Theorems

Linear Operators

Theorem 1 (Hamilton-Cayley) Let M L. M be a linear operator on a vector space M, u; a

basis for M, so Tu; = aju; with matrix A = (a%). Then the characteristic polynomial of T' is
p =det(A — XI) and

J
p(T) =0
Theorem 2 The eigenvalues of T" are the zeros of the minimal polynomial.

Theorem 3 1If p, f,g € K[z], K a field and p irreducible then p divides fg = p divides f or p
divides g.

Theorem 4 (Unique Factorisation) Let f € K|[z], degree f > 0, then
f=api...pg
where o € K and p; . ..py are irreducible and monic, uniquely up to reordering of factors.

Theorem 5 (Primary Decomposition) Let M L M alinear operator which satisfies a polyno-
mial equation with only linear factors

(T—XMD™ .. (T—=X D)™ =0
with A; distinct scalars, r; positive integers, then M is the direct sum of the generalised eigenspaces,
M =%ker(T — D)™ @& (T — \I)™
and x = x; + ...z uniquely.
Theorem 6 If M 5 M diagonalisable and N T-invariant then Ty is diagonalisable.

Theorem 7 Let S, T be commuting linear operators on M, then each eigenspace of S is
T-invariant and vice versa, and if both S and T diagonalisable then they are simultaneously
diagonalisable.

Linear Forms

Theorem 8 Let u;...u, be a basis for M, then u!...u" are a basis for the dual space M*,
called the basis dual to uy ... u,.

Theorem 9 A system f; = 0,..., f,, = 0 of homogeneous linear equations of rank r on an
n-dimensional vector space has an (n — r)-dimensional solution space.



Scalar Products

Theorem 10 Let M be a Euclidean or Hilbert space, then
i) [laz|| = [af ||l
ii) if z # 0 then meyy has norm 1,
i) [(x )| < ||z||ly|| (Cauchy-Schwarz inequality),
iv) ||z +y|| < |lz|||ly|| (triangle inequality).

Theorem 11 Let (-|-) be a scalar product on a vector space M, and N a finite dimensional
vector subspace such that (-|-)y non-degenerate, then

M=N&N*

Theorem 12 Let (-|-) be a symmetric or hermitian scalar product on a finite dimensional
space M. Then M has a basis u; of mutually orthogonal vectors, i.e. (u;|u;) =01if i # j, i.e.
the matrix of the scalar product is diagonal.

Theorem 13 (Sylvester’s Theorem) Let u!...u™ and w'...w™ be linear coordinates on a real
or complex vector space M and let

F:|u1]2+---+|ur|2—]ur+1]2—---—\ur+3‘2+o‘ur+8+1‘2+---+0|u”|2
:|w1|2+____’_|wt}2_’wt+l|2__.__‘wt+k}2+0‘wu+k+l{2+._.+O‘wn‘2

then r = ¢ and s = k.

Adjoints

Theorem 14 Let M — M have matrix A = (043») with respect to an orthonormal basis, then
T* has matrix A® (Euclidean) or a (Hilbert).

Theorem 15 Let M 5 M be self-adjoint and M be a Hilbert space then all the eigenvalues
of T are real numbers.

Theorem 16 If A an n x n Hermitian matrix then all the roots of its characteristic polynomial
are real.

Theorem 17 Let N be invariant under 7', then N+ invariant under 7.

Theorem 18 (Spectral Theorem) Let M L M be either a self-adjoint operator on a finite
dimensional Euclidean space M or a normal operator on a finite dimensional Hilbert space M,
then M has an orthonormal basis of eigenvectors of T', thus M = M7 @ --- & My, a direct sum
of mutually orthogonal eigenspaces.

Theorem 19 (Heisenberg Uncertainty Relation) Let P, @ be linear operators satisfying com-
mutation relation PQ — QP = al, a € C, then

(AP)(AQ) < glal



Tensors

Theorem 20 Let u; be a basis for M then e.g. v ® u; @ u® is a basis for M* @ M ® M*.
Theorem 21 Contraction is well-defined.

Theorem 22 D(Az;...Az,)=det AD(x;...x,) for all z; € K™.

Theorem 23 If A, B € K"*™ then det AB = det Adet B.

Theorem 24 A € K™*" invertible < det A # 0.

Theorem 25 (Cramer’s Rule) If A € K™*™ invertible and Az = b then

I D(ay...b...ay,)
L det A

Theorem 26 (Inverse Formula) The (i, j)-entry of A=1 is given by

b in i*" slot

D(ai...ej...ap)
det A

Theorem 27 Let T'€ 7"M, then E¢€S7_ £%¢ - T is skew-symmetric.

ej in it slot

Theorem 28 Let dim M = n and u; a basis for M, then

i) M) = {0}, M,y = {0} if r > n,

i) {u A+ Au'}i <..cq, abasis for M, {u;; A-+- Ay, }iy <<, a basis for M., for each
0<r<n.

Theorem 29 The skew-symmetriser satisfies
A[AS)@T|=A[S®T])=A[S ® (AT)]

and

AS®T) = (1) AT ® S)
Theorem 30 The wedge product is bilinear, associative, super-commutative and satisfies

(ri+--+rg)!
ril.ory!

Push-forward and Pull-back

Theorem 31 Let M 5 M be a linear map of finite dimensional K-vector spaces then for each
integer r > 1 the push-forward

RyAN-- ARy = A(R1®-~-®Rk)

Mo - oMBNg---@N

T T

is a covariant functor from K-vect fd to K-vect fd, and the pull-back

M*@...@M*ZN*@...@N*

™ T

is a contravariant functor.



Theorem 32 The push-forward and pull-back preserve tensor products, commute with per-
mutations and preserve wedge products.
Orientation

Theorem 33 The volume form u' A---Au" is independent of choice of standard basis u . .. u,,
and if (-|-) has components g;; = (w; | w;) with respect to a positively oriented basis wy ... w,

then
vol = /| det gijlw' A+ Aw™

Theorem 34 Let u;...u, be a standard basis for M, then
sul A AU = Spgq e spuTEA AU

where s; = (u; |u;) = £1.

Continuity

Theorem 35 Bx(a,r) is open in X.

Theorem 36 Let M D X EN Y C N, then f is continuous at a < for each V open in Y such
that f(a) € V there exists W open in X such that fW C V.

Theorem 37 Let X EA Y, X,Y topological spaces, then f is continuous < V open in Y =
f~'V open in X.

Theorem 38 Let
X —Y

\gf /
g
Z . .
then f, g continuous = ¢f continuous.

Differentiability

Theorem 39 Let M > V -5 W C N be differentiable at a € V. Then the derivative f'(a) is
uniquely determined by the formula

fan -t FO ) = 1(@)

t—0 t

d
= af(a + th) —0

= the directional derivative of f at a along h

Theorem 40 Let R" SV L R™ be differentiable, V open, where f(x) = (f1(x),..., f™(z)),
fi(x) = fi(x1,...,2,). Then the derivative

Rn f&f) R’HL



is the m X n matrix

f'(a) = (830;(;)) i=1l..m,j=1...n

Theorem 41 (Chain Rule For Functions on Finite Dimensional Real or Complex Vector Space)

Let U 2V 4, W and U ok W where U, V,W are open subsets of finite dimensional real
or complex vector spaces. Let g be differentiable at a, f differentiable at g(a), then f - g is
differentiable at a and

(f : g)/ =f (g(a))g’(a)

Theorem 42 Let R">V % R, V open, then f is C! < gfi exists and is continuous for all 4.

Theorem 43 IfR"DV 4, R, V open, is C?, then

0% f B 0% f
Aridri  Oxidx

Theorem 44 (Mean Value Theorem for Functions on Finite Dimensional Normed Spaces) Let
M>V L Nbe Ol Let z,y € V such that

[yl={tz+(1-t)y|0<t<1}CV

Let

flie+ @ -nyl|| <k vose<a

then
@) = £w)|| < ||+ -y

Theorem 45 (Inverse Function Theorem) Let M D>V LN be a C" function on open V', with
M, N finite dimensional real or complex vector spaces. Let a € V' at which

MY N
is invertible, then there exists an open neighbourhood W of a such that
f
W = f(W)

is a C" diffeomorphism onto open f(W) in N.

Manifolds

Theorem 46 (Implicit Function Theorem) Let f = (f'...f!) be C" real-valued functions on
an open set V in R™, so

R" >V LR

R L0 R (I x n matrix)



and let
X = {o € VIf(x) =0}
be the space of solutions of the I equations, f' =0,...,f' = 0. Let a € X be a point at which

rank f’(a) = [ with (say) the first [ columns of f’(a) being linearly independent. Then there
exists an open neighbourhood U of a in X such that

1+1 n

x . T

are coordinates on X with domain U, and z' ... z! are C" functions of z'*!... " on U.
Thus, if X = {z € V|f(x) =0, rank f'(x) = [}, then X is an (n—I)-dimensional C" manifold.

Theorem 47 Let X be a smooth n-dimensional manifold and let ¢ € X, then T, X is a real
n-dimensional vector space and if y = (y) coordinates at a then

9 9
oy, By,
a basis for T, X.

Theorem 48 Let X %Y be smooth, and f € C*°(Y'), then
¢ df =do* f
ie the pull-back commutes with differentials, and the following diagram is commutative:

0 CX(X) < CXY)

¢rdf = do*f QI(X)TW(Y) df

Theorem 49 (Chain Rule for Maps of Manifolds) Let

Y & %
Z
be a commutative diagram of smooth maps of manifolds, then

TX—>TY

8y

is a commutative diagram, ie (¢ - @)« = ¥y - dx, or (Y- @) (z) = V' (Pp(x))d (x)



