
Ma3423/3424 Topics in Complex Analysis

Notes by Chris Blair

October 4, 2010

Some notes for the Complex Analysis course; also includes
solutions to some exercises from the book by Palka.

1 Power series

Power series If f is holomorphic in ∆R(a) then we can write

f(z) =
∑
n≥0

cn(z − a)n cn =
1

2πi

∫
∂∆r(a)

f(ζ)dζ
(ζ − a)n+1

0 < r < R (1.1)

The radius of convergence is R: the power series converges inside ∆R(a) and diverges outside it. We may
differentiate termwise:

f ′(z) =
∑
n≥1

cnn(z − a)n−1 (1.2)

which gives us the expression

f (k)(a) =
k!

2πi

∫
∂∆r(a)

f(ζ)dζ
(ζ − a)k+1

(1.3)

which also tells us that ck = 1
k!f

(k)(a).

Cauchy estimates Take the above formula for f (k)(a), and bound it using |ζ − a| = r and M =
sup∆R(a) |f |:

|f (k)(a)| ≤ k!M
2πi

∫
∂∆r(a)

dζ

r
≤ k!M

r
(1.4)

Hence we find the Cauchy estimate:

|f (k)(a)| ≤ k!M
R

(1.5)

Liouville’s Theorem If f is holomorphic and bounded in C then f is constant.

Proof of Liouville’s Theorem As f is holomorphic in C it is holomorphic in any disc ∆R(0). Arguing
as for the Cauchy estimates and letting M = supC f(z) (which exists as f is bounded) we have

|f (k)(0)| ≤ k!M
R

(1.6)

This holds for all R, letting R → ∞ we have that |f (k)| → 0 for all k > 0, so f (k)(0) = 0 for all k > 0 and
from the Taylor series

f(z) =
∑
n≥0

f (n)(0)
n!

zn = f(0) (1.7)

we see that f(z) is constant.
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Application of Cauchy Estimates (Palka 8.29) Let f(z) be holomorphic in C, and |f(z)| ≤ c|z|λ + d
where c, λ and d are positive real numbers. We will show that f(z) is necessarily a polynomial of degree at
most λ. In a disc ∆R(0) the Cauchy estimates give

|f (n)(0)| ≤ n!
Rn

(
cRλ + d

)
= n!

(
cRλ−n + dR−n

)
(1.8)

This holds for any disc ∆R(0), letting R go to infinity we see that if n > λ then |f (n)| → 0. Considering the
Taylor series at the origin

f(z) =
∞∑
n=0

1
n!
f (n)(0)zn =

m∑
n=0

1
n!
f (n)(0)zn (1.9)

where m ≤ λ, so we see that f(z) is a polynomial of degree at most λ.

Application of Liouville’s Theorem (Palka 8.32) Let f(z) be holomorphic in C, and |f(z)| ≤ meαx

for all z = x+ iy, where m and α are positive real numbers. We wll show that f is necessarily of the form
f(z) = Aeαz for some constant A. Consider the function f(z)/eαz. This is holomorphic in C (as eαz 6= 0
for all complex numbers z). We also have |f(z)/eαz| = |f(z)|/|eαz| ≤ meαx/eαx = m using the fact that
|ez| = |ex| · |eiy| = |ex|. Hence f(z)/eαz is holomorphic and bounded, and so constant. We conclude that
f(z) = Aeαz.

Application of Liouville’s Theorem (Palka 8.33) Let f(z) be holomorphic in C, and f 6≡ constant.
Then f(C) is dense. If this were not so then there would exist some point w0 and some ε > 0 such that
f(z) 6∈ ∆ε(w0) for all z ∈ C, i.e. |f(z) − w0| > ε. Define g(z) = 1/(f(z) − w0), then g(z) is holomorphic
in C, and |g(z)| = 1/|f(z) − w0| < 1/ε so that g is bounded. Hence by Liouville g(z) is constant, and so
f(z) = w0 + 1/g(z) is constant too, a contradiction.

Fundamental Theorem of Algebra If P (z) = anz
n + · · · + a1z1 + a0 a polynomial of positive degree

n 6= 0 then ∃z0 ∈ C such that P (z0) = 0.

Proof of Fundamental Theorem of Algebra Now, P (z) is holomorphic in C. Let f(z) = 1/P (z) and
assume P (z) 6= 0 ∀z so that f(z) is holomorphic in C. We will show that f(z) is bounded, hence constant,
implying that P (z) is constant, and so obtaining a contradiction. Consider

|P (z)| = |anzn| ·
∣∣∣∣1 +

an−1

an

zn−1

zn
+ · · ·+ a0

an

1
zn

∣∣∣∣
≥ |anzn| ·

∣∣∣∣1− ∣∣∣∣an−1

an

zn−1

zn
+ · · ·+ a0

an

1
zn

∣∣∣∣∣∣∣∣ (1.10)

Now ∃R such that ∀|z| ≥ R, |an−1
an

zn−1

zn + · · · + a0
an

1
zn | < 1/2, so that |P (z)| ≥ 1

2 |anz
n| ≥ 1

2 |an|R
n, and

|f(z)| ≤ 2/|an|Rn. Also, for all |z| < R we use the fact that f is holomorphic and hence bounded on
compact sets to conclude that |f | is bounded for all z ∈ C, and so constant by Liouville’s theorem.

Cauchy-Hadamard formula for radius of convergence The radius of convergence of a power series
is given by R = (limn→∞|cn|1/n)−1, where limf ≡ lim sup f . To see this is true, consider first |z| < R. Then
there exists r1, r2 such that |z| < r1 < r2 < R. Now, limn→∞|cn|1/n = 1/R > 1/r2, so there exists N such
that for all n ≥ N , |cn|1/n < 1/r2 so |cn| < 1/rn2 , and |cnzn| < (r1/r2)n. But r1/r2 < 1, so

∑
n(r1/r2)n is

convergent and hence so is the power series
∑
n cnz

n (by the comparison test).
Now consider |z| > R. Then there exists R1 such that |z| > R1 > R. Now, limn→∞|cn|1/n = 1/R > 1/R1,

so there exists a subsequence (nk) such that |cnk |1/nk > 1/R1, so |cnk | > 1/Rnk1 , and |cnkznk | > (R1/R1)nk =
1. Hence by the nth term test the power series diverges.
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Uniform and compact convergence A sequence of functions fn → f uniformly on a set K if ∀ε > 0∃N
such that ∀n ≥ N , |fn(z)−f(z)| < ε, ∀z ∈ K. We say that fn → f compactly on K if it converges uniformly
on every compact subset.

Lemma Let Ω = {|z| < R}, then fn → f uniformly on every {|z| ≤ r}, r < R if and only if fn → f
uniformly on all compact K ⊂ Ω.

Proof of lemma Suppose fn → f uniformly on every compact K ⊂ Ω, then it follows automatically that
fn → f uniformly on every {|z| ≤ r}, r < R, as these are compact sets.

Conversely, let fn → f uniformly on every {|z| ≤ r}, r < R. Let K ⊂ Ω be a compact set. Then for all
z0 ∈ K consider the discs {|z| < |z0|+ ε}, where we have chosen ε > 0 such that |z0|+ ε < R (possible as Ω
is open). These discs give a covering of K, as K is compact we can choose a finite subcovering. In fact pick
the point z′0 ∈ K which gives the disc ∆z′0

= {|z| < |z′0|+ ε} of maximum radius. Then K ⊂ ∆z′0
⊂ Ω, and

as fn → f uniformly on discs, fn → f uniformly on K.

Weierstrass’ Theorem Let fn be holomorphic in Ω ∀n, and fn → f uniformly on every compact subset
K ⊂ Ω. Then f is holomorphic in Ω and f ′n → f ′ uniformly on compact subsets.

Proof of Weierstrass’ Theorem The first part of the proof uses Morera’s theorem, if
∫
∂∆

fdz = 0 for
all triangles ∆ ⊂ Ω, then f holomorphic in Ω. As fn is holomorphic in Ω,

∫
∂∆

fndz = 0 for all such triangles.
These triangles are compact subsets, hence fn → f uniformly on each ∆, i.e. for all ε > 0 there exists N such
that ∀n ≥ N , |fn(z)− f(z)| < ε for all z ∈ ∆. Now consider

∫
∂∆

(f − fn)dz ≤ max∂∆ |f − fn| · length (∂∆).
For n → ∞, max∂D |f − fn| → 0, so

∫
∂∆

fndz →
∫
∂∆

fdz, and so
∫
∂∆

fdz = 0. As a uniform limit f is
continuous on each compact set, and f is continuous on Ω. Then by Morera f is holomorphic on Ω.

The second part of the proof looks more involved, so I’ll do it later.

Laurent Series The Laurent series expansion of a function f(z) which is holomorphic in r < |z − a| < R
is

f(z) =
∑
n∈Z

cn(z − a)n cn =
1

2πi

∫
∂Bρ(a)

f(ζ)dζ
(ζ − a)n+1

r < ρ < R (1.11)

We can write this series as ∑
n∈Z

cn(z − a)n =
∑
n<0

cn(z − a)n +
∑
n≥0

cn(z − a)n (1.12)

where the sum over negative integers constitutes the principal part of the Laurent series. The Laurent series
will converge if both these series converge. Now, R is the radius of convergence of

∑
n≥0 cn(z−a)n, while we

can write
∑
n<0 cn(z − a)n =

∑
m>0 c−m1/(z − a)m, which converges for |1/(z − a)| < R̃ ≡ 1/r, and hence

converges for |z − a| > r.

2 Zeros

Order of zero We define the order of zero or order of vanishing of a function f(z) at z0 to be

ordf (z0) = min{n|f (n)(z0) 6= 0} (2.1)

An equivalent definition using power series is ordf (z0) = min{n|cn 6= 0}, where we have expanded in a power
series about z0. Note that if f(z0) 6= 0, then ordf (z0) = 0. The multiplicity of f at z0 is the zero order of
f(z)− f(z0).
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Examples of multiplicities (Palka 5.1) i) f(z) = ez(cos z−1) at z = 0: we have f(0) = 1. Expanding
in a power series about 0, f(z) = 1 + z(cos z − 1) + 1

2z
2(cos z − 1) + · · · − 1 = − 1

2z
3 + . . . so the lowest

non-vanishing coefficient is that multiplying z3, hence the multiplicity is 3.
ii) f(z) = zLog z at z = 1: we have f(1) = 1. Use Logf(z) = (Logz)2 and differentiate, hence

1/f(z)f ′(z) = 2Log z/z ⇒ f ′(z) = 2f(z)Logz/z and f ′(1) = 0. Differentiating again, f ′′(z) = 2f ′(z)Log z/z+
2f(z)/z2 − 2f(z)Log z/z2 and now f ′′(1) = 2, hence the multiplicity is 2.

v) f(z) = (1 + z2 − ez2)3 at z = 0: f(0) = 0. Expanding in a power series, 1 + z2 − ez2 = −z4/2 + . . .
and so the multiplicity at 0 is 12.

Factorisation lemma Let f be holomorphic in Ω and z0 ∈ Ω. Let d = ordf (z0) < ∞, then f(z) =
(z − z0)dg(z), where g(z) holomorphic in Ω and g(z0) 6= 0.

Proof of factorisation lemma In a disc ∆ centred at z0, we can expand f in a power series:

f(z) =
∞∑
n=0

cn(z − z0)n = cd(z − z0)d + · · ·+ cn(z − z0)n + . . .

= (z − z0)d (cd + cd+1(z − z0) + . . . )︸ ︷︷ ︸
≡g(z)

(2.2)

and we see that g(z0) = cd 6= 0.

Corollary Let f holomorphic in Ω, and z0 ∈ Ω, d = ordf (z0) < ∞, then f(z) = (h(z))d in some
neighbourhood of z0, with h(z) holomorphic in the same neighbourhood.

Proof of corollary Let h(z) = (z − z0)(g(z))1/d. To see that we can take a branch of the dth root,
consider a ray R through zero such that g(z0) 6∈ R, and let U = C\R, then z1/d has a branch ϕ(w), w 6= R,
ϕ(w)d = w. Now g(z) continuous at z0 implies that g(z) 6∈ R for z in some neighbourhood of z0, so that
g(z)1/d = ϕ(g(z)) a branch of g(z)1/d.

Identity Principle Let f, g holomorphic in Ω, Ω connected, and f(z) = g(z) for all z ∈ A ⊂ Ω where A
has limit points in Ω, then f ≡ g in Ω. (Note that to say A has limit points in Ω is to say that there exists
a sequence zn → z0, zn 6= z0, zn ∈ A, z0 ∈ Ω).

Proof of Identity Principle Consider h = f−g. Suppose z0 a limit point of A, and let d = ordh(z0) <∞,
so that h(z) = (z − z0)dg̃(z), where g̃(z0) 6= 0 and g̃(z) has no zeros near z0. This implies that z0 is an
isolated zero of h, and so z0 not a limit point of h|A = 0. This is a contradiction and implies that d = ∞
and so h ≡ 0 in some neighbourhood of z0.

Now consider the set U = {a ∈ Ω|h ≡ 0 in some neighbourhood of a}, which is obviously open. If z0 is
in the limit set of U then z0 ∈ U by the first part of the proof (i.e. if z0 a limit point of U (where h ≡ 0)
then h ≡ 0 in a neighbourhood of z0). This means that U is closed; hence U is open-closed and non-empty
which implies that U = Ω (as otherwise we could partition Ω into U and Ω\U ; the former is open and the
latter is the complement of U , which is closed, in Ω and hence open, but by hypothesis Ω is connected so
this is a contradiction) and hence h ≡ 0 on Ω.

3 Singularities

Singularity A singularity of a function f is any point a where it is not defined or not holomorphic. A
singularity is called isolated if f is holomorphic in some ∆ε(a)\{a}. An isolated singularity is called removable
if f has a holomorphic extension f̃ which is holomorphic at z0 and f̃ |∆ε(a)\{a} = f .
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Somewhat surprising (to me at least) example of removable isolated singularity The function
f(z) = z/z is not defined at z = 0, but admits the holomorphic extension f(z) = 1.

Example of a non-isolated singularity The function f(z) = 1/ sin(1/z) has singularities when 1/z =
πk, k ∈ Z, i.e. for z = 1/(πk), k ∈ Z. The singularity at z = 0 is in fact not isolated, as we can always find
another singularity arbitrarily close to 0.

Riemann extension theorem If f has an isolated singularity at a ∈ Ω and f is bounded in Ω, then the
singularity is removable.

Proof of Riemann extension theorem Consider the Laurent series expansion f(z) =
∑
n∈Z cn(z − a)n

in ∆ε(a)\{a}, where

cn =
1

2πi

∫
∂∆δ(a)

f(ζ)dζ
(ζ − a)n+1

⇒ |cn| ≤
1

2π
sup∂∆δ(a) |f |

δn+1
2πδ (3.1)

For n < 0 |cn| → 0 as δ → 0 (using that |f | is bounded, hence sup |f |/δn → 0). Hence cn = 0 for all n < 0
and f has the form f(z) =

∑
n≥0 cn(z−a)n for all z ∈ a in ∆ε(a). This defines f̃(z) a holomorphic extension

of f which can be extended to z = a, and so the singularity is removable.

Pole An isolated singularity a is called a pole is limz→a f(z) =∞.

Theorem Let f has an isolated singularity at a, then f has a pole at a ⇔ the Laurent series of f about a
has a non-zero and finite principal part.

Proof of theorem (⇒) Let f have a pole at a, and consider g(z) = 1/f(z), then g(z) is holomorphic in
some ∆δ(a)\{a} and g(z) → 0 as z → a so g is bounded (for suitable δ) and by the Riemann extension
theorem g has a holomorphic extension g̃(z). We can factorise g̃(z) = (z − a)dϕ(z), ϕ(a) 6= 0, so f(z) =
(1/(z − a)d)(1/ϕ(z)). Now 1/ϕ(z) is holomorphic in some neighbourhood of a so we can write 1/ϕ(z) =∑
n≥0 cn(z − a)n, and hence f(z)

∑
n≥0 cn(z − a)n−d =

∑
m≥−d cm+d(z − a)m.

(⇐) Let the Laurent series of f at a by f(z) =
∑
n≥−d cn(z−a)n. with d > 0. Then clearly limz→a f(z) =

∞ as we can write f(z) =
∑
n≥−d cn(z − a)n−d/(z − a)d and limz→a

∑
n≥−d cn(z − a)n−d = c−d 6= 0.

Pole order If f has a pole at a with f(z) =
∑
n≥−d cn(z − a)n then the order of the pole at a is d.

Combining singularities (Palka 5.20) Suppose that f has a pole at a of order d1 and g has a pole
at a of order d2. We can expand them both in Laurent series as f(z) =

∑
n≥d1 cn(z − a)n and g(z) =∑

n≥−d2 c
′
n(z − a)n. Consider the sum f + g. Clearly we could have cn = −c′n for some (or all) −d ≤ n < 0,

so that either f + g wil have a pole of order less than max(d1, d2) or it will have a removable singularity at
a. Next consider the product fg. Multiplying the Laurent series together we see that we will always have
a leading term c−d1cd2(z − a)−d1−d2 and thus a pole of order d1 + d2 at a. Finally consider the quotient
g/f . This is holomorphic in some ∆ε(a)\{a}. Write g(z) = (z−a)−d2ϕ(z) and f(z) = (z−a)−d1ψ(z) where
ϕ(a) 6= 0 and ψ(a) 6= 0. Hence g/f = (z−a)d1−d2ϕ(z)/ψ(z), which has a pole of order d2−d1 at a if d1 < d2

and a removable singularity at a if d1 ≥ d2.

Application of the Riemann extension theorem and Liouville’s theorem (Palka 5.27) Let f
and g be holomorphic in C and let |g(z)| ≤ |f(z)|. We will show that g(z) = cf(z) for some constant c.
Consider the quotient g(z)/f(z) (note that if f ≡ 0 then g ≡ 0 and the result holds trivially, we assume
f 6≡ 0 from now on). This is holomorphic except for points where f(z) is zero (these are isolated as f(z) 6≡ 0
is holomorphic). As |g(z)/f(z)| ≤ 1 we see that g(z)/f(z) is bounded and so by the Riemann extension
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theorem can be extended to a holomorphic function at any possible singularities. The extended function is
bounded and holomorphic in C and so constant by Liouville’s theorem. We conclude that g(z) = cf(z).

Meromorphic A function f is called meromorphic in Ω if it is holomorphic in Ω\A where A ⊂ Ω discrete
and f has a pole at all points a ∈ A. We denote by M(Ω) the space of functions which are meromorphic in
Ω.

Examples of meromorphic functions All rational functions (ratios of two polynomials) are meromor-
phic on C. The function f(z) = 1/ sin(1/z) is meromorphic on C\{0}.

Meromorphic functions on Ω form a ring

Essential singularity A singularity of a function f is called essential if it is neither removable nor a pole.
We have that f has an essential singularity at a ⇔ the principal part of the Laurent series expansion of f
about a is infinite.

Casoratti-Weierstrass Theorem If f has an essential singularity at a then f(∆ε(a)\{a}) is dense in C
for all small ε.

Proof of Casoratti-Weierstass Theorem If f(∆ε(a)\{a}) is not dense in C then there exists w0 ∈ C
and δ > 0 such that |f(z) − w0| ≥ δ for all z ∈ ∆ε(a)\{a}. Define g(z) = 1/(f(z) − w0), then g(z) has a
singularity at a but |g(z)| ≤ 1/δ, so g is bounded and this singularity is removable. Also 1/g must have
an isolated singularity at a, which is either a pole or a removable singularity, and so the singularity of
f(z) = 1

g(z) +w0 at a is either a pole or a removable singularity, contradicting the fact that a is an essential
singularity.

Great Picard Theorem Another remarkable result: if f has an essential singularity at a then C\f(∆ε(a)\{a})
has at most one point.

Example of essential singularity The functions f(z) = e1/z, g(z) = sin 1/z and h(z) = cos 1/z all have
essential singularities at 0, as can be seen from writing out the power series definitions of these functions
and noting that they give a Laurent series with infinite principal part.

4 Argument Principle

Theorem Let f ∈M(Ω), D ⊂ Ω a simple region, γ = ∂D, and let f have no poles or zeros on γ. Then

1
2πi

∫
γ

f ′(z)
f(z)

dz =
∑
k

ordf (ak) = number of zeros - number of poles of f in Ω (4.1)

where ak is a zero or pole.

Proof of theorem We use the residue theorem which tells us that

1
2πi

∫
γ

f ′(z)
f(z)

dz =
∑
ak

Resak
f ′(z)
f(z)

(4.2)

Now, for a a pole or zero we can expand f(z) = (z − a)dϕ(z) where d = ordf (a) is either the zero order or
minus the pole order at a. Hence f ′(z) = d(z − a)d−1ϕ(z) + (z − a)ϕ′(z) and so

f ′(z)
f(z)

=
d

z − a
+
ϕ′(z)
ϕ(z)

(4.3)
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which has residue at d = ordf (a) at a.

Rouché’s Theorem Let F, f ∈ M(Ω), D ⊂ Ω a simple region and D ⊂ Ω, γ = ∂D and |f(z)| < |F (z)|
on γ, and let f and F have no poles on γ. Denote by nF the number of zeros minus the number of poles of
F , then nF+f = nF .

Proof of Rouché’s Theorem Note that |F (z)| > |f(z)| ≥ 0 so F has no zeros on γ; similarly, |F + f | ≥
|F | − |f | > 0 so F + f has no zeros on γ. Define

ϕ(t) =
1

2πi

∫
γ

F ′(z) + tf ′(z)
F (z) + tf(z)

= nF+tf 0 ≤ t ≤ 1 (4.4)

so that ϕ(0) = nF and ϕ(1) = nF+f . We have |F + tf | ≥ |F | − t|f | > 0, so F + tf has no zeros on γ, and
hence ϕ(t) ∈ N for all t. As the integrand in the definition of ϕ(t) is continuous in both z and t, ϕ(t) is also
continuous and hence it must be constant (as it is valued in the natural numbers), hence the result.

Open Mapping Theorem Let f holomorphic in Ω, Ω connected and f 6≡ constant, then f(Ω) is open.

Proof of Open Mapping Theorem Let w0 ∈ f(Ω), so that w0 = f(z0) for some z0 ∈ Ω. As f 6≡
constant we have that f 6≡ w0 in any neighbourhood of z0, so that ordf−w0(z0) = d 6=∞. We can factorise
f(z) − w0 = (z − z0)dϕ(z) with ϕ(z0) 6= 0. We now want to count the number of solutions of f(z) = w for
w near w0.

Now, f(z0) = w0 implies that f(z)−w0 has a zero of order d at z0. Let D = ∆ε(z0) be such that D ⊂ Ω
and ϕ(z) 6= 0 on D. Then f(z)−w0 has no zeros on ∂D and d zeros in D. Now as f(z)−w0 is continuous,
|f(z)− w0| has a minimum on ∂D, so there exists δ > 0 such that |f(z)− w0| ≥ δ for z ∈ ∂D. Take u ∈ C
such that |u| < d and set f̃(z) = u for all z ∈ C. Then |f̃ | < |f(z)− w0| on ∂D, and by Rouché’s theorem,
f(z)− w0 and f(z)− w0 + f̃(z) have the same number of zeros. Hence f(z) = w0 − u has a solution for all
u such that |u| < δ, and so ∆δ(w0) ⊂ f(Ω) and so f(Ω) is open.

Univalence Theorem Let f holomorphic in Ω, z0 ∈ Ω then f injective in some neighbourhood of z0

⇔ f ′(z0) 6= 0.

Proof of Univalence Theorem (⇐) Suppose that f ′(z0) 6= 0. Let w0 = f(z0), then f(z) − w0 =
(z − z0)ϕ(z) with ϕ(z0) 6= 0, and f(z) = w ⇔ (z − z0)ϕ(z) + w0 − w = 0 for w near w0. Take ∆ε(z0)
such that ϕ(z) 6= 0 on ∆ε(z0), then (z − z0)ϕ(z) has one zero in ∆ε(z0). Now |f(z)| < |(z − z0)ϕ(z)| on
∂∆ε(z0) and |(z − z0)ϕ(z)| 6= 0 on ∂∆ε(z0). Denote δ = min∂∆ε(z0) |(z − z0)ϕ(z)| > 0 and take w such that
|w−w0| < δ. Then f(z) = w has one solution in ∂∆ε(z0) (by Rouché’s theorem for (z−z0)ϕ(z) and w−w0).
Choose a neighbourhood U of z0 such that if z ∈ U then |f(z) − w0| < δ by continuity, then f is injective
in U .

(⇒) Let f be injective in some neighbourhood of z0, so that then f 6≡ constant in that neighbourhood.
Suppose that f ′(z0) = 0 so that ordf(z)−w0(z0) = d > 1 and we can factorise f(z)− w0 = ψ(z)d. Choose U
a neighbourhood of z0 such that f injective in U , ψ holomorphic in U and ψ 6≡ constant. Then ψ(U) is open
and ψ(z0) = 0. Hence there exists ∆ε(0) ⊂ ψ(U). Take τ1 = ε/2 and τ2 = αdε/2 where αd 6= 1 and αdd = 1.
Then τ1 6= τ2 ∈ ∆ε(0) ⊂ ψ(U) but τd1 = τd2 , and so there exists z1, z2 ∈ U such that ψ(z1) = τ1, ψ(z2) = τ2.
Now z1 6= z2 but f(z1) = ψ(z1)d = ψ(z2)d = f(z2) and so f is not injective, a contradiction.

Inverse Function Theorem Let f holomorphic in Ω, f injective then f(Ω) open, then f−1 : f(Ω) → Ω
holomorphic.
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Proof of Inverse Function Theorem That f(Ω) is open follows from the Open Mapping theorem. As f is
injective there exists an inverse f−1 : f(Ω)→ Ω. Now f−1 is continuous if for all U open (f−1)−1(U) = f(U)
open, which is true. We will use the Univalence Theorem to show that lim f−1(w)−f−1(w0)/(w−w0) exists.
Now, this equals limw→w0(z − z0)/(f(z) − f(w0), and we know that limz→z0(f(z) − f(z0))/(z − z0) exists
and is non-zero (by the Univalence Theorem). We also need w → w0 as z → z0 but this holds by continuity,
hence

lim
w→w0

f−1(w)− f−1(w0)
w − w0

=
1

limz→z0
f(z)−f(z0)

z−z0

=
1

f ′(z0)
(4.5)

exists, and f−1 is C-differentiable and so f−1 is holomorphic.

5 Riemann Mapping Theorem

Lemma

Proof of lemma

Riemann Mapping Theorem If Ω ⊂ C, Ω 6= C, then there exists a biholomorphic map f : Ω→ ∆.

Outline of proof of Riemann Mapping Theorem

6 Möbius transformations and automorphisms

Riemann sphere We obtain the Riemann sphere by adding the point at infinity to C. The resulting
space is denoted C = C∪{∞}. We have the following rules for manipulating the point at infinity: 1/0 =∞,
1/∞ = 0.

The terminology “Riemann sphere” comes from the fact that we can in fact represent every point in C as
a point on the unit sphere S2. If we embed the complex plane within R3 we obtain the point (x, y, z) ∈ S2

corresponding to the point z ∈ C by projecting from z to the north pole of the unit sphere at the origin:
the point where this projection intersects the sphere gives the coordinates of the point as an element of the
latter. Note that ∞ corresponds to the north pole of the sphere.

The map

τ(x, y, t) =
x+ iy

1− t
(6.1)

maps a point (x, y, t) on the Riemann sphere to a point in C. The inverse mapping, for a point z = x+ iy, is

τ−1(z) =
(

2x/(1 + |z|2), 2y/(1 + |z|2), (1− |z|2)/(1 + |z|2)
)

(6.2)

establishing that τ is an isomorphism (and in fact a homeomorphism).
The topology on C can be thought of as being induced by τ . The open sets in C are the open sets in C

and the complements of compact subsets of C (i.e. discs around ∞).

Holomorphic/meromorphic at ∞ To be able to define concepts of holomorphy etc. at ∞ we will need
the inversion

σ(z) =
1
z

(6.3)

which maps C to C and in particular swaps∞ and 0. This can essentially be thought of as a change of chart
on the Riemann sphere. On C we have the following:

• z0 ∈ C, f(z0) ∈ C: usual holomorphy/meromorphy.
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• z0 =∞, f(z0) ∈ C: f holomorphic/meromorphic at ∞ ⇔ f ◦ σ holomorphic/meromorphic at 0.

• z0 ∈ C, f(z0) =∞: f holomorphic/meromorphic at ∞ ⇔ σ ◦ f holomorphic/meromorphic at 0.

• z0 =∞, f(z0) =∞: f holomorphic/meromorphic at ∞ ⇔ σ ◦ f ◦ σ holomorphic/meromorphic at 0.

Theorem Any meromorphic function on C is rational.

Proof of theorem As f is meromorphic it has isolated poles, so for all a ∈ C there exists an open set
Ua ⊂ C such that a ∈ Ua and f is holomorphic in Ua\{a}. We have C =

⋃
a∈C Ua and as C is compact

(recall it is isomorphic to S2) there exists a finite subcover C = Ua1 ∪ · · · ∪ UaN . This (somewhat subtly)
shows that f has n ≤ N poles. We now induct on the number of poles.

If n = 0 then f is holomorphic in C and so is a map f : C→ C, hence limz→∞ f(z) = f(∞) ∈ C. Thus
f is bounded in a neighbourhood of ∞, i.e. on {|z| ≥ R. As a continuous function on a compact set f is
also bounded on {|z| ≤ R} and so is globally bounded. By Liouville’s theorem the restriction of f to C is
constant, and by continuity f is constant on C, and so rational.

Now let f have n poles. If f has a pole at ∞ then f ◦ σ has a pole at 0. In this case it suffices to show
that f ◦ σ is rational, as then f ◦ σ ◦ σ = f is also rational. Hence we can suppose that f has a pole at
a ∈ C. In some ∆ε(a) we have the Laurent series expansion f(z) =

∑
k∈Z ck(z−a)k with finite principal part

p(z) =
∑
k<0 ck(z− a)k. Clearly p(z) is rational and holomorphic in C\{a}. If f has poles at a, a1, . . . , an−1

then f − p has poles a1, . . . , an, as near a f(z) − p(z) =
∑
k≥0 ck(z − a)k, a convergent power series, and

hence f − p has no pole at a. So f − p has fewer poles than f and so by the induction hypothesis is rational.
As p is rational it follows that f is rational.

Möbius transformation A Möbius transformation is a mapping of the form

f(z) =
az + b

cz + d
(6.4)

where a, b, c, d ∈ C satisfy ad− bc 6= 0. Note that f(z) has a pole at z = −d/c and so is meromorphic on C.
Extending the definition of f(z) from C to C we obtain a meromorphic function on the extended complex
plane.

Möbius transformations and matrices It is clear that we can associate a Möbius transformation to
each two-by-two invertible complex matrix

A =
(
a b
c d

)
↔ fA(z) =

az + b

cz + d
(6.5)

There is not a uniquely defined correspondence, as we see that scaling A by any non-zero complex number
λ does not change the Möbius transformation fA.

Group structure of Möbius transformations

Automorphism An automorphism of Ω is a biholomorphic map f : Ω→ Ω.

Automorphisms of complex plane C We claim that Aut (C) consists of affine linear transformations,
f(z) = az + b, a, b ∈ C, a 6= 0. It is clear that any such transformation maps C biholomorphically to itself.
To see that these exhaust all such maps, suppose that f(z) is a biholomorphic map of C to itself. Such
a map has a power series expansion valid in the entire plane, f(z) =

∑
n cnz

n. As f(z) is not identically
constant, an 6= 0 for some n ≥ 1. We then have a singularity as z →∞ which is either a pole or an essential
singularity. If essential, then by the Casoratti-Weierstrass theorem, the image of any disc V around ∞ is
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dense in C. In particular if we consider a disc V around ∞ and a disc U around 0 then f(U)∩ f(V ) 6= ∅. A
point in the intersection then has a preimage in U and a preimage in V , contradicting the injectivity of f .
We conclude that the singularity is a pole, so that the power series expansion must terminate after finitely
many terms. Suppose that f(z) =

∑m
n≥0 cnz

n. If m > 1 then f ′(z) is a polynomial of degree at least one,
and so has a root in C. But injectivity requires that f ′(z) 6= 0 for all z ∈ C. We conclude that f must be of
the form f(z) = az + b.

Automorphisms of extended complex plane C We claim that Aut (C) consists of all Möbius transfor-
mations. It is clear that any such transformations maps C biholomorphically to itself (we can explicitly write
down the inverse fA−1 for any Möbius transformation fA). Now suppose that f is an arbitrary biholomorphic
map of C. If f(∞) =∞, set g(z) = f(z). If f(∞) = w0 6=∞, set g(z) = 1/(f(z)− w0) so that g(∞) =∞.
In either case g(z) gives a biholomorphic map of C to itself, and so is of the form g(z) = az + b, which is
Möbius. Then either f(z) = g(z) or 1/g(z) + w0, and is Möbius.

Automorphisms of unit disc ∆ We claim that Aut ∆ consists of maps ϕa,θ(z) = eiθ az−1
az+1 . We already

know such maps are biholomorphic mappings. Now let f(z) be a biholomorphic map of the disc onto itself.
Suppose that f(0) = a, and define g = ϕa ◦ f so that g(0) = 0. By the Schwarz lemma, |g(z)| ≤ |z|. But g
is also biholomorphic, and its inverse g−1 also sends 0 to 0, so |g−1(w)| ≤ |w|, i.e. z ≤ |g(z)|, so |g(z)| = |z|
and g is a rotation.

Now let f−1(0) = b and let h = f ◦ ϕb so that h(0) = 0. By the same arguments, |h(z)| = |z| so that
h(z) is a rotation. We also see that f = h ◦ ϕ−1

b = h ◦ ϕb which is of the desired form.

Automorphisms of upper half-plane H
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