Course 231: Equations of Mathematical Physics

Notes by Chris Blair

These notes cover the 2007-2008 Methods course given by Dr. Conor Houghton, up until the end of Hilary term (excluding power series).

Contents

Ι	Vector Calculus	2
1	2 and 3-Dimensional Integration 1.1 2-Dimensional Integration 1.2 3-Dimensional Integration 1.3 Changing Coordinates	2 2 3 3
2	Vector Operators 2.1 Grad, Div and Curl. 2.2 Vector Identities	4 4 4
3	Line Integrals and Conservative Fields 3.1 Line Integrals 3.2 Conservative Fields	5 5 5
4	Surface Integrals	6
5	Integrating Scalars	7
6	The Integral Theorems 6.1 Green's Theorem 6.2 Stokes' Theorem 6.3 Gauss' Theorem	7 7 7 9
7	Vector Potentials	10
II	Fourier Analysis	10
8	Fourier Series 8.1 Real Fourier Series 8.2 Complex Fourier Series 8.3 Dirichlet's and Parseval's Theorems	10 10 11 11
9	Fourier Integrals	12

10 The Dirac Delta Function	13
10.1 Definition and Properties	13
10.2 Delta Function and Fourier Integrals	14
III Ordinary Differential Equations	15
11 First Order ODEs	15
12 Second Order ODEs	16
12.1 Homogeneous Constant Coefficients	16
12.2 Solving Using Fourier Analysis	17
12.3 Cauchy-Euler Equations	17

Part I Vector Calculus

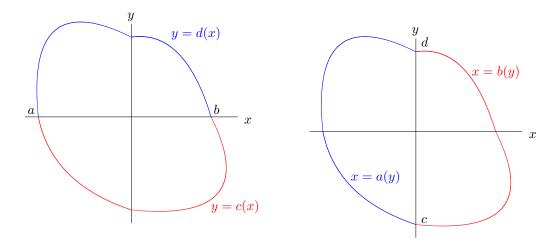
1 2 and 3-Dimensional Integration

1.1 2-Dimensional Integration

We wish to integrate a scalar field $\phi(x, y)$ over a 2-dimensional region R

$$\iint_R dA\,\phi(x,y)$$

To do so we write the integral as a double integral, iterated either first in the y and then the x direction, or vice versa.



If the top boundary of R can be written as y = d(x) and the bottom as y = c(x) then we can write

$$\iint_R dA \,\phi(x,y) = \int_a^b dx \int_{c(x)}^{d(x)} dy \,\phi(x,y)$$

i.e. we integrate first over y from c(x) to d(x), and then over x from a to b. Similarly in the other direction,

$$\iint_R dA \,\phi(x,y) = \int_c^d dy \int_{a(y)}^{b(y)} dx \,\phi(x,y)$$

1.2 3-Dimensional Integration

The idea in 3-dimensional integration is similar; we write the top surface as z = f(x, y) and the bottom surface as z = e(x, y), and treat the projection of the region in the xy plane as in the 2-dimensional case, hence

$$\iiint_R dV \,\phi(x,y,z) = \int_a^b dx \int_{c(x)}^{d(x)} dy \int_{e(x,y)}^{f(x,y)} dz \,\phi(x,y,z)$$

1.3 Changing Coordinates

Jacobian

It is often convenient to integrate using a different set of coordinates. Change of coordinates involves a scaling factor known as the Jacobian. In two-dimensions for old coordinates x, y and new coordinates u, v we have dA = dx dy = Idy dy

$$dA = dx \, dy = J \, du \, dv$$
$$J = \frac{\partial(x, y)}{\partial(u, v)} = \left\| \begin{array}{c} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{array} \right|$$

and in 3-dimensions, for old coordinates x, y, z and new coordinates u, v, w we have

$$dV = dx \, dv \, dz = J du \, dv \, dw$$
$$J = \frac{\partial(x, y, z)}{\partial(u, v, w)} = \left| \begin{array}{ccc} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{array} \right|$$

Examples

• Cylindrical Polar Coordinates

$$x = r \cos \phi$$
 $y = r \sin \theta$ $z = z$
 $J = r$

where $r \in [0, \infty), \phi \in [0, 2\pi)$.

• Spherical Coordinates

$$x = r \sin \theta \cos \phi$$
 $y = r \sin \theta \sin \phi$ $z = r \cos \theta$

$$J = r^2 \sin \theta$$

where $r \in [0, \infty), \phi \in [0, 2\pi), \theta \in [0, \pi].$

2 Vector Operators

2.1 Grad, Div and Curl

There are some important vector operators related to the operator $\vec{\nabla} = \frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k}.$

 \bullet grad

The gradient of a scalar field ϕ is the vector field

grad
$$\phi = \vec{\nabla}\phi = \left(\frac{\partial\phi}{\partial x}, \frac{\partial\phi}{\partial y}, \frac{\partial\phi}{\partial z}\right)$$

• div

The divergence of a vector field $\vec{F} = (F_1, F_2, F_3)$ is

div
$$\vec{F} = \vec{\nabla} \cdot \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$

If div $\vec{F} = 0$ then we say \vec{F} is solenoidal.

 \bullet curl

The curl of a vector field $\vec{F} = (F_1, F_2, F_3)$ is

$$\operatorname{curl} \vec{F} = \vec{\nabla} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix}$$

If curl $\vec{F} = 0$ we say \vec{F} is irrotational.

• Laplacian

The Laplacian of a scalar field ϕ is the scalar field

$$\Delta \phi = \operatorname{div} \operatorname{grad} \phi = \vec{\nabla} \cdot \vec{\nabla} \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}$$

2.2 Vector Identities

Some important vector identities related to these operators are:

1. $\vec{\nabla}(\phi\psi) = \phi\vec{\nabla}\psi + \psi\vec{\nabla}\phi$ 2. $\vec{\nabla}(\phi\vec{F}) = \vec{\nabla}\phi \cdot \vec{F} + \phi\vec{\nabla}\vec{F}$ 3. $\vec{\nabla} \times (\phi\vec{F}) = \vec{\nabla}\phi \times \vec{F} + \phi\vec{\nabla} \times \vec{F}$ 4. $\vec{\nabla} \cdot (\vec{F} \times \vec{G}) = (\vec{\nabla} \times \vec{F}) \cdot \vec{G} - \vec{F} \cdot (\vec{\nabla} \times \vec{G})$ 5. $\vec{\nabla} \times (\vec{F} \times \vec{G}) = (\vec{\nabla} \cdot \vec{G})\vec{F} + (\vec{G} \cdot \vec{\nabla})\vec{F} - (\vec{\nabla} \cdot \vec{F})\vec{G} - (\vec{F} \cdot \vec{\nabla})\vec{G}$ 6. $\vec{\nabla}(\vec{F} \cdot \vec{G}) = \vec{F} \times (\vec{\nabla} \times \vec{G}) + \vec{G} \times (\vec{\nabla} \times \vec{F}) + (\vec{F} \cdot \vec{\nabla})\vec{G} + (\vec{G} \cdot \vec{\nabla})\vec{F}$ 7. $\vec{\nabla} \cdot (\vec{\nabla} \times \vec{F}) = 0$ 8. $\vec{\nabla} \times (\vec{\nabla}\phi) = 0$ 9. $\vec{\nabla} \cdot \vec{\nabla}\phi = \Delta\phi$

3 Line Integrals and Conservative Fields

3.1 Line Integrals

To integrate a vector field \vec{F} along a curve C we parameterise the curve C in terms of t as $\vec{r}(t)$ and use

$$\int_C \vec{F} \cdot d\vec{l} = \int \vec{F}(\vec{r}(t)) \cdot \frac{d\vec{r}}{dt} dt$$

3.2 Conservative Fields

A vector field \vec{F} is called conservative if there exists a scalar field ϕ such that

$$\vec{F} = \vec{\nabla}\phi$$

A vector field \vec{F} is called path independent if the line integral $\int_C \vec{F} \cdot d\vec{l}$ between any two points is the same for all paths C between those two points.

The following are equivalent: \vec{F} is conservative, \vec{F} is path independent, and $\oint_C \vec{F} \cdot d\vec{l} = 0$.

Proof. i) Conservative \Rightarrow path independence: let $\vec{F} = \vec{\nabla}\phi = \left(\frac{\partial\phi}{\partial x}, \frac{\partial\phi}{\partial y}, \frac{\partial\phi}{\partial z}\right)$, and consider ϕ restricted to a curve $\vec{r}(t)$, so that on the curve we have $\phi = \phi(\vec{r}(t))$ and

$$\frac{d\phi}{dt} = \frac{\partial\phi}{\partial x}\frac{dx}{dt} + \frac{\partial\phi}{\partial y}\frac{dy}{dt} + \frac{\partial\phi}{\partial z}\frac{dz}{dt}$$

Now consider

$$\begin{split} \int_{C} \vec{F} \cdot d\vec{l} &= \int_{t_{1}}^{t_{2}} \vec{F}(\vec{r}(t)) \cdot \frac{d\vec{r}}{dt} dt \\ &= \int_{t_{1}}^{t_{2}} \vec{\nabla} \phi \cdot \frac{d\vec{r}}{dt} dt \\ &= \int_{t_{1}}^{t_{2}} \left(\frac{\partial \phi}{\partial x} \frac{dx}{dt} + \frac{\partial \phi}{\partial y} \frac{dy}{dt} + \frac{\partial \phi}{\partial z} \frac{dz}{dt} \right) dt \\ &= \int_{t_{1}}^{t_{2}} \frac{d\phi}{dt} dt \\ &= \phi(t_{1}) - \phi(t_{2}) \end{split}$$

by the Fundamental Theorem of Calculus, showing that \vec{F} is path independent.

ii) Path independence $\Rightarrow \oint_C \vec{F} \cdot d\vec{l} = 0$: let C_a and C_b be two curves with the same endpoints P_1 and P_2 , then

$$\int_{C_a} \vec{F} \cdot d\vec{l} = \int_{C_b} \vec{F} \cdot d\vec{l}$$

and now consider the closed curve $C = C_a - C_b$, then

$$\oint_C \vec{F} \cdot d\vec{l} = \int_{C_a} \vec{F} \cdot d\vec{l} - \int_{C_b} \vec{F} \cdot d\vec{l} = 0$$

for all closed loops C.

iii) $\oint_C \vec{F} \cdot d\vec{l} = 0 \Rightarrow$ path independence: let $\oint_C \vec{F} \cdot d\vec{l} = 0$ for all closed loops C, and let C_1 and C_2 be two paths between two points a and b. Then we have

$$\oint_C \vec{F} \cdot d\vec{l} = \int_{C_1} \vec{F} \cdot d\vec{l} - \int_{C_2} \vec{F} \cdot d\vec{l} = 0$$
$$\Rightarrow \int_{C_1} \vec{F} \cdot d\vec{l} = \int_{C_2} \vec{F} \cdot d\vec{l}$$

for all C_1 and C_2 , so path independence.

iv) Path independence \Rightarrow conservative: let p be some point and let

$$\phi(\vec{x}) = \int_{C(p,\vec{x})} \vec{F} \cdot d\vec{l}$$

where $C(p, \vec{x})$ is any curve from p to $\vec{x} = (x, y, z)$. We will show that $\vec{F} = \nabla \phi$. Componentwise, we have to prove that

$$F_1 = \frac{\partial \phi}{\partial x} = \frac{\partial}{\partial x} \int_{C(p,\vec{x})} \vec{F} \cdot d\vec{l}$$

We choose a path C that goes from p to a point p' = (x', y, z), so that the path from p' to \vec{x} is a straight line. We then have

$$\frac{\partial}{\partial x} \int_{C(p,\vec{x})} \vec{F} \cdot d\vec{l} = \frac{\partial}{\partial x} \int_{C(p,p')} \vec{F} \cdot d\vec{l} + \frac{\partial}{\partial x} \int_{C(p',\vec{x})} \vec{F} \cdot d\vec{l}$$

where the first integral does not depend on x and so is zero when differentiated. We now parameterise $C(p', \vec{x})$ as

$$ec{r}(t) = t\hat{i} + y\hat{j} + z\hat{k}$$

 $\Rightarrow rac{dec{r}}{dt} = \hat{i}$

and so we have

$$\frac{\partial}{\partial x} \int_{C(p',\vec{x})} \vec{F} \cdot d\vec{l} = \frac{\partial}{\partial x} \int_{x'}^{x} \vec{F} \cdot \frac{d\vec{r}}{dt} dt$$
$$= \frac{\partial}{\partial x} \int_{x'}^{x} \vec{F} \cdot \hat{i}$$
$$= \frac{\partial}{\partial x} \int_{x'}^{x} F_{1} dt$$
$$= F_{1}$$

using the Fundamental Theorem of Calculus. Similarly for the other components.

4 Surface Integrals

To integrate a vector field \vec{F} over a surface we parameterise the surface as $\vec{r}(u, v)$ and use

$$\iint_{S} \vec{F} \cdot d\vec{A} = \iint_{D} du \, dv \, \vec{F}(\vec{r}(u,v)) \cdot \frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v}$$

where D is the domain in \mathbb{R}^2 of u, v. Note that the choice $\frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v}$ gives one orientation of the surface; $\frac{\partial \vec{r}}{\partial v} \times \frac{\partial \vec{r}}{\partial u}$ is the other.

5 Integrating Scalars

We can define two- and three-dimensional integrals of scalars by

$$\int_{C} \phi \, d\vec{l} = \int_{C} \phi \left| d\vec{l} \right| = \int_{t_{1}}^{t_{2}} \phi \left| \frac{d\vec{r}}{dt} \right| dt$$
$$\iint_{S} \phi \, d\vec{S} = \iint_{S} \phi \left| d\vec{S} \right| = \iint_{D} \phi \left| \frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v} \right| dudv$$

6 The Integral Theorems

6.1 Green's Theorem

Let D be a region in the xy plane bounded by a piecewise smooth curve C oriented anti-clockwise. Then if f(x, y) and g(x, y) have continuous first derivatives

$$\iint_D dA\left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) = \oint_C \left(fdx + gdy\right)$$

Proof. Consider D a simple region (i.e. a region where a double integral can iterated in either order). Then,

$$\begin{split} \iint_{D} dA \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) &= \int_{c}^{d} dy \int_{a(y)}^{b(y)} dx \frac{\partial g}{\partial x} - \int_{a}^{b} dx \iint_{c(x)}^{d(x)} dy \frac{\partial f}{\partial y} \\ &= \int_{c}^{d} dy \, g(x, y) \Big]_{a(y)}^{b(y)} - \int_{a}^{b} dx \, f(x, y) \Big]_{c(x)}^{d(x)} \\ &= \int_{c}^{d} dy \, g(b(y), y) - \int_{c}^{d} dy \, g(a(y), y) - \int_{a}^{b} dx \, f(x, d(x)) + \int_{a}^{b} dx \, f(x, (c(x))) \\ &= \oint_{C} dy \, g(x(y), y) + \oint_{C} dx \, f(x, y(x)) \\ &= \oint_{C} (f dx + g dy) \end{split}$$

as required. For an arbitrary region, we can divide the region up into many simple regions and sum. $\hfill \Box$

6.2 Stokes' Theorem

Let S be a piecewise smooth orientable surface with boundary C a piecewise smooth curve oriented so that $\hat{n} \times d\vec{l}$ points into the surface. Let \vec{F} be a continuously differentiable vector field in the neighbourhood of S, then

$$\iint_{S} \operatorname{curl} \vec{F} \cdot d\vec{S} = \oint_{C} \vec{F} \cdot d\vec{l}$$

Proof. Consider first the simple case $\vec{F} = F_3(x, y, z)\hat{k}$, and a simple region that can be parameterised by x, y, that is z = h(x, y), so that

$$\vec{r} = x\hat{i} + y\hat{j} + h(x,y)\hat{k}$$

is the parameterised surface. We then have

$$\frac{\partial \vec{r}}{\partial x} = \hat{i} + \frac{\partial h}{\partial x}\hat{k} \qquad \frac{\partial \vec{r}}{\partial y} = \hat{j} + \frac{\partial h}{\partial y}\hat{k}$$
$$\Rightarrow \frac{\partial \vec{r}}{\partial x} \times \frac{\partial \vec{r}}{\partial y} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & \frac{\partial h}{\partial x} \\ 0 & 1 & \frac{\partial h}{\partial y} \end{vmatrix} = -\frac{\partial h}{\partial x}\hat{i} - \frac{\partial h}{\partial y}\hat{j} + \hat{k}$$

and

 \mathbf{SO}

$$\operatorname{curl} \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 0 & 0 & F_3 \end{vmatrix} = \frac{\partial F_3}{\partial y} \hat{i} - \frac{\partial F_3}{\partial x} \hat{j}$$

$$\operatorname{curl} \vec{F} \cdot \left(\frac{\partial \vec{r}}{\partial x} \times \frac{\partial \vec{r}}{\partial y} \right) = -\frac{\partial F_3}{\partial y} \frac{\partial h}{\partial x} + \frac{\partial F_3}{\partial x} \frac{\partial h}{\partial y}$$
$$= -\frac{\partial}{\partial y} \left(F_3 \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial x} \left(F_3 \frac{\partial h}{\partial y} \right)$$

as

$$\frac{\partial}{\partial x} \left(F_3 \frac{\partial h}{\partial y} \right) = \frac{\partial F_3}{\partial x} \frac{\partial h}{\partial y} + \frac{\partial F_3}{\partial h} \frac{\partial h}{\partial x} \frac{\partial h}{\partial y} + F_3 \frac{\partial^2 h}{\partial x \partial y}$$
$$\frac{\partial}{\partial y} \left(F_3 \frac{\partial h}{\partial x} \right) = \frac{\partial F_3}{\partial y} \frac{\partial h}{\partial x} + \frac{\partial F_3}{\partial h} \frac{\partial h}{\partial y} \frac{\partial h}{\partial x} + F_3 \frac{\partial^2 h}{\partial y \partial x}$$

so then

$$\iint_{S} \operatorname{curl} \vec{F} \cdot d\vec{S} = \iint_{D} dx \, dy \, \left[\frac{\partial}{\partial x} \left(F_{3} \frac{\partial h}{\partial y} \right) - \frac{\partial}{\partial y} \left(F_{3} \frac{\partial h}{\partial x} \right) \right]$$

and we now apply Green's theorem with $f = F_3 \frac{\partial h}{\partial x}$ and $g = F_3 \frac{\partial h}{\partial y}$, hence

$$\begin{aligned} \iint_{S} \operatorname{curl} \vec{F} \cdot d\vec{S} &= \oint_{\delta D} F_{3} \frac{\partial h}{\partial x} dx + F_{3} \frac{\partial h}{\partial y} dy \\ &= \oint_{\delta D} F_{3} \left(\frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy \right) \\ &= \oint_{\delta D} F_{3} dz \\ &= \oint_{C} \vec{F} \cdot d\vec{l} \end{aligned}$$

as required. We can perform similar calculations for $\vec{F} = F_1 \hat{i}$ and $\vec{F} = F_2 \hat{j}$ and sum them to give the general result. For a more general surface S we can split S into a number of simple surfaces and integrate over each of them.

An application of Stokes' theorem is to show that on a simply connected domain $\operatorname{curl} \vec{F} = 0 \Rightarrow \vec{F}$ conservative. A simply connected domain is a domain such that any smooth curve can be shrunk to a point. Given some curve C we can shrink it to a point and let S be the surface traced by

the shrinking, hence any closed curve can be expressed as the boundary of some surface. Then if curl $\vec{F} = 0$,

$$\oint_C \vec{F} \cdot d\vec{l} = \iint_S \operatorname{curl} \vec{F} \cdot d\vec{S} = 0$$

and hence \vec{F} is conservative.

6.3 Gauss' Theorem

Let D be a connected three-dimensional region in \mathbb{R}^3 whose boundary is a closed piecewise smooth surface S. Then if \vec{F} is a vector field with continuous first derivatives in a domain containing D

$$\iiint_D \operatorname{div} \vec{F} \, dV = \iint_S \vec{F} \cdot d\vec{S}$$

Proof. Consider just D simple, and let $\vec{F} = F_3 \hat{k}$, so div $\vec{F} = \frac{\partial F_3}{\partial z}$. We now write

$$\iiint_D \operatorname{div} \vec{F} \, dV = \iint_{D_2} \int_{e(x,y)}^{f(x,y)} dz \frac{\partial F_3}{\partial z}$$

where D_2 is the parameter region in the xy plane, so

$$\iiint_D \operatorname{div} \vec{F} \, dV = \iint_{D_2} \left[F_3(x, y, f(x, y)) - F_3(x, y, e(x, y)) \right]$$

and we parameterise the top surface by

$$\vec{r} = x\hat{i} + y\hat{j} + f(x,y)\hat{k}$$

then

$$\iint_{top} \vec{F} \cdot d\vec{S} = \iint_{D_2} dx \, dy \, \vec{F}(x, y, f(x, y)) \cdot \frac{\partial \vec{r}}{\partial x} \times \frac{\partial \vec{r}}{\partial y}$$

and we have

$$\frac{\partial \vec{r}}{\partial x} \times \frac{\partial \vec{r}}{\partial y} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & \frac{\partial f}{\partial x} \\ 0 & 1 & \frac{\partial f}{\partial y} \end{vmatrix} = -\frac{\partial f}{\partial x}\hat{i} - \frac{\partial f}{\partial y}\hat{j} + \hat{k}$$

hence for $\vec{F} = F_3 \hat{k}$ we get

$$\iint_{top} \vec{F} \cdot d\vec{S} = \iint_{D_2} dx \, dy \, F_3(x, y, f(x, y))$$

and similarly for the bottom surface,

$$\iint_{bot} \vec{F} \cdot d\vec{S} = -\iint_{D_2} dx \, dy \, F_3(x, y, e(x, y))$$

hence

$$\iiint_D \operatorname{div} \vec{F} \, dV = \iiint_S \vec{F} \cdot d\vec{S}$$

and again the proof is similar for other components, and by summing these components works for all \vec{F} . As before, we can treat more general domains as a collection of simple domains.

7 Vector Potentials

If div $\vec{F} = 0$ then $\vec{F} = \text{curl } \vec{A}$ for some \vec{A} called the vector potential. The converse is true only on domains in \mathbb{R}^3 with no 3-dimensional obstructions (i.e. domains where any closed surface can be shrunk to a point).

A star-shaped domain is a region D in which there exists a point a such that the line segment between a and any point $x \in D$ lies in D. On such domains if div $\vec{F} = 0$ then we can obtain a vector potential for \vec{F} using the formula

$$\vec{A}(r) = \int_0^1 dt \, \vec{F}(t\vec{r}) \times t\vec{r}$$

The Hodge decomposition of a vector field \vec{F} neither solenoidal nor irrotational on D a simply connected domain with no obstructions to 2-spheres is

$$\vec{F} = \operatorname{curl} \vec{A} + \operatorname{grad} \phi$$

Part II Fourier Analysis

8 Fourier Series

8.1 Real Fourier Series

Consider a function f(x) with period l, then the Fourier series expansion of f(x) is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{2\pi nx}{l}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{2\pi nx}{l}\right)$$

We can find the Fourier coefficients using the following properties of sin and cos:

$$\int_{-\frac{l}{2}}^{\frac{l}{2}} dx \cos\left(\frac{2\pi nx}{l}\right) = \int_{-\frac{l}{2}}^{\frac{l}{2}} dx \sin\left(\frac{2\pi nx}{l}\right) = 0$$
$$\int_{-\frac{l}{2}}^{\frac{l}{2}} dx \cos\left(\frac{2\pi nx}{l}\right) \sin\left(\frac{2\pi mx}{l}\right) = 0$$
$$\int_{-\frac{l}{2}}^{\frac{l}{2}} dx \cos\left(\frac{2\pi nx}{l}\right) \cos\left(\frac{2\pi mx}{l}\right) = \int_{-\frac{l}{2}}^{\frac{l}{2}} dx \sin\left(\frac{2\pi nx}{l}\right) \sin\left(\frac{2\pi mx}{l}\right) = \frac{1}{2}\delta_{mn}$$

where m, n are positive integers and δ_{mn} is the Kronecker delta,

$$\delta_{mn} = \begin{cases} 1 & m = n \\ 0 & m \neq n \end{cases}$$

.

To find a_0 we integrate both sides over a period

$$\int_{-\frac{l}{2}}^{\frac{l}{2}} dx f(x) = \int_{-\frac{l}{2}}^{\frac{l}{2}} dx \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \underbrace{\int_{-\frac{l}{2}}^{\frac{l}{2}} dx \cos\left(\frac{2\pi nx}{l}\right)}_{=0} + \sum_{n=1}^{\infty} b_n \underbrace{\int_{-\frac{l}{2}}^{\frac{l}{2}} dx \sin\left(\frac{2\pi nx}{l}\right)}_{=0} = 0$$

hence

$$a_0 = \frac{2}{l} \int_{-\frac{l}{2}}^{\frac{l}{2}} dx \, f(x)$$

To find a_n we multiply across by $\cos\left(\frac{2\pi mx}{l}\right)$ and integrate over a period

$$\int_{-\frac{l}{2}}^{\frac{l}{2}} dx f(x) \cos\left(\frac{2\pi mx}{l}\right) = \underbrace{\int_{-\frac{l}{2}}^{\frac{l}{2}} dx \frac{a_0}{2} \cos\left(\frac{2\pi mx}{l}\right)}_{=0} + \sum_{n=1}^{\infty} a_n \underbrace{\int_{-\frac{l}{2}}^{\frac{l}{2}} dx \cos\left(\frac{2\pi nx}{l}\right) \cos\left(\frac{2\pi mx}{l}\right)}_{=\frac{1}{2}\delta_{mn}} + \sum_{n=1}^{\infty} b_n \underbrace{\int_{-\frac{l}{2}}^{\frac{l}{2}} dx \sin\left(\frac{2\pi nx}{l}\right) \cos\left(\frac{2\pi mx}{l}\right)}_{=0}$$

hence

$$a_n = \frac{2}{l} \int_{-\frac{l}{2}}^{\frac{l}{2}} dx f(x) \cos\left(\frac{2\pi nx}{l}\right)$$

and similarly

$$b_n = \frac{2}{l} \int_{-\frac{l}{2}}^{\frac{l}{2}} dx f(x) \sin\left(\frac{2\pi nx}{l}\right)$$

8.2 Complex Fourier Series

The complex Fourier series of a function f(x) with period l is

$$f(x) = \sum_{n=-\infty}^{\infty} c_n \exp\left(\frac{2\pi i n x}{l}\right)$$

where the complex Fourier coefficients are given by

$$c_n = \frac{1}{l} \int_{-\frac{l}{2}}^{\frac{l}{2}} dx f(x) \exp\left(-\frac{2\pi i n x}{l}\right)$$

which comes from a similar method to before, using

$$\int_{-\frac{l}{2}}^{\frac{l}{2}} dx \, \exp\left(\frac{2\pi i x}{l}(n-m)\right) = l\delta_{mn}$$

One feature of the complex Fourier series is that if f(x) is real then $\overline{c_n} = c_{-n}$, where the overline denotes the complex conjugate.

8.3 Dirichlet's and Parseval's Theorems

Dirichlet's Theorem: If f(x) is periodic with a finite number of minima and maxima in one period, and with a finite number of discontinuities in one period, and

$$\int_{-\frac{l}{2}}^{\frac{l}{2}} dx \, |f(x)|^2 < \infty$$

then the Fourier series for f is convergent, and converges to f(x) for all points where f is continuous. For points a where f(x) is discontinuous it converges to

$$\frac{1}{2} \left[\lim_{x \to a_+} f(x) + \lim_{x \to a_-} f(x) \right]$$

i.e. it extrapolates across the discontinuity.

Parseval's Theorem: The L^2 norm of f(x) is

$$\frac{1}{l} \int_{-\frac{l}{2}}^{\frac{l}{2}} dx \, |f(x)|^2 = \frac{1}{4}a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \sum_{n=-\infty}^{\infty} |c_n|^2$$

Proof. (complex case) We have that

$$\begin{split} \int_{-\frac{l}{2}}^{\frac{l}{2}} dx \, |f(x)|^2 &= \int_{-\frac{l}{2}}^{\frac{l}{2}} dx \, f(x) \overline{f(x)} \\ &= \int_{-\frac{l}{2}}^{\frac{l}{2}} dx \, \sum_{n=-\infty}^{\infty} c_n \exp\left(\frac{2\pi i n x}{l}\right) \sum_{n=-\infty}^{\infty} \overline{c_m} \exp\left(-\frac{2\pi i m x}{l}\right) \\ &= \sum_{n,m} c_n \overline{c_m} \int_{-\frac{l}{2}}^{\frac{l}{2}} dx \, \underbrace{\exp\left(\frac{2\pi i x}{l}(n-m)\right)}_{=\delta_{mn}} \\ &= \sum_{n,m} c_n \overline{c_m} \delta_{mn} l \\ &= l \sum_{n=-\infty}^{\infty} |c_n|^2 \end{split}$$

9 Fourier Integrals

Consider the complex Fourier series,

$$f(x) = \sum_{n=-\infty}^{\infty} c_n \exp\left(\frac{2\pi i n x}{l}\right) \qquad c_n = \frac{1}{l} \int_{-\frac{l}{2}}^{\frac{l}{2}} dx f(x) \exp\left(-\frac{2\pi i n x}{l}\right)$$
$$\Rightarrow f(x) = \sum_{n=-\infty}^{\infty} \frac{2\pi}{l} \left[\frac{1}{2\pi} \int_{-\frac{l}{2}}^{\frac{l}{2}} dx f(x) \exp\left(-\frac{2\pi i n x}{l}\right)\right] \exp\left(\frac{2\pi i n x}{l}\right)$$

and as l gets large we have $\delta k = \frac{2\pi}{l}$, and can write $k = \frac{2\pi}{l}n$, and argue that in the limit $l \to \infty$ the sum over n becomes an integral over k, hence

$$f(x) = \int_{-\infty}^{\infty} dk \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} dx f(x) \exp\left(-ikx\right) \right] \exp(ikx)$$

the Fourier integral of f. We may write this as

$$f(x) = \int_{-\infty}^{\infty} dk \, \widetilde{f(k)} \exp(ikx)$$

where

$$\widetilde{f(k)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} dx \, f(x) \exp(-ikx)$$

is known as the Fourier transform of f(x). The Fourier integral formula holds if f(x) is L^1 , that is, if it satisfies

$$\int_{-\infty}^{\infty} dx \, |f(x)| < \infty$$

10 The Dirac Delta Function

10.1 Definition and Properties

The Dirac delta function (which is not, strictly speaking, a function) may be defined by

$$\delta(x) = \begin{cases} 0 & x \neq 0 \\ \infty & x = 0 \end{cases} \qquad \int_{-\infty}^{\infty} \delta(x) dx = 1$$

with the characteristic property

$$\int_{-\infty}^{\infty} \delta(x) f(x) dx = f(0)$$

We then have

$$\int_{-\infty}^{\infty} \delta(x-a) f(x) dx = f(a)$$

established using the substitution y = x - a.

We can consider the derivative of the delta function by integrating by parts

$$\int_{-\infty}^{\infty} \delta'(x) f(x) dx = \delta(x) f(x) \Big]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \delta(x) f'(x) dx$$
$$= -\int_{-\infty}^{\infty} \delta(x) f'(x) dx$$
$$= -f'(0)$$

We consider $\delta(ax)$ by letting $y = ax \Rightarrow dy = adx$ so

$$\int_{-\infty}^{\infty} \delta(ax) f(x) dx = \int_{-\infty}^{\infty} \frac{1}{a} \delta(y) f\left(\frac{y}{a}\right) = \frac{1}{a} f(0)$$

if a > 0, and

$$\int_{-\infty}^{\infty} \delta(ax)f(x)dx = \int_{\infty}^{-\infty} \frac{1}{a}\delta(y)f\left(\frac{y}{a}\right) = \int_{-\infty}^{\infty} -\frac{1}{a}\delta(y)f\left(\frac{y}{a}\right) = -\frac{1}{a}f(0)$$

if a < 0, so then in general

$$\int_{-\infty}^{\infty} \delta(ax) f(x) dx = \frac{1}{|a|} f(0)$$

Now let h(x) be a smooth function, and consider

$$\int_{-\infty}^{\infty} \delta(h(x)) f(x) dx$$

If h(x) has no zeros this is identically zero. Suppose h(x) has one zero, $h(x_1) = 0$ and suppose $h'(x_1) > 0$. Then we can write

$$\int_{-\infty}^{\infty} \delta(h(x)) f(x) dx = \int_{a}^{b} \delta(h(x)) f(x) dx$$

where h'(x) > 0 on (a, b), with $x_1 \in (a, b)$. This means we can invert h(x) on the interval; let y = h(x) then $x = h^{-1}(y)$, and also

$$dy = h'(x)dx \Rightarrow dx = \frac{dy}{h'(h^{-1}(y))}$$

giving

$$\int_{a}^{b} \delta(h(x))f(x)dx = \int_{h(a)}^{h(b)} \delta(y)f(h^{-1}(y))\frac{dy}{h'(h^{-1}(y))}$$

and y = 0 for $x = x_1$, so this integrates to

$$\frac{f(h^{-1}(0))}{h'(h^{-1}(0))} = \frac{f(x_1)}{h'(x_1)}$$

If h' < 0 then everything is the same except one of the limits of integration will change giving a minus, so then

$$\int_{-\infty}^{\infty} \delta(h(x)) f(x) dx = \frac{f(x_1)}{|h'(x_1)|}$$

If h has multiple zeros then we can split the integral up into multiple intervals to get

$$\int_{-\infty}^{\infty} \delta(h(x)) f(x) dx = \sum_{x_i:h(x_i)=0} \frac{f(x_i)}{|h'(x_i)|}$$

 \mathbf{so}

$$\delta(h(x)) = \sum_{x_i:h(x_i)=0} \frac{\delta(x-x_i)}{|h'(x_i)|}$$

10.2 Delta Function and Fourier Integrals

Consider

$$\delta(x) = \int_{-\infty}^{\infty} dk \, \widetilde{\delta(k)} \exp(ikx)$$

where

$$\begin{split} \widetilde{\delta(k)} &= \frac{1}{2\pi} \int_{-\infty}^{\infty} dx \, \delta(x) \exp(-ikx) = \frac{1}{2\pi} \\ &\Rightarrow \delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, \exp(ikx) \end{split}$$

giving us the orthogonality relation

$$\delta(x - x') = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, \exp\left[ik(x - x')\right]$$

We also have that the Fourier transform of the constant function f(x) = 1 is

$$\widetilde{f(k)} = \widetilde{1(k)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} dx \exp(-ikx) = \delta(k)$$

Parseval's Theorem for Fourier Integrals: also called Plancherel's formula,

$$\int_{-\infty}^{\infty} dx \, |f(x)|^2 = 2\pi \int_{-\infty}^{\infty} dk \, |\widetilde{f(k)}|^2$$

Proof.

$$\begin{split} \int_{-\infty}^{\infty} dx \, |f(x)|^2 &= \int_{-\infty}^{\infty} dx \, f(x) \overline{f(x)} \\ &= \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dx' f(x) \overline{f(x')} \delta(x - x') \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dx' \int_{-\infty}^{\infty} dk \, f(x) \overline{f(x)} \exp\left[ik(x - x')\right] \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \left(\int_{-\infty}^{\infty} dx \, f(x) \exp(ikx)\right) \left(\int_{-\infty}^{\infty} dx' \overline{f(x')} \exp(-ikx')\right) \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, 2\pi \overline{f(k)} \overline{2\pi \overline{f(k)}} \\ &= 2\pi \int_{-\infty}^{\infty} dk \, |\widetilde{f(k)}|^2 \end{split}$$

as required.

Part III Ordinary Differential Equations

11 First Order ODEs

These are equations of the form

$$y' + p(x)y = f(x)$$

with general solution

$$y = y_p + Cy_h$$

where y_p is a particular solution to the inhomogeneous equation, and y_h is the solution to the homogeneous version. We can solve this equation by multiplying across by an integrating factor λ such that $\lambda' = p\lambda$, as then we have

$$\lambda y' + p\lambda y = \lambda f$$

$$\Rightarrow \lambda y' + \lambda' y = \lambda$$

$$\Rightarrow (\lambda y)' = \lambda f$$

which we can solve by integrating. It follows that we must have

$$\lambda = \exp(px)$$

if p constant, or in general,

$$\lambda = \exp\left(\int_{a}^{x} p(z)dz\right)$$

where a is an arbitrary constant.

12 Second Order ODEs

These are equations of the form

$$a(x)y'' + b(x)y' + c(x)y = f(x)$$

with general solution

$$y = C_1 y_1 + C_2 y_2 + y_1$$

where y_1 and y_2 are solutions of the homogeneous equation, and y_p is the particular solution to the inhomogeneous version.

12.1 Homogeneous Constant Coefficients

In the homogeneous constant coefficient case

$$ay'' + by' + cy = 0$$

we guess solution $y = e^{\lambda x}$ which gives

$$a\lambda^2 + b\lambda + c = 0$$

known as the auxiliary equation, with roots λ_1 and λ_2 . The general solution is then

$$y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$$

In the case that $\lambda_1 = \lambda_2 = \lambda$ then the general solution is

$$y = C_1 e^{\lambda x} + C_2 x e^{\lambda x}$$

We can solve the inhomogeneous case easily in the case that $f(x) = Fe^{rx}$, by guessing $y = Ce^{rx}$ which gives

$$ar^{2}C + brC + cC = F \Rightarrow C = \frac{F}{ar^{2} + br + c}$$

and the general solution is

$$y = C_1 e^{\lambda_1 x} + C_2 x e^{\lambda_2 x} + C e^{rx}$$

In the case that r coincides with one of the roots of the auxiliary equation, then we instead guess $y = Cxe^{rx}$ (and in the exceptional cases that both roots are equal and equal to $r, y = Cx^2e^{rx}$).

12.2 Solving Using Fourier Analysis

We can analyse periodic driving forces using Fourier analysis by writing f(x) as a Fourier series, hence

$$ay'' + by' + cy = \sum_{n = -\infty}^{\infty} c_n \exp\left(\frac{2\pi i nx}{l}\right)$$

and then solve

$$ay_n'' + by_n' + cy_n = c_n \exp\left(\frac{2\pi inx}{l}\right)$$

giving general solution

$$y = \sum_{n = -\infty}^{\infty} y_n$$

Similarly, if f(x) is non-periodic but decays at $\pm \infty$ we can write it as a Fourier integral

$$f(x) = \int_{-\infty}^{\infty} dk \widetilde{f(k)} e^{ikx}$$

and then solve

$$ay_k'' + ky_n' + cy_k = \widetilde{f(k)}e^{ikx}$$

and integrate over the solutions

$$y = \int_{-\infty}^{\infty} dk \, y_k$$

12.3 Cauchy-Euler Equations

These are equations of the form

$$\alpha x^2 y'' + \beta x y' + \gamma y = 0$$

which can be solved using the substitution

$$x = e^z \Rightarrow z = \log x$$

d dz dy 1 dy

so that

$$y = \frac{d}{dx}y = \frac{d}{dx}\frac{dz}{dz} = \frac{d}{dx}\frac{dz}{dz}$$
$$y'' = \frac{d}{dx}\frac{d}{dx}\frac{dy}{dz} = -\frac{1}{x^2}\frac{dy}{dz} + \frac{1}{x}\frac{d}{dx}\frac{dy}{dz} = -\frac{1}{x^2}\frac{dy}{dz} + \frac{1}{x^2}\frac{d^2y}{dz^2}$$

The equation becomes

$$\alpha \left(-\frac{dy}{dz} + \frac{d^2y}{dz^2} \right) + \beta \frac{dy}{dz} + \gamma y = 0$$

or

$$\alpha \frac{d^2 y}{dz^2} + (\beta - \alpha) \frac{dy}{dz} + \gamma y = 0$$

hence we have auxiliary equation

$$\alpha \lambda^2 + (\beta - \alpha)\lambda + \gamma \lambda = 0$$

and solution

$$y = C_1 e^{\lambda_1 z} + C_2 e^{\lambda_2 z} = C_1 x^{\lambda_1} + C_2 x^{\lambda_2}$$

(A more direct approach would be to substitute $y = x^{\lambda}$ in the original equation, though in the case of repeated roots you need to know to multiply the second solution by $\log x$.)