Course 231: Equations of Mathematical Physics

Notes by Chris Blair

These notes cover the 2007-2008 Methods course given by
Dr. Conor Houghton, up until the end of Hilary term
(excluding power series).
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Part 1

Vector Calculus

1 2 and 3-Dimensional Integration

1.1 2-Dimensional Integration

We wish to integrate a scalar field ¢(z,y) over a 2-dimensional region R

/ /R dA §(z,y)

To do so we write the integral as a double integral, iterated either first in the y and then the x
direction, or vice versa.

If the top boundary of R can be written as y = d(x) and the bottom as y = ¢(z) then we can

write . i(s)
/ /R dA§(z,y) = / dz / o)



i.e. we integrate first over y from c(x) to d(x), and then over x from a to b . Similarly in the

other direction,
b(y)
//dA¢xy /dy/ dz ¢(z,y)
a(y)

1.2 3-Dimensional Integration

The idea in 3-dimensional integration is similar; we write the top surface as z = f(x,y) and the
bottom surface as z = e(x,y), and treat the projection of the region in the zy plane as in the
2-dimensional case, hence

d(x) f(x,y)
/// av é(z,y, 2) / d:c/ dy/ dz o(z,y, )
R (x) (z,y)

1.3 Changing Coordinates
Jacobian

It is often convenient to integrate using a different set of coordinates. Change of coordinates
involves a scaling factor known as the Jacobian. In two-dimensions for old coordinates z,y and

new coordinates u, v we have
dA = dxdy = Jdu dv

_ Oy || & %
O(u,v) % %

and in 3-dimensions, for old coordinates z,y, z and new coordinates u, v, w we have

dV =drdvdz = Jdudv dw

Oz Jx Oz

ou ov ow
g2 0@z oy oy oy
Ouwvw) || 58 50 oe

ou  Ov  Ow
Examples
e Cylindrical Polar Coordinates
T =TCos¢ y=rsind z=z
J=r

where r € [0,00), ¢ € [0, 27).

e Spherical Coordinates
x =rsinfcos ¢ Yy = rsinfsin ¢ z=rcost
J=r’sinf

where 7 € [0,00), ¢ € [0,27), 0 € [0, 7].



2 Vector Operators
2.1 Grad, Div and Curl

There are some important vector operators related to the operator V= %i + 8% Jj+
e grad
The gradient of a scalar field ¢ is the vector field

= 99 9¢ 0¢
do = - (£ = 7
grad¢ = Vo <8x7 Oy’ Oz
o div
The divergence of a vector field F= (F1, Fy, F3) is
- o OF, O0Fy, O0F;3
ox + Oy + 0z
If div F = 0 then we say F is solenoidal.

e curl
The curl of a vector field F = (Fy, Fy, F3) is

curl F =V x F =

= s~
7 o =0
3 Yo

If curl F =0 we say F is irrotational.
e Laplacian
The Laplacian of a scalar field ¢ is the scalar field
: = o 0P 09 DP9
A¢p =divgrad¢ =V -Vo¢ = @+37y2 =3
2.2 Vector Identities

Some important vector identities related to these operators are:

—

1 V(¢y) = oV + 9V
2. V(¢F)=Vé-F + ¢VF

3. Vx (pF) =V x F+ ¢V x F

4. V- (FxG) =(VxF)-G-—F-(VxQg)

5. Vx (FxG)=(V-G)F+(G-V)F—(V-F)G—(F-V)G

6. V(FE-G)=Fx(VxG)+Gx (VxF)+(F-V)G+(G-V)F
7.V-(VxF)=0

8. V x (V¢) =

9. V-V =A¢

e
?r)



3 Line Integrals and Conservative Fields

3.1 Line Integrals

To integrate a vector field F along a curve C' we parameterise the curve C' in terms of ¢ as 7(t)
and use
L L dF
/ F-dl:/F(r(t)) L
c dt

3.2 Conservative Fields
A vector field F is called conservative if there exists a scalar field ¢ such that
F=vV¢

A vector field F is called path independent if the line integral [ c F - dl between any two points
is the same for all paths C' between those two points.

The following are equivalent: Fis conservative, Fis path independent, and fc F.dl=0.

Proof. 1) Conservative = path independence: let F = ﬁ(;ﬁ = (%,g—fz,g—f), and consider ¢

restricted to a curve 7(t), so that on the curve we have ¢ = ¢(7(¢)) and

do _09dr  9pdy , 96 dz
dt  Oxdt Oydt 0zdt

Now consider

L[ i
F-dl:/ F(f(t) - = dt
JLF = [ Feo)- g
R
= | Vo dt

t1

2 19pde  dpdy Do dz
A(mm+@m+&ﬁwt

ta d
:/ 9 4
. di

= ¢(t1) — o(t2)

by the Fundamental Theorem of Calculus, showing that Fis path independent.

i) Path independence = fc F.dl=0: let C, and C} be two curves with the same endpoints Py

and P,, then
/ Fodi= | F-d
C, Chy

and now consider the closed curve C = C, — (Y, then

fﬁﬁ
C

/ﬁvﬁ_ Fodi=0
a Cb

for all closed loops C.



iii) §C F-dl=0= path independence: let fc F - dl =0 for all closed loops C', and let Cy and
C5 be two paths between two points a and b. Then we have

for all C7 and C5, so path independence.

iv) Path independence = conservative: let p be some point and let

o(T) = / Fdl
C(p,T)
where C(p, Z) is any curve from p to & = (z,y, z). We will show that F= V¢. Componentwise,
we have to prove that

0 0 e
F = 9 _ 9 F-dl
ox Ox C(p,T)
We choose a path C' that goes from p to a point p’ = (2, y, z), so that the path from p’ to Z is
a straight line. We then have
0 - - 0 - o0 -
—/ F-dl:—/ F-dl+ — F-dl
0 Jows 0T Joww) 0T Jow
where the first integral does not depend on x and so is zero when differentiated. We now
parameterise C(p', ¥) as
Ft) = ti +yj + zk

SN
dt
and so we have
0 A o dr
2 Fai== [ F Za
8;10 C(p',@) 8m 2! dt
o [ = .
= — / Fq
317 2!
a x
= — Fydt
oz J,,
using the Fundamental Theorem of Calculus. Similarly for the other components. O

4 Surface Integrals

To integrate a vector field F' over a surface we parameterise the surface as 7(u,v) and use

Lo S or  or
//SF'dAf//DdudvF(r(u,v)f%><%

where D is the domain in R? of u,v. Note that the choice 2& x %Z gives one orientation of the

ou
surface; % X g—z is the other.



5 Integrating Scalars

We can define two- and three-dimensional integrals of scalars by

o= o=
[ [ - I [

6 The Integral Theorems

dr

Edt

dudv

6.1 Green’s Theorem

Let D be a region in the zy plane bounded by a piecewise smooth curve C' oriented anti-clockwise.
Then if f(z,y) and g(z,y) have continuous first derivatives

// (Zﬁ - y) ]{ (fdz + gdy)

Proof. Consider D a simple region (i.e. a region where a double integral can iterated in either
order). Then,

()L fu o[

- [ st y)}biy)) [ sy
/d — /Cd dy g(a(y),y) — /ab dx f(z,d(z)) + /ab dz f(x, (c(x))
7

) ayg(aty 740 d f(z,y(z))

j{ (fdx + gdy)

Q

as required. For an arbitrary region, we can divide the region up into many simple regions and
sum. O

6.2 Stokes’ Theorem

Let S be a piecewise smooth orientable surface with boundary C' a piecewise smooth curve
oriented so that n x dl points into the surface. Let F' be a continuously differentiable vector field

in the neighbourhood of S, then
// curlﬁ~d§:j{ Fodl
s c

Proof. Consider first the simple case F= Fs(x,y, z)l%, and a simple region that can be parame-
terised by x,y, that is z = h(x,y), so that

F=xi+ yj + h(;my)l%



is the parameterised surface. We then have

or _, Ohy or_ . Oh;
ar ' oz ayij dy

i J k
or  or oh oh, Oh. -
SR VR v
Oy
and R . R
S S )2
= 34 3~
curl F' = a% a% a% Tyl_%
0 0 Fs
SO
or  or _O0F30h  O0F30h
1F - — | =
o (890 8y> Oy Oz *or dx dy
0 oh 0 oh
= (R + = (B2
dy ( 38x> T o ( 38y)
* 0 oh OF3 0h  OF3 0h Oh 0%h
F il e Tdl: DT - Nl
63:( 38y> 0z 0y  oh oz oy | *oz0y
2
0 Fgah _8F38h %%@+Fﬁh
8y or Oy Ox  Oh 0Oy Ox Byam
so then

frmreas= [ e 5z (n5,) 5 (722

and we now apply Green’s theorem with f = F32h 5. and g = F3 52 ‘% , hence

// curl F - dS = ?{ Fg—dx—l—Fg%dy
s dy
0z 0z
]{ (8xdac+ ady>
% F3 dz
= ?{ F.dl
c

as required. We can perform similar calculations for F=Fiand F = F,7 and sum them to give

the general result. For a more general surface S we can split S into a number of simple surfaces
O

and integrate over each of them.
An application of Stokes’ theorem is to show that on a simply connected domain curl F=0=F
conservative. A simply connected domain is a domain such that any smooth curve can be shrunk
to a point. Given some curve C' we can shrink it to a point and let S be the surface traced by



the shrinking, hence any closed curve can be expressed as the boundary of some surface. Then

ifcurlﬁzo,
]{ﬁ-df://curlﬁ-d(?:o
C S

and hence F' is conservative.

6.3 Gauss’ Theorem

Let D be a connected three-dimensional region in R? whose boundary is a closed piecewise smooth
surface S. Then if F' is a vector field with continuous first derivatives in a domain containing D

// divﬁdvz//ﬁ-d§
D S

Proof. Consider just D simple, and let F = Fsk, so div F = %. We now write

. f(@.y)
/// div F dv = / / a:2
D Dy Je(x,y) 0z

where Ds is the parameter region in the zy plane, so

///DdivﬁdV://D2 [Fs(,v, £(2.v)) ~ Fo(arp. e(ar9)

and we parameterise the top surface by

F=axi+yj+ f(z,y)k

then o7 oF
= oa = v T
F~dS:// dedy F(z,y, f(x,y)) - =— X —
/] [ dedy Floy. o) 5% 5
and we have o
or or |17 K of. of
T T af A ~ ~
—x—=10 2 |=-ZLi-Zj+k
ox = Oy 01 gj Ox 3&/]
Yy

hence for F = F3i€ we get

//mpﬁ'dg://pz dz dy Fs(z,y, f(z,y))

and similarly for the bottom surface,

//botﬁ'dgz //D dx dy F5(x, y, e(z,y))
///Ddivﬁdvz//sﬁ.dg

and again the proof is similar for other components, and by summing these components works
for all F'. As before, we can treat more general domains as a collection of simple domains.

hence

O



7 Vector Potentials

If div F = 0 then F = curl A for some A called the vector potential. The converse is true only
on domains in R? with no 3-dimensional obstructions (i.e. domains where any closed surface can
be shrunk to a point).

A star-shaped domain is a region D in which there exists a point a such that the line segment
between a and any point « € D lies in D. On such domains if div F =0 then we can obtain a
vector potential for F using the formula

1
A’(r):/ dt F(t7) x t7
0

The Hodge decomposition of a vector field F neither solenoidal nor irrotational on D a simply
connected domain with no obstructions to 2-spheres is

F=culA+ grad ¢

Part 11
Fourier Analysis

8 Fourier Series

8.1 Real Fourier Series

Consider a function f(z) with period [, then the Fourier series expansion of f(x) is

_ao > 2mne > . 2mn
f(x)2+;ancos< ;i >+ansm< ;i >

n=1

We can find the Fourier coefficients using the following properties of sin and cos:

1

L
2 2 2 2
’ dx cos( 7mz> = ’ dx sin< an) =0
1 l L l
2 2
l
2 2 2
’ dx cos e sin L\ _ 0
1 l l
2
3 2mne 2Tmax 3 . 2mnxr\ . 2mmax 1
dx cos cos = dx sin sin = —0mn
-4 l l L l l 2

where m,n are positive integers and d,,, is the Kronecker delta,

P 1 m=n
0 m#£n

To find ap we integrate both sides over a period

L

l ! oo € ee]
2 _[? ag 2 2mnx 2 . 2mnx
/_ d:rf(:v)—/_ dx2 +Zan/_ dxcos( i >+nz_:1bn/_ dxsm( l )

L A L L
2 2 n=1 2 2

=0 =0

10



hence

ao:%/_id:cf(x)

2

To find a,, we multiply across by cos (2”%) and integrate over a period
3 2rma i a 2 2 2
B ag Tmx TN TmT
/_édxf(x)cos( 7 )—/_édx2co( ) Z%/édwcos( )cos( l )
=0 =30mn
2mnx 2rmx
by, d
+Z /é l’Sln( ] )cos( ] )
=0
hence

and similarly

8.2 Complex Fourier Series

The complex Fourier series of a function f(x) with period [ is

Fa) = i e exp <27T§'nx)

n=—oo

where the complex Fourier coefficients are given by

e / do f(z) exp _27rmx
l L l

which comes from a similar method to before, using

/2 dx exp (27?33 (n— m)) = 10mn

L
2

One feature of the complex Fourier series is that if f(z) is real then ¢, = ¢_,,, where the overline
denotes the complex conjugate.

8.3 Dirichlet’s and Parseval’s Theorems

Dirichlet’s Theorem: If f(z) is periodic with a finite number of minima and maxima in one
period, and with a finite number of discontinuities in one period, and

* o |f(@) < oo

L
2

11



then the Fourier series for f is convergent, and converges to f(x) for all points where f is
continuous. For points a where f(x) is discontinuous it converges to

3 | Jm £+ Jim (o)

i.e. it extrapolates across the discontinuity.

Parseval’s Theorem: The L? norm of f(z) is

1 R
l/ldwlf — By @) = Y el
2

Proof. (complex case) We have that

i

Ldelf@P = [ de )T
d i e exp (2m’nm> i e exp (_27m'mx)
" I " z

/; n=—oo n=—oo

-
= Z CnCm dx exp ( ﬂ;x (n— m))

_L
2

= Z CnCmOmnl
n,m
o0
=1 lenf?

Nl

|~

W~

=dmn

O
9 Fourier Integrals
Consider the complex Fourier series,
TINT TInT
s = 3 e (T7) ey [ as@en (<777)
0o L . .
27 | 1 2 2minx 2minx
~i= 3 [% [ de v (=255 o (22
n=—oo
and as [ gets large we have §k = l , and can write k = l Tn, and argue that in the limit [ — oo

the sum over n becomes an integral over k, hence

o) = / "~k [;ﬁ /_ Z dz f(z) eXp(—ik‘x)} exp(ikz)

— 0o

the Fourier integral of f. We may write this as

f@) = [ an ) expine)

— 00

12



where
— 1

flk) = o /_OO dx f(x) exp(—ikx)

is known as the Fourier transform of f(x). The Fourier integral formula holds if f(x) is L', that
is, if it satisfies

[ izl <o

— 00

10 The Dirac Delta Function

10.1 Definition and Properties
The Dirac delta function (which is not, strictly speaking, a function) may be defined by

5(@—{0 z#0 /oo §(z)de = 1

oo =0 s

with the characteristic property

We then have

[ sy = (o
established using the substitution y = z — a.

We can consider the derivative of the delta function by integrating by parts

| d@iwi=swi@]”_- [ i@

= 7/ 5(z) f (z)dx
= —f'(0)
We consider é(az) by letting y = ax = dy = adz so

/ §(az)f dx—/ooéé()f@):éf(o)

if a > 0, and
o1 vy [T 1 vy 1
| sans@is= [ Lswr (L) = [ -tewi (1) =150
if a < 0, so then in general
1
0(az) f(x)dxe = — f(0
/. ¥

Now let h(z) be a smooth function, and consider

| stwiens@as

— 00

13



If h(x) has no zeros this is identically zero. Suppose h(x) has one zero, h(z;) = 0 and suppose
h'(x1) > 0. Then we can write

[e%e) b
1 5(h()) f (x)de = / 5(h(x)) f (x)de

where h/(z) > 0 on (a,b), with 21 € (a,b). This means we can invert h(x) on the interval; let
y = h(z) then x = h~1(y), and also
dy

dy = N (z)dr = dx = W10

giving
b h(b) ) dy
[ s = [ a0 605G
and y = 0 for x = z1, so this integrates to

F(10) _ fla)
WHT0) W)

If A’ < 0 then everything is the same except one of the limits of integration will change giving a
minus, so then
f(z1)

/_ A )z =

If A has multiple zeros then we can split the integral up into multiple intervals to get

/OO ) fde = 3 L)

/ .
> xi:h(x;)=0 |h (-Tz)l

SO
o(x — ;)
o(h = -
(h(x)) xi;h%‘;)zo |0 ()]
10.2 Delta Function and Fourier Integrals

Consider

§(x) = /OO dk(% exp(ikx)

— 00
where

(Sf(\k/) _ L /jo dz §(x) exp(—ikz) = 2i

2 T

= 0(x) = %/ dk exp(ikx)

giving us the orthogonality relation

Sz —2') = ! /OO dk exp [zk(x — x')}

,%700

14



We also have that the Fourier transform of the constant function f(x) =1 1is

FOR) = 1(k) = % /_ " dwexp(—iks) = 5(k)

Parseval’s Theorem for Fourier Integrals: also called Plancherel’s formula,

/OO de |f(z)]> = 27T/_Z dk|f(7€/)|2

— 00

Proof.

| aolr@p = [ de @7
/ dm/ dz'f(z) f(")8(z — a)
= — dx/ dz:/ dk f(z exp[zk(x—a:)}
% dk(/ da f(x expzkx)(/ da' @) exp(— zkar)>

—/ k2 (k)2 f ()
=2ﬂ/_mdkﬁ|f( )2

as required. 0

Part 111
Ordinary Differential Equations

11 First Order ODEs

These are equations of the form
y' +plx)y = f(z)
with general solution
y=yp+Cuyn

where y,, is a particular solution to the inhomogeneous equation, and y,, is the solution to the
homogeneous version. We can solve this equation by multiplying across by an integrating factor
A such that M = p\, as then we have

Ny +phy = \f
=M + Ny =)
= (\y)' = \f

15



which we can solve by integrating. It follows that we must have

A = exp(pz)
A= exp ( / ’ p(z)dz)

12 Second Order ODEs

These are equations of the form

if p constant, or in general,

where a is an arbitrary constant.

a(x)y” 4+ b(x)y' + c(x)y = f(x)

with general solution
y=Ciyr + Cay2 + yp

where y; and y» are solutions of the homogeneous equation, and y, is the particular solution to
the inhomogeneous version.

12.1 Homogeneous Constant Coefficients
In the homogeneous constant coefficient case
ay” +by +cy=0
we guess solution y = e** which gives
aX? +bA+c=0
known as the auxiliary equation, with roots A\; and As. The general solution is then
y = CreM® 4 Coe?”
In the case that Ay = Ay = X then the general solution is
y = C1e™ + Coze®
We can solve the inhomogeneous case easily in the case that f(z) = Fe™, by guessing y = Ce"™

which gives
F

ar’C+brC+cC=F=(C=—F5——
ar+br+c

and the general solution is
y = C1eM® + Chze™?™ + Ce™

In the case that r coincides with one of the roots of the auxiliary equation, then we instead guess
y = Cze™ (and in the exceptional cases that both roots are equal and equal to 7, y = Cz2%e™).

16



12.2 Solving Using Fourier Analysis

We can analyse periodic driving forces using Fourier analysis by writing f(z) as a Fourier series,

hence
o0 2 .
ay’ +by +cy = Z Cn €XP ( wgnx)

n=-—oo

and then solve

,, , 2minx
ayp + by + cyn = cnexp (| —

giving general solution

oo
Y= Zyn

n=—oo

Similarly, if f(z) is non-periodic but decays at +oo we can write it as a Fourier integral

flz) = / kRt

— 00
and then solve .
ayyl + ky,, + cye = f(k)e'™”

y:/ dk yx,

12.3 Cauchy-Euler Equations

and integrate over the solutions

These are equations of the form
az?y" + Bry + vy =0
which can be solved using the substitution
r=¢e = z=logx

so that
, d _dzdy 1ldy

V=&Y " @mdz  1dz
p_d,_dldy  ldy lddy 1ldy 1d%
y dxyidxxdzi x2dz  wzdrdz  x2dz  x?dz?
The equation becomes
dy d7y dy B
a( dz+dz2>+/6dz+vy 0
or
d?y

hence we have auxiliary equation
al+ (B—a)A+yA =0

and solution
y= C1eM? + Cee™?® = Cra™ + Cya™?

(A more direct approach would be to substitute y = 2* in the original equation, though in the
case of repeated roots you need to know to multiply the second solution by log x.)

17



