
Course 231: Equations of Mathematical Physics

Notes by Chris Blair

These notes cover the 2007-2008 Methods course given by
Dr. Conor Houghton, up until the end of Hilary term
(excluding power series).
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Part I

Vector Calculus

1 2 and 3-Dimensional Integration

1.1 2-Dimensional Integration

We wish to integrate a scalar field φ(x, y) over a 2-dimensional region R∫ ∫
R

dAφ(x, y)

To do so we write the integral as a double integral, iterated either first in the y and then the x
direction, or vice versa.

y

x
a b

y = d(x)

y = c(x)

y

x

d

c

x = a(y)

x = b(y)

If the top boundary of R can be written as y = d(x) and the bottom as y = c(x) then we can
write ∫ ∫

R

dAφ(x, y) =
∫ b

a

dx

∫ d(x)

c(x)

dy φ(x, y)
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i.e. we integrate first over y from c(x) to d(x), and then over x from a to b . Similarly in the
other direction, ∫ ∫

R

dAφ(x, y) =
∫ d

c

dy

∫ b(y)

a(y)

dxφ(x, y)

1.2 3-Dimensional Integration

The idea in 3-dimensional integration is similar; we write the top surface as z = f(x, y) and the
bottom surface as z = e(x, y), and treat the projection of the region in the xy plane as in the
2-dimensional case, hence∫ ∫ ∫

R

dV φ(x, y, z) =
∫ b

a

dx

∫ d(x)

c(x)

dy

∫ f(x,y)

e(x,y)

dz φ(x, y, z)

1.3 Changing Coordinates

Jacobian

It is often convenient to integrate using a different set of coordinates. Change of coordinates
involves a scaling factor known as the Jacobian. In two-dimensions for old coordinates x, y and
new coordinates u, v we have

dA = dx dy = Jdu dv

J =
∂(x, y)
∂(u, v)

=

∣∣∣∣∣
∣∣∣∣∣ ∂x

∂u
∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣
∣∣∣∣∣

and in 3-dimensions, for old coordinates x, y, z and new coordinates u, v, w we have

dV = dx dv dz = Jdu dv dw

J =
∂(x, y, z)
∂(u, v, w)

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

Examples

• Cylindrical Polar Coordinates

x = r cosφ y = r sin θ z = z

J = r

where r ∈ [0,∞), φ ∈ [0, 2π).

• Spherical Coordinates

x = r sin θ cosφ y = r sin θ sinφ z = r cos θ

J = r2 sin θ

where r ∈ [0,∞), φ ∈ [0, 2π), θ ∈ [0, π].
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2 Vector Operators

2.1 Grad, Div and Curl

There are some important vector operators related to the operator ~∇ = ∂
∂x î+

∂
∂y ĵ + ∂

∂z k̂.

• grad

The gradient of a scalar field φ is the vector field

gradφ = ~∇φ =
(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
• div

The divergence of a vector field ~F = (F1, F2, F3) is

div ~F = ~∇ · ~F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

If div ~F = 0 then we say ~F is solenoidal.

• curl

The curl of a vector field ~F = (F1, F2, F3) is

curl ~F = ~∇× ~F =

∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣∣
If curl ~F = 0 we say ~F is irrotational.

• Laplacian

The Laplacian of a scalar field φ is the scalar field

∆φ = div gradφ = ~∇ · ~∇φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2

2.2 Vector Identities

Some important vector identities related to these operators are:

1. ~∇(φψ) = φ~∇ψ + ψ~∇φ

2. ~∇(φ~F ) = ~∇φ · ~F + φ~∇~F

3. ~∇× (φ~F ) = ~∇φ× ~F + φ~∇× ~F

4. ~∇ · (~F × ~G) = (~∇× ~F ) · ~G− ~F · (~∇× ~G)

5. ~∇× (~F × ~G) = (~∇ · ~G)~F + (~G · ~∇)~F − (~∇ · ~F )~G− (~F · ~∇)~G

6. ~∇(~F · ~G) = ~F × (~∇× ~G) + ~G× (~∇× ~F ) + (~F · ~∇)~G+ (~G · ~∇)~F

7. ~∇ · (~∇× ~F ) = 0

8. ~∇× (~∇φ) = 0

9. ~∇ · ~∇φ = ∆φ
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3 Line Integrals and Conservative Fields

3.1 Line Integrals

To integrate a vector field ~F along a curve C we parameterise the curve C in terms of t as ~r(t)
and use ∫

C

~F · d~l =
∫

~F (~r(t)) · d~r
dt
dt

3.2 Conservative Fields

A vector field ~F is called conservative if there exists a scalar field φ such that

~F = ~∇φ

A vector field ~F is called path independent if the line integral
∫

C
~F · d~l between any two points

is the same for all paths C between those two points.

The following are equivalent: ~F is conservative, ~F is path independent, and
∮

C
~F · d~l = 0.

Proof. i) Conservative ⇒ path independence: let ~F = ~∇φ =
(

∂φ
∂x ,

∂φ
∂y ,

∂φ
∂z

)
, and consider φ

restricted to a curve ~r(t), so that on the curve we have φ = φ(~r(t)) and

dφ

dt
=
∂φ

∂x

dx

dt
+
∂φ

∂y

dy

dt
+
∂φ

∂z

dz

dt

Now consider ∫
C

~F · d~l =
∫ t2

t1

~F (~r(t)) · d~r
dt
dt

=
∫ t2

t1

~∇φ · d~r
dt
dt

=
∫ t2

t1

(
∂φ

∂x

dx

dt
+
∂φ

∂y

dy

dt
+
∂φ

∂z

dz

dt

)
dt

=
∫ t2

t1

dφ

dt
dt

= φ(t1)− φ(t2)

by the Fundamental Theorem of Calculus, showing that ~F is path independent.

ii) Path independence ⇒
∮

C
~F · d~l = 0: let Ca and Cb be two curves with the same endpoints P1

and P2, then ∫
Ca

~F · d~l =
∫

Cb

~F · d~l

and now consider the closed curve C = Ca − Cb, then∮
C

~F · d~l =
∫

Ca

~F · d~l −
∫

Cb

~F · d~l = 0

for all closed loops C.

5



iii)
∮

C
~F · d~l = 0 ⇒ path independence: let

∮
C
~F · d~l = 0 for all closed loops C, and let C1 and

C2 be two paths between two points a and b. Then we have∮
C

~F · d~l =
∫

C1

~F · d~l −
∫

C2

~F · d~l = 0

⇒
∫

C1

~F · d~l =
∫

C2

~F · d~l

for all C1 and C2, so path independence.

iv) Path independence ⇒ conservative: let p be some point and let

φ(~x) =
∫

C(p,~x)

~F · d~l

where C(p, ~x) is any curve from p to ~x = (x, y, z). We will show that ~F = ∇φ. Componentwise,
we have to prove that

F1 =
∂φ

∂x
=

∂

∂x

∫
C(p,~x)

~F · d~l

We choose a path C that goes from p to a point p′ = (x′, y, z), so that the path from p′ to ~x is
a straight line. We then have

∂

∂x

∫
C(p,~x)

~F · d~l =
∂

∂x

∫
C(p,p′)

~F · d~l + ∂

∂x

∫
C(p′,~x)

~F · d~l

where the first integral does not depend on x and so is zero when differentiated. We now
parameterise C(p′, ~x) as

~r(t) = t̂i+ yĵ + zk̂

⇒ d~r

dt
= î

and so we have

∂

∂x

∫
C(p′,~x)

~F · d~l =
∂

∂x

∫ x

x′

~F · d~r
dt
dt

=
∂

∂x

∫ x

x′

~F · î

=
∂

∂x

∫ x

x′
F1dt

= F1

using the Fundamental Theorem of Calculus. Similarly for the other components.

4 Surface Integrals

To integrate a vector field ~F over a surface we parameterise the surface as ~r(u, v) and use∫ ∫
S

~F · d ~A =
∫ ∫

D

du dv ~F (~r(u, v)) · ∂~r
∂u

× ∂~r

∂v

where D is the domain in R2 of u, v. Note that the choice ∂~r
∂u ×

∂~r
∂v gives one orientation of the

surface; ∂~r
∂v ×

∂~r
∂u is the other.
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5 Integrating Scalars

We can define two- and three-dimensional integrals of scalars by∫
C

φd~l =
∫

C

φ
∣∣∣d~l∣∣∣ =

∫ t2

t1

φ

∣∣∣∣d~rdt
∣∣∣∣ dt∫ ∫

S

φd~S =
∫ ∫

S

φ
∣∣∣d~S∣∣∣ =

∫ ∫
D

φ

∣∣∣∣ ∂~r∂u × ∂~r

∂v

∣∣∣∣ dudv
6 The Integral Theorems

6.1 Green’s Theorem

LetD be a region in the xy plane bounded by a piecewise smooth curve C oriented anti-clockwise.
Then if f(x, y) and g(x, y) have continuous first derivatives∫ ∫

D

dA

(
∂g

∂x
− ∂f

∂y

)
=

∮
C

(fdx+ gdy)

Proof. Consider D a simple region (i.e. a region where a double integral can iterated in either
order). Then,∫ ∫

D

dA

(
∂g

∂x
− ∂f

∂y

)
=

∫ d

c

dy

∫ b(y)

a(y)

dx
∂g

∂x
−

∫ b

a

dx

∫ ∫ d(x)

c(x)

dy
∂f

∂y

=
∫ d

c

dy g(x, y)
]b(y)

a(y)
−

∫ b

a

dx f(x, y)
]d(x)

c(x)

=
∫ d

c

dy g(b(y), y)−
∫ d

c

dy g(a(y), y)−
∫ b

a

dx f(x, d(x)) +
∫ b

a

dx f(x, (c(x))

=
∮

C

dy g(x(y), y) +
∮

C

dx f(x, y(x))

=
∮

C

(fdx+ gdy)

as required. For an arbitrary region, we can divide the region up into many simple regions and
sum.

6.2 Stokes’ Theorem

Let S be a piecewise smooth orientable surface with boundary C a piecewise smooth curve
oriented so that n̂×d~l points into the surface. Let ~F be a continuously differentiable vector field
in the neighbourhood of S, then ∫ ∫

S

curl ~F · d~S =
∮

C

~F · d~l

Proof. Consider first the simple case ~F = F3(x, y, z)k̂, and a simple region that can be parame-
terised by x, y, that is z = h(x, y), so that

~r = xî+ yĵ + h(x, y)k̂
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is the parameterised surface. We then have

∂~r

∂x
= î+

∂h

∂x
k̂

∂~r

∂y
= ĵ +

∂h

∂y
k̂

⇒ ∂~r

∂x
× ∂~r

∂y
=

∣∣∣∣∣∣∣
î ĵ k̂

1 0 ∂h
∂x

0 1 ∂h
∂y

∣∣∣∣∣∣∣ = −∂h
∂x
î− ∂h

∂y
ĵ + k̂

and

curl ~F =

∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

0 0 F3

∣∣∣∣∣∣∣ =
∂F3

∂y
î− ∂F3

∂x
ĵ

so

curl ~F ·
(
∂~r

∂x
× ∂~r

∂y

)
= −∂F3

∂y

∂h

∂x
+
∂F3

∂x

∂h

∂y

= − ∂

∂y

(
F3
∂h

∂x

)
+

∂

∂x

(
F3
∂h

∂y

)

as
∂

∂x

(
F3
∂h

∂y

)
=
∂F3

∂x

∂h

∂y
+
∂F3

∂h

∂h

∂x

∂h

∂y
+ F3

∂2h

∂x∂y

∂

∂y

(
F3
∂h

∂x

)
=
∂F3

∂y

∂h

∂x
+
∂F3

∂h

∂h

∂y

∂h

∂x
+ F3

∂2h

∂y∂x

so then ∫ ∫
S

curl ~F · d~S =
∫ ∫

D

dx dy

[
∂

∂x

(
F3
∂h

∂y

)
− ∂

∂y

(
F3
∂h

∂x

)]
and we now apply Green’s theorem with f = F3

∂h
∂x and g = F3

∂h
∂y , hence∫ ∫

S

curl ~F · d~S =
∮

δD

F3
∂h

∂x
dx+ F3

∂h

∂y
dy

=
∮

δD

F3

(
∂z

∂x
dx+

∂z

∂y
dy

)
=

∮
δD

F3 dz

=
∮

C

~F · d~l

as required. We can perform similar calculations for ~F = F1î and ~F = F2ĵ and sum them to give
the general result. For a more general surface S we can split S into a number of simple surfaces
and integrate over each of them.

An application of Stokes’ theorem is to show that on a simply connected domain curl ~F = 0 ⇒ ~F
conservative. A simply connected domain is a domain such that any smooth curve can be shrunk
to a point. Given some curve C we can shrink it to a point and let S be the surface traced by
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the shrinking, hence any closed curve can be expressed as the boundary of some surface. Then
if curl ~F = 0, ∮

C

~F · d~l =
∫ ∫

S

curl ~F · d~S = 0

and hence ~F is conservative.

6.3 Gauss’ Theorem

LetD be a connected three-dimensional region in R3 whose boundary is a closed piecewise smooth
surface S. Then if ~F is a vector field with continuous first derivatives in a domain containing D∫ ∫ ∫

D

div ~F dV =
∫ ∫

S

~F · d~S

Proof. Consider just D simple, and let ~F = F3k̂, so div ~F = ∂F3
∂z . We now write∫ ∫ ∫

D

div ~F dV =
∫ ∫

D2

∫ f(x,y)

e(x,y)

dz
∂F3

∂z

where D2 is the parameter region in the xy plane, so∫ ∫ ∫
D

div ~F dV =
∫ ∫

D2

[
F3(x, y, f(x, y))− F3(x, y, e(x, y))

]
and we parameterise the top surface by

~r = xî+ yĵ + f(x, y)k̂

then ∫ ∫
top

~F · d~S =
∫ ∫

D2

dx dy ~F (x, y, f(x, y)) · ∂~r
∂x

× ∂~r

∂y

and we have

∂~r

∂x
× ∂~r

∂y
=

∣∣∣∣∣∣∣
î ĵ k̂

1 0 ∂f
∂x

0 1 ∂f
∂y

∣∣∣∣∣∣∣ = −∂f
∂x
î− ∂f

∂y
ĵ + k̂

hence for ~F = F3k̂ we get ∫ ∫
top

~F · d~S =
∫ ∫

D2

dx dy F3(x, y, f(x, y))

and similarly for the bottom surface,∫ ∫
bot

~F · d~S = −
∫ ∫

D2

dx dy F3(x, y, e(x, y))

hence ∫ ∫ ∫
D

div ~F dV =
∫ ∫

S

~F · d~S

and again the proof is similar for other components, and by summing these components works
for all ~F . As before, we can treat more general domains as a collection of simple domains.
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7 Vector Potentials

If div ~F = 0 then ~F = curl ~A for some ~A called the vector potential. The converse is true only
on domains in R3 with no 3-dimensional obstructions (i.e. domains where any closed surface can
be shrunk to a point).

A star-shaped domain is a region D in which there exists a point a such that the line segment
between a and any point x ∈ D lies in D. On such domains if div ~F = 0 then we can obtain a
vector potential for ~F using the formula

~A(r) =
∫ 1

0

dt ~F (t~r)× t~r

The Hodge decomposition of a vector field ~F neither solenoidal nor irrotational on D a simply
connected domain with no obstructions to 2-spheres is

~F = curl ~A+ gradφ

Part II

Fourier Analysis

8 Fourier Series

8.1 Real Fourier Series

Consider a function f(x) with period l, then the Fourier series expansion of f(x) is

f(x) =
a0

2
+

∞∑
n=1

an cos
(

2πnx
l

)
+

∞∑
n=1

bn sin
(

2πnx
l

)
We can find the Fourier coefficients using the following properties of sin and cos:∫ l

2

− l
2

dx cos
(

2πnx
l

)
=

∫ l
2

− l
2

dx sin
(

2πnx
l

)
= 0

∫ l
2

− l
2

dx cos
(

2πnx
l

)
sin

(
2πmx
l

)
= 0

∫ l
2

− l
2

dx cos
(

2πnx
l

)
cos

(
2πmx
l

)
=

∫ l
2

− l
2

dx sin
(

2πnx
l

)
sin

(
2πmx
l

)
=

1
2
δmn

where m,n are positive integers and δmn is the Kronecker delta,

δmn =

{
1 m = n

0 m 6= n

To find a0 we integrate both sides over a period∫ l
2

− l
2

dx f(x) =
∫ l

2

− l
2

dx
a0

2
+

∞∑
n=1

an

∫ l
2

− l
2

dx cos
(

2πnx
l

)
︸ ︷︷ ︸

=0

+
∞∑

n=1

bn

∫ l
2

− l
2

dx sin
(

2πnx
l

)
︸ ︷︷ ︸

=0
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hence

a0 =
2
l

∫ l
2

− l
2

dx f(x)

To find an we multiply across by cos
(

2πmx
l

)
and integrate over a period∫ l

2

− l
2

dx f(x) cos
(

2πmx
l

)
=

∫ l
2

− l
2

dx
a0

2
cos

(
2πmx
l

)
︸ ︷︷ ︸

=0

+
∞∑

n=1

an

∫ l
2

− l
2

dx cos
(

2πnx
l

)
cos

(
2πmx
l

)
︸ ︷︷ ︸

= 1
2 δmn

+
∞∑

n=1

bn

∫ l
2

− l
2

dx sin
(

2πnx
l

)
cos

(
2πmx
l

)
︸ ︷︷ ︸

=0

hence

an =
2
l

∫ l
2

− l
2

dx f(x) cos
(

2πnx
l

)
and similarly

bn =
2
l

∫ l
2

− l
2

dx f(x) sin
(

2πnx
l

)

8.2 Complex Fourier Series

The complex Fourier series of a function f(x) with period l is

f(x) =
∞∑

n=−∞
cn exp

(
2πinx
l

)
where the complex Fourier coefficients are given by

cn =
1
l

∫ l
2

− l
2

dx f(x) exp
(
−2πinx

l

)
which comes from a similar method to before, using∫ l

2

− l
2

dx exp
(

2πix
l

(n−m)
)

= lδmn

One feature of the complex Fourier series is that if f(x) is real then cn = c−n, where the overline
denotes the complex conjugate.

8.3 Dirichlet’s and Parseval’s Theorems

Dirichlet’s Theorem: If f(x) is periodic with a finite number of minima and maxima in one
period, and with a finite number of discontinuities in one period, and∫ l

2

− l
2

dx |f(x)|2 <∞

11



then the Fourier series for f is convergent, and converges to f(x) for all points where f is
continuous. For points a where f(x) is discontinuous it converges to

1
2

[
lim

x→a+
f(x) + lim

x→a−
f(x)

]
i.e. it extrapolates across the discontinuity.

Parseval’s Theorem: The L2 norm of f(x) is

1
l

∫ l
2

− l
2

dx |f(x)|2 =
1
4
a2
0 +

1
2

∞∑
n=1

(a2
n + b2n) =

∞∑
n=−∞

|cn|2

Proof. (complex case) We have that∫ l
2

− l
2

dx |f(x)|2 =
∫ l

2

− l
2

dx f(x)f(x)

=
∫ l

2

− l
2

dx
∞∑

n=−∞
cn exp

(
2πinx
l

) ∞∑
n=−∞

cm exp
(
−2πimx

l

)

=
∑
n,m

cncm

∫ l
2

− l
2

dx exp
(

2πix
l

(n−m)
)

︸ ︷︷ ︸
=δmn

=
∑
n,m

cncmδmnl

= l
∞∑

n=−∞
|cn|2

9 Fourier Integrals

Consider the complex Fourier series,

f(x) =
∞∑

n=−∞
cn exp

(
2πinx
l

)
cn =

1
l

∫ l
2

− l
2

dx f(x) exp
(
−2πinx

l

)

⇒ f(x) =
∞∑

n=−∞

2π
l

[
1
2π

∫ l
2

− l
2

dx f(x) exp
(
−2πinx

l

)]
exp

(
2πinx
l

)
and as l gets large we have δk = 2π

l , and can write k = 2π
l n, and argue that in the limit l →∞

the sum over n becomes an integral over k, hence

f(x) =
∫ ∞

−∞
dk

[
1
2π

∫ ∞

−∞
dx f(x) exp (−ikx)

]
exp(ikx)

the Fourier integral of f . We may write this as

f(x) =
∫ ∞

−∞
dk f̃(k) exp(ikx)

12



where
f̃(k) =

1
2π

∫ ∞

−∞
dx f(x) exp(−ikx)

is known as the Fourier transform of f(x). The Fourier integral formula holds if f(x) is L1, that
is, if it satisfies ∫ ∞

−∞
dx |f(x)| <∞

10 The Dirac Delta Function

10.1 Definition and Properties

The Dirac delta function (which is not, strictly speaking, a function) may be defined by

δ(x) =

{
0 x 6= 0
∞ x = 0

∫ ∞

−∞
δ(x)dx = 1

with the characteristic property ∫ ∞

−∞
δ(x)f(x)dx = f(0)

We then have ∫ ∞

−∞
δ(x− a)f(x)dx = f(a)

established using the substitution y = x− a.

We can consider the derivative of the delta function by integrating by parts∫ ∞

−∞
δ′(x)f(x)dx = δ(x)f(x)

]∞
−∞

−
∫ ∞

−∞
δ(x)f ′(x)dx

= −
∫ ∞

−∞
δ(x)f ′(x)dx

= −f ′(0)

We consider δ(ax) by letting y = ax⇒ dy = adx so∫ ∞

−∞
δ(ax)f(x)dx =

∫ ∞

−∞

1
a
δ(y)f

(y
a

)
=

1
a
f(0)

if a > 0, and∫ ∞

−∞
δ(ax)f(x)dx =

∫ −∞

∞

1
a
δ(y)f

(y
a

)
=

∫ ∞

−∞
−1
a
δ(y)f

(y
a

)
= −1

a
f(0)

if a < 0, so then in general ∫ ∞

−∞
δ(ax)f(x)dx =

1
|a|
f(0)

Now let h(x) be a smooth function, and consider∫ ∞

−∞
δ(h(x))f(x)dx

13



If h(x) has no zeros this is identically zero. Suppose h(x) has one zero, h(x1) = 0 and suppose
h′(x1) > 0. Then we can write∫ ∞

−∞
δ(h(x))f(x)dx =

∫ b

a

δ(h(x))f(x)dx

where h′(x) > 0 on (a, b), with x1 ∈ (a, b). This means we can invert h(x) on the interval; let
y = h(x) then x = h−1(y), and also

dy = h′(x)dx⇒ dx =
dy

h′(h−1(y))

giving ∫ b

a

δ(h(x))f(x)dx =
∫ h(b)

h(a)

δ(y)f(h−1(y))
dy

h′(h−1(y))

and y = 0 for x = x1, so this integrates to

f(h−1(0))
h′(h−1(0))

=
f(x1)
h′(x1)

If h′ < 0 then everything is the same except one of the limits of integration will change giving a
minus, so then ∫ ∞

−∞
δ(h(x))f(x)dx =

f(x1)
|h′(x1)|

If h has multiple zeros then we can split the integral up into multiple intervals to get∫ ∞

−∞
δ(h(x))f(x)dx =

∑
xi:h(xi)=0

f(xi)
|h′(xi)|

so

δ(h(x)) =
∑

xi:h(xi)=0

δ(x− xi)
|h′(xi)|

10.2 Delta Function and Fourier Integrals

Consider
δ(x) =

∫ ∞

−∞
dk δ̃(k) exp(ikx)

where
δ̃(k) =

1
2π

∫ ∞

−∞
dx δ(x) exp(−ikx) =

1
2π

⇒ δ(x) =
1
2π

∫ ∞

−∞
dk exp(ikx)

giving us the orthogonality relation

δ(x− x′) =
1
2π

∫ ∞

−∞
dk exp

[
ik(x− x′)

]

14



We also have that the Fourier transform of the constant function f(x) = 1 is

f̃(k) = 1̃(k) =
1
2π

∫ ∞

−∞
dx exp(−ikx) = δ(k)

Parseval’s Theorem for Fourier Integrals: also called Plancherel’s formula,∫ ∞

−∞
dx |f(x)|2 = 2π

∫ ∞

−∞
dk |f̃(k)|2

Proof.∫ ∞

−∞
dx |f(x)|2 =

∫ ∞

−∞
dx f(x)f(x)

=
∫ ∞

−∞
dx

∫ ∞

−∞
dx′f(x)f(x′)δ(x− x′)

=
1
2π

∫ ∞

−∞
dx

∫ ∞

−∞
dx′

∫ ∞

−∞
dk f(x)f(x) exp

[
ik(x− x′)

]
=

1
2π

∫ ∞

−∞
dk

(∫ ∞

−∞
dx f(x) exp(ikx)

) (∫ ∞

−∞
dx′ f(x′) exp(−ikx′)

)
=

1
2π

∫ ∞

−∞
dk 2πf̃(k)2πf̃(k)

= 2π
∫ ∞

−∞
dk |f̃(k)|2

as required.

Part III

Ordinary Differential Equations

11 First Order ODEs

These are equations of the form
y′ + p(x)y = f(x)

with general solution
y = yp + Cyh

where yp is a particular solution to the inhomogeneous equation, and yh is the solution to the
homogeneous version. We can solve this equation by multiplying across by an integrating factor
λ such that λ′ = pλ, as then we have

λy′ + pλy = λf

⇒ λy′ + λ′y = λ

⇒ (λy)′ = λf
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which we can solve by integrating. It follows that we must have

λ = exp(px)

if p constant, or in general,

λ = exp
(∫ x

a

p(z)dz
)

where a is an arbitrary constant.

12 Second Order ODEs

These are equations of the form

a(x)y′′ + b(x)y′ + c(x)y = f(x)

with general solution
y = C1y1 + C2y2 + yp

where y1 and y2 are solutions of the homogeneous equation, and yp is the particular solution to
the inhomogeneous version.

12.1 Homogeneous Constant Coefficients

In the homogeneous constant coefficient case

ay′′ + by′ + cy = 0

we guess solution y = eλx which gives

aλ2 + bλ+ c = 0

known as the auxiliary equation, with roots λ1 and λ2. The general solution is then

y = C1e
λ1x + C2e

λ2x

In the case that λ1 = λ2 = λ then the general solution is

y = C1e
λx + C2xe

λx

We can solve the inhomogeneous case easily in the case that f(x) = Ferx, by guessing y = Cerx

which gives

ar2C + brC + cC = F ⇒ C =
F

ar2 + br + c

and the general solution is
y = C1e

λ1x + C2xe
λ2x + Cerx

In the case that r coincides with one of the roots of the auxiliary equation, then we instead guess
y = Cxerx (and in the exceptional cases that both roots are equal and equal to r, y = Cx2erx).
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12.2 Solving Using Fourier Analysis

We can analyse periodic driving forces using Fourier analysis by writing f(x) as a Fourier series,
hence

ay′′ + by′ + cy =
∞∑

n=−∞
cn exp

(
2πinx
l

)
and then solve

ay′′n + by′n + cyn = cn exp
(

2πinx
l

)
giving general solution

y =
∞∑

n=−∞
yn

Similarly, if f(x) is non-periodic but decays at ±∞ we can write it as a Fourier integral

f(x) =
∫ ∞

−∞
dkf̃(k)eikx

and then solve
ay′′k + ky′n + cyk = f̃(k)eikx

and integrate over the solutions

y =
∫ ∞

−∞
dk yk

12.3 Cauchy-Euler Equations

These are equations of the form

αx2y′′ + βxy′ + γy = 0

which can be solved using the substitution

x = ez ⇒ z = log x

so that
y′ =

d

dx
y =

dz

dx

dy

dz
=

1
x

dy

dz

y′′ =
d

dx
y′ =

d

dx

1
x

dy

dz
= − 1

x2

dy

dz
+

1
x

d

dx

dy

dz
= − 1

x2

dy

dz
+

1
x2

d2y

dz2

The equation becomes

α

(
−dy
dz

+
d2y

dz2

)
+ β

dy

dz
+ γy = 0

or

α
d2y

dz2
+ (β − α)

dy

dz
+ γy = 0

hence we have auxiliary equation

αλ2 + (β − α)λ+ γλ = 0

and solution
y = C1e

λ1z + C2e
λ2z = C1x

λ1 + C2x
λ2

(A more direct approach would be to substitute y = xλ in the original equation, though in the
case of repeated roots you need to know to multiply the second solution by log x.)
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