
Theorems

Linear Operators

Theorem 1 (Hamilton-Cayley) Let M T→ M be a linear operator on a vector space M , ui a
basis for M , so Tuj = αi

jui with matrix A = (αi
j). Then the characteristic polynomial of T is

p = det(A−XI) and
p(T ) = 0

Theorem 2 The eigenvalues of T are the zeros of the minimal polynomial.

Theorem 3 If p, f, g ∈ K[x], K a field and p irreducible then p divides fg ⇒ p divides f or p
divides g.

Theorem 4 (Unique Factorisation) Let f ∈ K[x], degree f > 0, then

f = αp1 . . . pk

where α ∈ K and p1 . . . pk are irreducible and monic, uniquely up to reordering of factors.

Theorem 5 (Primary Decomposition) Let M T→M a linear operator which satisfies a polyno-
mial equation with only linear factors

(T − λ1I)r1 . . . (T − λkI)rk = 0

with λi distinct scalars, ri positive integers, thenM is the direct sum of the generalised eigenspaces,

M = ker(T − λ1I)r1 ⊕ · · · ⊕ (T − λkI)rk

and x = x1 + . . . xk uniquely.

Theorem 6 If M T→M diagonalisable and N T -invariant then TN is diagonalisable.

Theorem 7 Let S, T be commuting linear operators on M , then each eigenspace of S is
T -invariant and vice versa, and if both S and T diagonalisable then they are simultaneously
diagonalisable.

Linear Forms

Theorem 8 Let u1 . . . un be a basis for M , then u1 . . . un are a basis for the dual space M∗,
called the basis dual to u1 . . . un.

Theorem 9 A system f1 = 0, . . . , fm = 0 of homogeneous linear equations of rank r on an
n-dimensional vector space has an (n− r)-dimensional solution space.
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Scalar Products

Theorem 10 Let M be a Euclidean or Hilbert space, then
i) ||αx|| = |α| ||x||,
ii) if x 6= 0 then x

||x|| has norm 1,
iii) |(x | y)| ≤ ||x|| ||y|| (Cauchy-Schwarz inequality),
iv) ||x+ y|| ≤ ||x|| ||y|| (triangle inequality).

Theorem 11 Let (· | ·) be a scalar product on a vector space M , and N a finite dimensional
vector subspace such that (· | ·)N non-degenerate, then

M = N ⊕N⊥

Theorem 12 Let (· | ·) be a symmetric or hermitian scalar product on a finite dimensional
space M . Then M has a basis ui of mutually orthogonal vectors, i.e. (ui |uj) = 0 if i 6= j, i.e.
the matrix of the scalar product is diagonal.

Theorem 13 (Sylvester’s Theorem) Let u1 . . . un and w1 . . . wn be linear coordinates on a real
or complex vector space M and let

F =
∣∣u1

∣∣2 + · · ·+ |ur|2 −
∣∣ur+1

∣∣2 − · · · − ∣∣ur+s
∣∣2 + 0

∣∣ur+s+1
∣∣2 + · · ·+ 0 |un|2

=
∣∣w1

∣∣2 + · · ·+
∣∣wt

∣∣2 − ∣∣wt+1
∣∣2 − · · · − ∣∣wt+k

∣∣2 + 0
∣∣wu+k+1

∣∣2 + · · ·+ 0 |wn|2

then r = t and s = k.

Adjoints

Theorem 14 Let M T→ M have matrix A = (αi
j) with respect to an orthonormal basis, then

T ∗ has matrix At (Euclidean) or A
t

(Hilbert).

Theorem 15 Let M T→ M be self-adjoint and M be a Hilbert space then all the eigenvalues
of T are real numbers.

Theorem 16 If A an n×n Hermitian matrix then all the roots of its characteristic polynomial
are real.

Theorem 17 Let N be invariant under T , then N⊥ invariant under T ∗.

Theorem 18 (Spectral Theorem) Let M T→ M be either a self-adjoint operator on a finite
dimensional Euclidean space M or a normal operator on a finite dimensional Hilbert space M ,
then M has an orthonormal basis of eigenvectors of T , thus M = M1 ⊕ · · · ⊕Mk, a direct sum
of mutually orthogonal eigenspaces.

Theorem 19 (Heisenberg Uncertainty Relation) Let P,Q be linear operators satisfying com-
mutation relation PQ−QP = αI, α ∈ C, then

(∆P )(∆Q) ≤ 1
2
|α|
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Tensors

Theorem 20 Let ui be a basis for M then e.g. ui ⊗ uj ⊗ uk is a basis for M∗ ⊗M ⊗M∗.

Theorem 21 Contraction is well-defined.

Theorem 22 D(Ax1 . . . Axn) = detAD(x1 . . . xn) for all xi ∈ Kn.

Theorem 23 If A,B ∈ Kn×n then detAB = detAdetB.

Theorem 24 A ∈ Kn×n invertible ⇔ detA 6= 0.

Theorem 25 (Cramer’s Rule) If A ∈ Kn×n invertible and Ax = b then

xi =
D(a1 . . . b . . . an)

detA
b in ith slot

Theorem 26 (Inverse Formula) The (i, j)-entry of A−1 is given by

D(a1 . . . ej . . . an)
detA

ej in ith slot

Theorem 27 Let T ∈ T rM , then
∑

φ∈Sr
εφφ · T is skew-symmetric.

Theorem 28 Let dim M = n and ui a basis for M , then
i) M (r) = {0},M(r) = {0} if r > n,
ii) {ui1 ∧ · · · ∧uir}i1<···<ir a basis for M (r), {ui1 ∧ · · · ∧uir}i1<···<ir a basis for M(r), for each

0 ≤ r ≤ n.

Theorem 29 The skew-symmetriser satisfies

A [(AS)⊗ T ] = A [S ⊗ T ] = A [S ⊗ (AT )]

and
A(S ⊗ T ) = (−1)stA(T ⊗ S)

Theorem 30 The wedge product is bilinear, associative, super-commutative and satisfies

R1 ∧ · · · ∧Rk =
(r1 + · · ·+ rk)!

r1! . . . rk!
A (R1 ⊗ · · · ⊗Rk)

Push-forward and Pull-back

Theorem 31 Let M T→M be a linear map of finite dimensional K-vector spaces then for each
integer r ≥ 1 the push-forward

M ⊗ · · · ⊗M︸ ︷︷ ︸
r

T∗→ N ⊗ · · · ⊗N︸ ︷︷ ︸
r

is a covariant functor from K-vect fd to K-vect fd, and the pull-back

M∗ ⊗ · · · ⊗M∗︸ ︷︷ ︸
r

T∗

← N∗ ⊗ · · · ⊗N∗︸ ︷︷ ︸
r

is a contravariant functor.
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Theorem 32 The push-forward and pull-back preserve tensor products, commute with per-
mutations and preserve wedge products.

Orientation

Theorem 33 The volume form u1∧· · ·∧un is independent of choice of standard basis u1 . . . un,
and if (· | ·) has components gij = (wi |wj) with respect to a positively oriented basis w1 . . . wn

then
vol =

√
|det gij |w1 ∧ · · · ∧ wn

Theorem 34 Let u1 . . . un be a standard basis for M , then

∗u1 ∧ · · · ∧ ur = sr+1 . . . snu
r+1 ∧ · · · ∧ un

where si = (ui |uj) = ±1.

Continuity

Theorem 35 BX(a, r) is open in X.

Theorem 36 Let M ⊃ X
f→ Y ⊂ N , then f is continuous at a ⇔ for each V open in Y such

that f(a) ∈ V there exists W open in X such that fW ⊂ V .

Theorem 37 Let X
f→ Y , X,Y topological spaces, then f is continuous ⇔ V open in Y ⇒

f−1V open in X.

Theorem 38 Let

X Y

Z

............................................................... ............
f

.................................................................... ........
....

gf
................................................................

....

............
g

then f, g continuous ⇒ gf continuous.

Differentiability

Theorem 39 Let M ⊃ V
f→ W ⊂ N be differentiable at a ∈ V . Then the derivative f ′(a) is

uniquely determined by the formula

f ′(a)h = lim
t→0

f(a+ th)− f(a)
t

=
d

dt
f(a+ th)

∣∣∣
t=0

= the directional derivative of f at a along h

Theorem 40 Let Rn⊃V f→ Rm be differentiable, V open, where f(x) = (f1(x), . . . , fm(x)),
f i(x) = f i(x1, . . . , xn). Then the derivative

Rn f ′(a)→ Rm
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is the m× n matrix

f ′(a) =
(
∂f i(a)
∂xj

)
i = 1 . . .m , j = 1 . . . n

Theorem 41 (Chain Rule For Functions on Finite Dimensional Real or Complex Vector Space)

Let U
g→ V

f→ W and U
f ·g→ W where U, V,W are open subsets of finite dimensional real

or complex vector spaces. Let g be differentiable at a, f differentiable at g(a), then f · g is
differentiable at a and (

f · g
)′

= f ′
(
g(a)

)
g′(a)

Theorem 42 Let Rn⊃ V f→ R, V open, then f is C1 ⇔ ∂f
∂xi exists and is continuous for all i.

Theorem 43 If Rn⊃ V f→ R, V open, is C2, then

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

Theorem 44 (Mean Value Theorem for Functions on Finite Dimensional Normed Spaces) Let

M⊃ V f→ N be C1. Let x, y ∈ V such that

[x, y] = {tx+ (1− t)y | 0 ≤ t ≤ 1} ⊂ V

Let ∣∣∣∣∣∣f ′ [tx+ (1− t)y]
∣∣∣∣∣∣ ≤ k ∀0 ≤ t ≤ 1

then ∣∣∣∣∣∣f(x)− f(y)
∣∣∣∣∣∣ ≤ k∣∣∣∣∣∣x− y∣∣∣∣∣∣

Theorem 45 (Inverse Function Theorem) Let M⊃ V f→ N be a Cr function on open V , with
M,N finite dimensional real or complex vector spaces. Let a ∈ V at which

M
f ′(a)→ N

is invertible, then there exists an open neighbourhood W of a such that

W
f→ f(W )

is a Cr diffeomorphism onto open f(W ) in N .

Manifolds

Theorem 46 (Implicit Function Theorem) Let f = (f1 . . . f l) be Cr real-valued functions on
an open set V in Rn, so

Rn ⊃ V f→ Rl

Rn f ′(x)−→ Rl (l × n matrix)
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and let
X = {x ∈ V |f(x) = 0}

be the space of solutions of the l equations, f1 = 0, . . . , f l = 0. Let a ∈ X be a point at which
rank f ′(a) = l with (say) the first l columns of f ′(a) being linearly independent. Then there
exists an open neighbourhood U of a in X such that

xl+1 . . . xn

are coordinates on X with domain U , and x1 . . . xl are Cr functions of xl+1 . . . xn on U .
Thus, if X = {x ∈ V |f(x) = 0, rank f ′(x) = l}, then X is an (n−l)-dimensional Cr manifold.

Theorem 47 Let X be a smooth n-dimensional manifold and let a ∈ X, then TaX is a real
n-dimensional vector space and if y = (yi) coordinates at a then

∂

∂y1
a

. . .
∂

∂yn
a

a basis for TaX.

Theorem 48 Let X
φ→ Y be smooth, and f ∈ C∞(Y ), then

φ∗df = dφ∗f

ie the pull-back commutes with differentials, and the following diagram is commutative:

Ω1(X)

C∞(Y )

Ω1(Y )

C∞(X)

............................................................................................
φ∗

..............................................................................................................
...
.........
...

d

..............................................................................................................
...
.........
...

d

................................................................................
φ∗

f

df

φ∗f

φ∗df = dφ∗f

Theorem 49 (Chain Rule for Maps of Manifolds) Let

X

Z

Y................................................................................................................. ............
φ

................................................................................................................................ ........
....

............................................................................................................................
....
............

ψ
ψ · φ

be a commutative diagram of smooth maps of manifolds, then

TX

TZ

TY.............................................................................................................. ............
φ∗

............................................................................................................................
....
............

ψ∗

................................................................................................................................ ........
....

(ψ · φ)∗

is a commutative diagram, ie (ψ · φ)∗ = ψ∗ · φ∗, or (ψ · φ)′(x) = ψ′(φ(x))φ′(x)

6


