to C. The resulting
space is denoted C = CU {oo}. We have the following rules for manipulating the point at infinity: 1/0 = oo,
1/00 = 0.
The terminology “Riemann sphere” comes from the fact that we can in fact represent every point in C as
a point on the unit sphere S2. If we embed the complex plane within R? we obtain the point (z,y,z) € S?
corresponding to the point z € C by projecting from z to the north pole of the unit sphere at the origin:
the point where this projection intersects the sphere gives the coordinates of the point as an element of the
latter. Note that co corresponds to the north pole of the sphere.
The map
T + 1y
1—t

T(z,y,t) = (6.1)

maps a point (z,y,t) on the Riemann sphere to a point in C. The inverse mapping, for a point z = x + iy, is

73z = (20/(1+ [312), 20/ (1 + [#12), (1 = 212)/ (1 + |21%)) (6.2)

establishing that 7 is an isomorphism (and in fact a homeomorphism). -
The topology on C can be thought of as being induced by 7. The open sets in C are the open sets in C
and the complements of compact subsets of C (i.e. discs around o).

Holomorphic/meromorphic at co To be able to define concepts of holomorphy etc. at oo we will need
the inversion

o(z) = - (6.3)

which maps C to C and in particular swaps co and 0. This can essentially be thought of as a change of chart
on the Riemann sphere. On C we have the following:

e 20 € C, f(z9) € C: usual holomorphy/meromorphy.



e 2p =00, f(29) € C: f holomorphic/meromorphic at oo < f o o holomorphic/meromorphic at 0.
e 2y € C, f(z9) = 0co: f holomorphic/meromorphic at oo < ¢ o f holomorphic/meromorphic at 0.

e zp =00, f(29) = 0o: f holomorphic/meromorphic at oo < ¢ o f o o holomorphic/meromorphic at 0.
Theorem Any meromorphic function on C is rational.

Proof of theorem As f is meromorphic it has isolated poles, so for all a € C there exists an open set
U, C C such that a € U, and f is holomorphic in U,\{a}. We have C = |J,.g U, and as C is compact
(recall it is isomorphic to S2) there exists a finite subcover C = U,, U--- U U,,. This (somewhat subtly)
shows that f has n < N poles. We now induct on the number of poles.

If n = 0 then f is holomorphic in C and so is a map f : C — C, hence lim, .o, f(z) = f(o0) € C. Thus
f is bounded in a neighbourhood of oo, i.e. on {|z| > R. As a continuous function on a compact set f is
also bounded on {|z| < R} and so is globally bounded. By Liouville’s theorem the restriction of f to C is
constant, and by continuity f is constant on C, and so rational.

Now let f have n poles. If f has a pole at co then f o ¢ has a pole at 0. In this case it suffices to show
that f o o is rational, as then f oo oo = f is also rational. Hence we can suppose that f has a pole at
a € C. In some A, (a) we have the Laurent series expansion f(z) = 3, ., cx(z —a)¥ with finite principal part
p(2) = Yo ck(z —a)*. Clearly p(z) is rational and holomorphic in C\{a}. If f has poles at a,ay,...,ap_1

then f — p has poles ay,...,a,, as near a f(z) — p(z) = > ;5 ck(z — a)¥, a convergent power series, and
hence f —p has no pole at a. So f — p has fewer poles than f and so by the induction hypothesis is rational.
As p is rational it follows that f is rational. O

Modbius transformation A Mébius transformation is a mapping of the form

az+b

&=y

(6.4)

where a,b,c,d € C satisfy ad — bc # 0. Note that f(2) has a pole at 2 = —d/c and so is meromorphic on C.
Extending the definition of f(z) from C to C we obtain a meromorphic function on the extended complex
plane.

Mobius transformations and matrices It is clear that we can associate a Mobius transformation to
each two-by-two invertible complex matrix

a b az+b

There is not a uniquely defined correspondence, as we see that scaling A by any non-zero complex number
A does not change the Mdbius transformation f4.

Group structure of Mdébius transformations
Automorphism An automorphism of € is a biholomorphic map f: Q — Q.

Automorphisms of complex plane C We claim that Aut (C) consists of affine linear transformations,
f(z) =az+Db,a,beC,a+#0. It is clear that any such transformation maps C biholomorphically to itself.
To see that these exhaust all such maps, suppose that f(z) is a biholomorphic map of C to itself. Such
a map has a power series expansion valid in the entire plane, f(z) = ) c,2". As f(z) is not identically
constant, a, # 0 for some n > 1. We then have a singularity as z — oo which is either a pole or an essential
singularity. If essential, then by the Casoratti-Weierstrass theorem, the image of any disc V' around oo is



dense in C. In particular if we consider a disc V' around oo and a disc U around 0 then f(U)N f(V)#0. A
point in the intersection then has a preimage in U and a preimage in V', contradicting the injectivity of f.
We conclude that the singularity is a pole, so that the power series expansion must terminate after finitely
many terms. Suppose that f(z) = > cn2". If m > 1 then f/(z) is a polynomial of degree at least one,
and so has a root in C. But injectivity requires that f/(z) # 0 for all 2 € C. We conclude that f must be of
the form f(z) = az + 0. O

Automorphisms of extended complex plane C We claim that Aut (C) consists of all Mobius transfor-
mations. It is clear that any such transformations maps C biholomorphically to itself (we can explicitly write
down the inverse f,-1 for any Mobius transformation f4). Now suppose that f is an arbitrary biholomorphic
map of C. If f(00) = o0, set g(z) = f(2). If f(oo) = wo # o0, set g(z) = 1/(f(2) — wp) so that g(oo) = oo.
In either case g(z) gives a biholomorphic map of C to itself, and so is of the form ¢(z) = az + b, which is
Mébius. Then either f(z) = g(z) or 1/g(z) + wo, and is Mébius.
Automorphisms of unit disc A We claim that Aut A consists of maps ¢q9(2) = ei‘g%ﬁ. We already
know such maps are biholomorphic mappings. Now let f(z) be a biholomorphic map of the disc onto itself.
Suppose that f(0) = a, and define g = ¢, o f so that g(0) = 0. By the Schwarz lemma, |g(z)| < |z|]. But ¢
is also biholomorphic, and its inverse g~! also sends 0 to 0, so |[g~(w)| < |w|, i.e. z < |g(2)], so |g(2)] = |2|
and g is a rotation.

Now let f~1(0) = b and let h = f o ¢, so that h(0) = 0. By the same arguments, |h(z)| = || so that
h(z) is a rotation. We also see that f = ho ¢, ' = ho ¢, which is of the desired form.

Automorphisms of upper half-plane H
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