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These notes cover a lot of the 2008-2009 Mathematical Neuroscience course given
by Dr. Conor Houghton, with an inclination towards the theoretical aspects of the
course (there are no examples involving monkeys, for instance). The material is all
taken either from the course lectures or from the book Theoretical Neuroscience
by Dayan and Abbott.
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Ma481 Mathematical Neuroscience Section 1: Membrane electrodynamics

1 Membrane electrodynamics

1.1 Introduction to neurons

The brain is composed of neurons - specialised cells which communicate via electrical
signals. As the name suggests, mathematical neuroscience is concerned with applying math-
ematical methods to investigate the workings of the brain.

We begin by analysing the current and voltage of a single neuron. We model the neuron
as a simple cell, with an impermeable membrane pierced by specialised channels and pumps
that, under certain conditions, allow various types of ions to flow in and out of the cell.
The exchange of ions - and the accompanying change in electric current - is what allows the
neuron to communicate.

In reality typical neurons are composed of three main parts: a body called the soma
which aggregates and responds to signals, a long strand called the axon which carries signals
out from the soma, and filament-like structures called dendrites which carry signals into the
soma.

Figure 1: Drawing by Santiago Ramn y Cajal of neurons in the pigeon cerebellum
(source: Wikipedia)

The essential idea is that there exist electrical and chemical potential differences between
the interior of the neuron and the outside world. The electrical potential difference, or
voltage, is a result of excess positive or negative charge accumulating within the neuron.
The chemical potential difference, or chemical gradient, is a result of there being different
concentrations of particular ions inside and outside the neuron.

For instance, there is an excess of sodium ions (Na+) outside the neuron, and an excess
of potassium ions (K+) inside. In general the electrical potential is negative, ≈ −70mV (that
is to say that we view the electric potential just outside the neuron as being 0mV, while that
of the interior as being -70mV).
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Positive ions flowing out of the neuron make the membrane potential more negative (as
it increases the amount of positive charge on the outside and decreases the amount on the
inside), while positive ions flowing in make the membrane less negative. Conversely, negative
ions flowing in decrease the membrane potential and negative ions flowing out increase the
potential.

We must adopt a convention for current: we say that positive ions leaving the neuron or
negative ions entering the neuron is a positive current.

If the voltage rises above a certain threshold value, sodium channels open in the mem-
brane, allowing sodium ions to enter the neuron. By the above this causes the membrane
potential to rise, perhaps to positive values. Once it has reached a high enough value, potas-
sium gates in the membrane open, letting potassium ions exit the cell and causing the voltage
to decrease rapidly. The overall effect of a sudden rise in voltage is called a spike, and this
then propagates down the axon.

1.2 Nernst equation

The ions surrounding and within the neuron are in constant thermal motion. The
Maxwell-Boltzman distribution is a model for the energy distribution of a classical gas of
non-interacting particles at a constant temperature T :

p(E) =
1

kT
exp

(
− E

kT

)
where k is Boltzman’s constant, k = 1.38× 10−23m2 kg s−2 K−1 and p(E)dE gives the prob-
ability of a particle having energy between E and dE. The average kinetic energy is

〈E〉 =
1

kT

∫ ∞
0

dE E exp

(
− E

kT

)
= kT

We can apply this distribution as a simple model for the sea of ions surrounding and contained
within the neuron. We derive the voltage scale of neuron electrodynamics by assuming that
the average thermal energy kT is roughly equal to the electrical potential energy qV of an ion
of charge q, so that voltage changes can modulate ion flows. This gives the typical voltage
Vt as

Vt ≈
kT

q
≈ 27 mV

taking body temperature ≈ 311.15K as T and the elementary charge 1.6× 10−19C as q.
Now let us study the effects of chemical gradients and the membrane potential on an ion

of charge zq, where q = 1.6× 10−19. Let ρi denote the concentration of the type of ion inside
the neuron, and ρo denote the concentration outside the neuron. The chemical gradient can
be thought of as the tendency for ions to flow from high concentration to low concentration.
From this we see that the flow out due to the gradient will be ∝ ρi and the flow in will be
∝ ρo.
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However whether or not a particular ion is able to move across the membrane depends
on its charge and the membrane potential. For instance, a positively charged ion inside a
neuron with a negative membrane potential E will only be able to cross the membrane if
its kinetic energy exceeds the work needed to overcome the potential barrier. This work is
given by the charge on the ion multiplied by the change in potential difference when crossing
the boundary, hence W = zq(0 − E) = −zqE (note E < 0 and q > 0 so this is a positive
quantity). The proportion of ions with kinetic energy greater than this is

p(E > −zqE) =
1

kT

∫ ∞
−zqE

exp

(
− E

kT

)
dE = exp

(
zqE

kT

)
= exp

(
zE

Vt

)
where you must excuse the use of E for both the electric potential and the integration variable.
We are interested in the membrane potential E at which the flow of ions out equals the flow
of ions in. This is known as the equilibrium potential Ex of the ion type x, and is found from

ρi exp

(
zEx
Vt

)
= ρo ⇒ Ex =

Vt
z

log
ρo
ρi

For instance, EK+ ≈ −70mV to -90mV, ENa+ ≈ 50mV, ECa2+ ≈ 150mV.

1.3 Hodgkin-Huxley equation

The membrane potential leads to a build-up of negative and positive charge on opposite
sides of the membrane. This storage of charge is known as a capacitance and we have the
formula

Q = CmV

where Q is the charge, V is the voltage (membrane potential) and Cm is the membrane
capacitance. We will more often use the specific capacitance cm, defined as the capacitance
per unit area, cm = Cm

A
, with A the membrane area.

Now, the current is just the time derivative of the charge, I = dQ
dt

, so we have

I = Cm
dV

dT

giving us a general equation for the change in voltage. To find I in terms of V , we can use
Ohm’s law, V = IRm, where Rm is the membrane resistance. Dividing by the membrane
area A we get this in terms of specific current and resistance, i = V

rm
= gmV , where gm ≡ r−1

m

is the membrane conductance per unit area. Note that here we have rm = RA.
In analysing the current flow across the membrane we sum the currents ix flowing as a

result of the motion of each ion type x. Notice that the current ix will obviously vanish at
the equilibrium voltage Ex, as then there will be no net movement of ions. We thus apply
Ohm’s law to the voltage relative to the equilibrium voltage, hence ix = gx(V −Ex), and the
total membrane current im is given by im =

∑
x ix.

We also need to take into account the possibility of experimental input - for instance a
current Ie induced by an electrode inserted into the cell - and what signs we are to give our
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voltage. With our (somewhat confusing) conventions, a positive current (for instance given
by positive ions flowing out) decreases V , and so we attach a minus sign to the membrane
current. Conversely the electrode current is by convention defined to flow into the neuron,
so it has a positive sign. This gives the Hodgkin-Huxley equation

cm
dV

dt
= −im +

Ie
A

with im = gl(V −El) + gK+(V −EK+) + gNa+(V −ENa+) (further currents can obviously be
added).

Here il = gl(V −El) is the leak current. This is the current caused by the constant leakage
of ions out of the neuron. The bar over gl signifies that the leak conductance is constant. The
conductances corresponding to the sodium and potassium currents depend on the dynamics
of the ion gates involved, and depend on voltage and hence time (see later).

1.4 Integrate and fire

In the leaky integrate and fire model we just take into account the leak and electrode
currents:

cm
dV

dt
= −gl(V − El) +

Ie
A

with the additional rule that if the voltage equals the threshold value, V = Vth we get a spike
and the voltage resets, V = Vreset. Multiplying across by rm, the equation becomes

τm
dV

dt
= El +RmIe − V

where τm = cmrm has dimension of time. This is an inhomogeneous first order ordinary
differential equation and can be solved by multiplying across by the integrating factor et/τm :

dV

dt
et/τm +

1

τm
V et/τm =

1

τm
(El +RmIe)e

t/τm ⇒ d

dt
(V et/τm) =

1

τm
(El +RmIe)e

t/τm

⇒ V (t)et/τm − V (0) = (El +RmIe) e
t/τm − (El +RmIe)

and so
V (t) = El +RmIe + (V (0)− El −RmIe) e

−t/τm

As t→∞, V (t)→ El +RmIe. If El +RmIe > Vth then at some time tisi we will get a spike,
where we let V (0) = Vreset and V (tisi) = Vth, with tisi being the interspike interval:

V (tisi) = Vth = El +RmIe + (Vreset − El −RmIe) e
−tisi/τm

⇒ tisi = τm ln

(
El +RmIe − Vreset

El +RmIe − Vth

)
The firing rate is given by risi = 1

tisi
.
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In reality it is found that the firing rate is not constant (for constant Ie) as implied by the
above equation, but drops as time progresses. This is due to spike rate adaptation, in which
a neuron fires less when subjected to the same input for an extended period of time. We
can model this by introducing an extra conductance channel, assumed to allow the passage
of K+ ions:

τm
dV

dt
= El +RmIe − V − rmgsra(V − E+

K)

where

τsra
dgsra
dt

= −gsra

and we set gsra = gsra + ∆gsra whenever a spike occurs.

1.5 Hodgkin-Huxley equation: gating probabilities

In the Hodgkin-Huxley equation the conductances gK+ , gNa+ are not constant but depend
on the number of open ion channels. Letting gx be the conductance for ion type x that would
result from all channels being open, we have gx = gxPx, where Px is the proportion of open
channels.

For K+ the channel is a persistent channel - it opens as the voltage increases and stays
open until the voltage decreases. The channel consists of four subgates, all of which must be
open for current to pass through. We write the probability for a gate to be open as n, then
PK+ = n4, and we have

dn

dt
= αn(V )(1− n)− βn(V )n

where αn gives the rate at which closed subgates open and βn gives the rate at which open
subgates close.

For Na+ the channel is a transient channel, which opens then closes again as the voltage
increases, due to being composed of two subgates with opposite voltage dependences. The
first subgate is itself composed of three subgates, and we let m be the probability for one
of these subgates to be open. We also let h be the probability for the second subgate to be
open, so that PNa+ = m3h. The probabilities m and h are governed by the equations

dm

dt
= αm(V )(1−m)− βm(V )m

dh

dt
= αh(V )(1− h)− βh(V )h

If we divide across by αx(V ) + βx(V ) (with x = n,m, h) the above equations take the form

τx(V )
dx

dt
= x∞(V )− n

with τx(V ) = (αx(V ) + βx(V ))−1 and x∞(V ) = αn(V )/αx(V ) + βx(V ). We see that for fixed
V , x relaxes towards x∞(V ) with timescale τx(V ).

These gates contribute towards the spiking dynamics as follows: as V increasesm increases
and for a brief period both m and h are substantially greater than zero, causing sodium gates
to open and sodium ions to enter the neuron. This increases V further (creating a spike),
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and makes h decrease to close to zero and n to increase, causing potassium gates to open.
Potassium ions enter and this causes V to drop back to its normal level.
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2 Synapses

2.1 Introduction to synapses

The point where an axon ends and meets a dendrite or sometimes the soma of a different
neuron is called a synapse. The very end of the axon is called the terminal button, and
between it and the dendritic spine is a small (approximately 10nm) gap called the synaptic
cleft. The terminal button contains vesicles, which can be thought of as a small bubbles of
liquid within the axon, containing a special molecule called neurotransmitter. When a spike
arrives at the terminal button it causes some vesicles to move to the surface of the axon and
release neurotransmitter into the synaptic cleft. The neurotransmitter binds with channels
on the other side of the cleft, causing them to open, which allows ions to cross the membrane
of the other neuron. This induces a change in the voltage in the other neuron which diffuses
towards the soma. The released neurotransmitter is then reabsorbed by the original vesicles.

The induced voltage change is called the post-synaptic pulse, and its sign depends on
the neuron which released the neurotransmitter. It is positive for excitatory neurons and
negative for inhibitory neurons.

2.2 Modelling synapses

We denote the post-synaptic conductance by gs, then we have gs = gsPrelPs, where gs
is the maximum possible synaptic conductance, Prel is the fraction of maximum possible
neurotransmitter released and Ps is the fraction of open channels in the dendritic spine. We
set Prel = 1 for simplicity. We have

dPs
dt

= αs(1− Ps)− βsPs

where the closing rate βs is assumed to be constant, and αs is proportional to some power k
of the transmitter concentration ρ.

When a spike arrives at the terminal button, αs increases rapidly with the release of
neurotransmitter, but then quickly returns to zero due to reabsorption. This gives us a
simple model of synapses, where we model αs as a square pulse: i.e. it jumps from 0 to some
large positive value much greater βs when a spike arrives, stays at this value for a time T
and then returns to 0. Thus in the presence of a spike we ignore βs and have the equation
(assuming the spike arrives at time t = 0)

dPs
dt

= αs − αsPs ⇒
d

dt
(Pse

αst) = αse
αst

hence
Ps(t) = 1 + (Ps(0)− 1)e−αst 0 ≤ t ≤ T
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while after the spike (t ≥ T )

dPs
dt

= −βsPs ⇒ Ps(t) = Ps(T )e−βst

Now suppose Ps(0) = 0, i.e. there has been no previous spike in the immediate past. Then
we have, for 0 ≤ t ≤ T , Ps(t) = 1− e−αst, so that Ps rises to a maximum Pmax = 1− e−αsT .
Now in general using this quantity we have

Ps(T ) = 1 + (Ps(0)− 1)(1− Pmax)⇒ Ps(T ) = Ps(0) + Pmax(1− Ps(0))

so we see that the effect of the spike arriving was to increase Ps by Pmax(1− Ps(0)).
This leads to the following simple model of synaptic conductivity: we model Ps using the

equation
dPs
dt

= −βsPs

and when a spike arrives we have

Ps(t)→ Ps(t) + Pmax(1− Ps(t))
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3 Decoding

We wish to study the problem where we have a stimulus S, ideally depending on some
parameter(s), and a response R, ideally described by some variable(s), related by some math-
ematical operation.

3.1 Spike trains

Often our response will be in the form a spike train. We can treat this simply as a list of
times:

t = {t0, t1, . . . , tn}

which we can replace with a function

ρ(t) =
∑
ti∈t

δ(t− ti)

called the neural response function, which in turn allows us to form from some function h(t)
a function

∑
ti
h(t− ti) by integrating:∑
ti

h(t− ti) =

∫
dτ h(τ)ρ(t− τ) =

∑
ti

∫
dτ h(τ)δ(t− ti − τ)

We define the spike count rate as

r =
1

T

∫ T

0

dt ρ(t) =
n

T

where T is the length of the experiment. This number isn’t terribly useful as it doesn’t
take into account the distribution of spikes as a function of time during the course of the
experiment, and also relies on just a single experiment. For the latter, we may take average
over a number of experiments i.e. add up the results from each experiment and divide by
the number of experiments. The trial-averaged neural response function 〈ρ(t)〉 is then

〈ρ(t)〉 =
1

N

∑
i,j

δ(t− tji )

where N is the number of trials and tji is the ith spike in the jth trial. We then define the
firing rate

r(t) =
1

∆t

∫ t+∆t

t

dt 〈ρ(t)〉

where we have ∆t→ 0 and N →∞. Obviously this is an idealised quantity.
We can think of r(t) as defined above as giving the average number of spikes occurring

between t and t+ ∆t, or more formally view r(t)∆t as the probability of a spike occurring in
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the small interval ∆t containing t. The former view gives us a crude method to approximate
r(t) from a given spike train: divide the total time interval over which the spike train occurs
into intervals of length ∆t and count the number of spikes occurring in each interval. The
firing rate in a given interval is then given by the number of spikes occurring in that interval,
divided by ∆t. This gives a graph resembling a histogram. However this is an unsatisfactory
method, depending on the position of each interval ∆t and only giving discrete values, for
instance.

An improvement can be made by sliding an interval or window of width ∆t along the
spike train, with the spike rate at each point t being given by the number of spikes in the
interval [t, t+ ∆t], divided by ∆t. If the spikes occur at times ti, then the rate found in this
method is given by

r(t) =
∑
i

w(t− ti)

where w(t) is the window function

w(t) =

{
1

∆t
−∆t

2
≤ t ≤ ∆t

2

0 otherwise

i.e. r(t) has no contribution for each i unless t − ti is within the interval ∆t starting at t.
Now, we have

r(t) = 〈
∫ ∞
−∞

dτ ρ(τ)w(t− τ)〉

where we now consider the firing rate averaged over many trials. This integral is called a
linear filter, with w the filter kernel. It also equals the trial-average of the convolution ρ∗w(t),
where

f ∗ g(t) =

∫ ∞
−∞

dτ f(τ)g(t− τ)

For w we can actually take any function localised near τ = 0 to get an approximate firing

rate, for instance a Gaussian w(τ) = 1√
2πσ

exp
(
− τ2

2σ2

)
. Note that∫

r(t)dt = 〈
∫
dt

∫
dτ ρ(τ)w(t− τ)〉 = 〈

∫
dτ ρ(τ)〉

as w is localised and integrates out to one. Hence we see that inside an integral, r(t) and
〈ρ(t)〉 agree.

3.2 Stimulus and spike-triggered average

We now want to study stimuli s(t). To do so we look at responses - in this case spike
times - and see what the stimulus was doing beforehand. This leads to the idea of the spike-
triggered average, C(τ), which gives the average value of the stimulus a time τ before a spike.
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It is defined as

C(τ) =

〈
1

n

∑
ti

s(ti − τ)

〉
≈ 1

〈n〉

〈∑
ti

s(ti − τ)

〉
that is, we find the value of the stimulus a time τ before each spike ti, sum these, and divide
by the total number of spikes, as well as averaging over trials (as a consequence of which we
assume that n ≈ 〈n〉, i.e. the number of spikes in each trial is roughly equal to the average
number of spikes in each trial, over many trials).

We can also write

C(τ) =
1

〈n〉

〈∑
ti

s(ti − τ)

〉
=

1

〈n〉

∫ T

0

dt 〈ρ(t)〉s(t− τ) =
1

〈n〉

∫ T

0

dt r(t)s(t− τ)

as inside an integral r(t) and 〈ρ(t)〉 coincide. This is similar to the response-stimulus corre-
lation function

Qrs(τ) =
1

T

∫ T

0

dt r(t)s(t+ τ)

which gives a measure of how much s(t+τ) depends on r(t). We see that C(τ) = T
〈n〉Qrs(−τ).

3.3 Linear filter model

We would also like to develop a method where given some stimulus s(t) we can produce
a predicted firing rate r̃(t) that agrees with the experimentally measured rate r(t) as closely
as possible. The starting point is to expand r̃(t) in powers of the stimulus using a Volterra
expansion (the functional equivalent of a Taylor series):

r̃(t) = r0 +

∫ ∞
0

dτ s(t− τ)h(τ) +

∫
dτ1dτ2h(τ1, τ2)s(t− τ1)s(t− τ2) + . . .

where h(τ) is some weighting function that determines how much the stimulus at t − τ
contributes to r̃(t). It can be thought of as characterising some property of the neuron that
causes spiking.

We will keep only the constant and first order terms of the model, and calculate the
function h(τ) by minimising the error in r̃(t) i.e. how much it differs from r(t). The error
squared is

ε2 =

∫ T

0

dt (r − r̃)2

and we minimise it with respect to h(τ) using the functional derivative:

∂h(τ ′)

∂h(τ)
= δ(τ ′ − τ)

As r(t) has no h dependence, we have

∂ε2

∂h(τ)
= −

∫
dt 2(r(t)− r̃(t)) ∂r̃(t)

∂h(τ)
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and

∂r̃(t)

∂h(τ)
=

∂

∂h(τ)

∫ ∞
0

dτ ′ s(t−τ ′)h(τ ′) =

∫ ∞
0

dτ ′ s(t−τ ′)∂h(τ ′)

∂h(τ)
=

∫ ∞
0

dτ ′ s(t−τ ′)δ(τ ′−τ) = s(t−τ)

so we get

−1

2

∂ε2

∂h(τ)
=

∫ T

0

dt r(t)s(t− τ)−
∫ T

0

dt

∫ ∞
0

dτ ′ s(t− τ ′)h(τ ′)s(t− τ) = 0

ignoring the term containing the constant r0 by assuming s(t− τ) integrates to zero over the
course of the experiment (i.e. the stimulus has zero average). We now let t − τ = t′ in the
second integral, obtaining

1

T

∫ T

0

dt r(t)s(t− τ) =

∫ ∞
0

dτ ′h(τ ′)
1

T

∫
dt′ s(t′ + τ − τ ′)s(t′) = 0

Now on the left-hand side we have a stimulus-response correlation function Qrs(−τ), while
the t′ integral on the right-hand side gives a stimulus-stimulus correlation function Qss(τ−τ ′).
So we have the following integral formula for h(τ):∫

dτ ′h(τ ′)Qss(τ − τ ′) = Qrs(−τ)

One way of solving this is to discretise time by letting τ = i∆t, then we have

Qss(τ − τ ′) = Qss([i− j]∆t) = Qss
ij

which we view as a matrix with entries indexed by i and j. Similarly,

h(τ ′) = h(j∆t) = hj Qrs(−τ) = Qrs(−i∆t) = Qrs
i

which leads to the following matrix equation

Qss
ij hj = Qrs

i

from which we can solve for hj by inversion. Note that in this discretisation we have r̃k = skihi
which says that the rate at time k∆t is given by a weighted sum over the stimuli at past
times −i∆t.

We can also apply Fourier methods to solve for h, using the fact that the Fourier transform
of a convolution f ∗ g equals the product of the Fourier transforms of f and g, as we have∫
dτ ′h(τ ′)Qss(τ − τ ′) = h ∗Qss(τ).

A weakness of this linear model is that it gives us no information about the spike times
themselves, just the rate. There are also problems related to the matrix inversion - small
eigenvalues dominate the inverse, and this increases the amount of noise in the solution. Also
the rate r(t) itself depends on the smoothing kernel chosen, so differs from model to model.
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4 Poisson processes

One way of obtaining predictions for the spike times is to use Poisson processes. A
Poisson process is a statistical model which makes the following assumptions: i) that the
occurrences of events are statistically independent, ii) in a sufficiently short length of time δt
only one event can occur, and iii) that the probability of exactly one event occurring in the
time interval δt is rδt, i.e. it is proportional to the length of the interval. In the context of
spiking, we assume that spikes occur with a rate r and that the timing of one spike has no
effect on the timing of any other spike (so we ignore refractory periods and other factors).

The probability distribution for n spikes at times (t1, . . . , tn) in the time interval [0, T ] is
given by

P [(t1, . . . , tn)] =
n!

T n
PT [n]

where PT [n] is the probability that n spikes occur in the time interval [0, T ], the n! factor
takes into account that there are n! orderings of the spike times and the 1/T n factor arises as
given that there is one spike in [0, T ] then the probability density for spike time is p(T ) = 1/T .
We calculate PT [n] using the assumption that spiking follows a Poisson process.

4.1 Homogeneous Poisson process

In the homogeneous Poisson process we assume that the rate r is time-independent.
Subdivide [0, T ] into M non-overlapping subintervals of length δt = T/M . The probability
of a spike in an interval of length δt is rδt and the probability of no spike is 1− rδt. Hence
the probability of n spikes in n intervals is (rδt)n and the probability of no spikes in the
remainder is (1− rδt)M−n. The number of ways of choosing n intervals from M is given by(
M
n

)
= M !

n!(M−n)!
, so

PT [n] = lim
M→∞

(
M

n

)
(δr)n(1− rδt)M−n = lim

M→∞

M !

n!(M − n)!

(
rT

M

)n(
1− rT

M

)M−n
Now for large M ,

M !

(M − n)!

1

Mn
=

(M)(M − 1) . . . (M − n+ 1)

Mn
= 1 ·

(
1− 1

Mn

)
. . .

(
1− n+ 1

Mn

)
≈ 1

and

lim
M→∞

(
1− rT

M

)M−n
≈ lim

M→∞

(
1− rT

M

)M
= e−rT

so we obtain

PT [n] =
(rT )ne−rT

n!

and
P [(t1, . . . , tn)] = rne−rT

14
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We now compute some statistical properties of PT [n]. First, we note that

∞∑
n=0

PT [n] = e−rT
∞∑
n=0

(rT )n

n!
= 1

as expected. The average number of spikes (in statistics, the first moment) is

〈n〉 =
∞∑
n=0

nPT [n] = e−rT
∞∑
n=0

n
(rT )n

n!

= e−rT rT
d

d(rT )

∞∑
n=0

(rT )n

n!

= e−rT rT
d

d(rT )
erT

= rT

The second moment is

〈n2〉 =
∞∑
n=0

n2PT [n] = e−rT
∞∑
n=0

n2 (rT )n

n!

= e−rT rT
d

d(rT )

∞∑
n=0

n
(rT )n

n!

= e−rT rT
d

d(rT )
(rTerT )

= e−rT rT (erT + rTerT )

= rT + (rT )2

so the standard deviation is
σ2 = 〈n2〉 − 〈n〉2 = rT

The Fano factor is the ratio of the standard deviation to the mean:

σ2

〈n〉
= 1

Experimentally we fit data to σ2 = α〈n〉β, and find α ' 1− 1.5, β ' 1− 1.5.

4.2 Inhomogeneous Poisson process

The inhomogeneous Poisson process allows for the spike rate to have time dependence.
The probability of a spike between t and t+δt is given by

∫ t+δt
t

r(t)dt, and we assume that the
probability of a spike at time t only depends on r(t). To derive the probability distribution

15
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in this case, consider two consecutive spikes at ti, ti+1 and divide the time interval [ti, ti+1]
into M subintervals. The probability of a spike in the mth subinterval is∫ ti+(m+1)δt

ti+mδt

r(t)dt

and the probability of no spike is

1−
∫ ti+(m+1)δt

ti+mδt

r(t)dt

Thus the probability of no spike in [ti, ti+1] is

M−1∏
m=0

(
1−

∫ ti+(m+1)δt

ti+mδt

r(t)dt

)

The log of the probability is

∑
log

(
1−

∫ ti+(m+1)δt

ti+mδt

r(t)dt

)
≈ −

∑∫ ti+(m+1)δt

ti+mδt

r(t)dt = −
∫ ti+1

ti

r(t)dt

Taking into account the intervals before and after the last spike, the total probability distri-
bution is then given by

exp

(
−
∫ t1

0

r(t)dt

) n−1∏
i=1

r(ti) exp

(
−
∫ ti+1

ti

r(t)dt

)
r(tn) exp

(
−
∫ T

tn

r(t)dt

)
i.e. by the product of the probabilities of a spike r(ti) where there are spikes with the product
of the probabilities of no spikes when there aren’t. It’s easy to see we then find

P [(t1, . . . , tn)] =
n∏
i=1

r(ti) exp

(
−
∫ T

0

r(t)dt

)
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5 Plasticity

Plasticity refers to long-term changes to synapses, usually to strength (i.e. amplitude of
post-synaptic potential) or efficiency. It is important as it is believed to be the mechanism
supporting long-term memory and learning. An increase in synaptic strength is called long-
term potentiation (LTP) while a decrease is called long-term depression (LTD).

Hebb’s law states that if input from neuron A often contributes to the firing of neuron B
then the synapse from A to B should be strengthened. A similar statement is that neurons
that fire together wire together. Note that Hebb’s law is not stable, as it naturally leads to
positive feedback. A possible solution to this is to use the idea of synaptic competition: the
summed strength of all synapses in some area is fixed.

A simple model of plasticity involves a neuron with firing rate v and N inputs ui with
weights wi so that the total input is

∑N
i=1wiui = ~w ·~u. The weights wi can be either positive

(representing excitatory synapses) or negative (representing inhibitory synapses). As v and
the ui are firing rates they should be positive, but we ignore this in the model. The equation
governing v is

τr
dv

dt
= −v + ~w · ~u

and we model plasticity using

τw
d~w

dt
= v~u

which tells us that if v and ui are both large, wi grows. If we average over timescales in
between τr ' 10−100ms and τw ' 1 day we can put 〈v〉 = ~w ·~u as this represents the steady
state solution to the equation for v, and our equation is

τw
dwi
dt

= 〈~w · ~uui〉 ≈
∑
j

〈ujui〉wj

as ~w changes on a larger timescale. We define the correlation matrix Qij = 〈uiuj〉 and this
becomes

τw
d~w

dt
= Q~w

Note that this model leads only to LTP. To make it more realistic we add a threshold either
as

τw
d~w

dt
= (v − θv)~u

or

τw
d~w

dt
= v(~u− ~θu)

so that in the first case we need v > θv for LTP and in the second we need ui > (θu)i. Upon
averaging and setting v = ~w · ~u again we find

τw
d~w

dt
= 〈~u · ~w (~u− ~θu)〉

17



Ma481 Mathematical Neuroscience Section 5: Plasticity

It is convenient to take ~θv = 〈~u〉, i.e. the average value of input over the averaging period.
Then

τw
d~w

dt
= 〈~u · ~w (~u− 〈~u〉)〉

or

τw
dwi
dt

= (〈uiuj〉 − 〈ui〉〈uj〉)wj

with the covariance matrix (a multivariable standard derivative)

Cij = 〈uiuj〉 − 〈ui〉〈uj〉

or
C = 〈(~u− 〈~u〉)~u〉

18
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