Theorems

Linear Operators

Theorem 1 (Hamilton-Cayley) Let $M \xrightarrow{T} M$ be a linear operator on a vector space M, u_i a basis for M, so $Tu_j = \alpha_j^i u_i$ with matrix $A = (\alpha_j^i)$. Then the characteristic polynomial of T is $p = \det(A - XI)$ and

$$p(T) = 0$$

Theorem 2 The eigenvalues of T are the zeros of the minimal polynomial.

Theorem 3 If $p, f, g \in K[x]$, K a field and p irreducible then p divides $fg \Rightarrow p$ divides f or p divides g.

Theorem 4 (Unique Factorisation) Let $f \in K[x]$, degree f > 0, then

$$f = \alpha p_1 \dots p_k$$

where $\alpha \in K$ and $p_1 \dots p_k$ are irreducible and monic, uniquely up to reordering of factors.

Theorem 5 (Primary Decomposition) Let $M \xrightarrow{T} M$ a linear operator which satisfies a polynomial equation with only linear factors

$$(T - \lambda_1 \mathbb{I})^{r_1} \dots (T - \lambda_k \mathbb{I})^{r_k} = 0$$

with λ_i distinct scalars, r_i positive integers, then M is the direct sum of the generalised eigenspaces,

$$M = \ker (T - \lambda_1 \mathbb{I})^{r_1} \oplus \dots \oplus (T - \lambda_k \mathbb{I})^{r_k}$$

and $x = x_1 + \ldots x_k$ uniquely.

Theorem 6 If $M \xrightarrow{T} M$ diagonalisable and N T-invariant then T_N is diagonalisable.

Theorem 7 Let S, T be commuting linear operators on M, then each eigenspace of S is T-invariant and vice versa, and if both S and T diagonalisable then they are simultaneously diagonalisable.

Linear Forms

Theorem 8 Let $u_1 \ldots u_n$ be a basis for M, then $u^1 \ldots u^n$ are a basis for the dual space M^* , called the basis dual to $u_1 \ldots u_n$.

Theorem 9 A system $f_1 = 0, \ldots, f_m = 0$ of homogeneous linear equations of rank r on an n-dimensional vector space has an (n - r)-dimensional solution space.

Scalar Products

Theorem 10 Let M be a Euclidean or Hilbert space, then

- i) $||\alpha x|| = |\alpha| ||x||,$
- ii) if $x \neq 0$ then $\frac{x}{||x||}$ has norm 1,
- iii) $|(x | y)| \le ||x|| ||y||$ (Cauchy-Schwarz inequality), iv) $||x + y|| \le ||x|| ||y||$ (triangle inequality).

Theorem 11 Let $(\cdot | \cdot)$ be a scalar product on a vector space M, and N a finite dimensional vector subspace such that $(\cdot | \cdot)_N$ non-degenerate, then

$$M = N \oplus N^{\perp}$$

Theorem 12 Let $(\cdot | \cdot)$ be a symmetric or hermitian scalar product on a finite dimensional space M. Then M has a basis u_i of mutually orthogonal vectors, i.e. $(u_i \mid u_i) = 0$ if $i \neq j$, i.e. the matrix of the scalar product is diagonal.

Theorem 13 (Sylvester's Theorem) Let $u^1 \ldots u^n$ and $w^1 \ldots w^n$ be linear coordinates on a real or complex vector space M and let

$$F = |u^{1}|^{2} + \dots + |u^{r}|^{2} - |u^{r+1}|^{2} - \dots - |u^{r+s}|^{2} + 0|u^{r+s+1}|^{2} + \dots + 0|u^{n}|^{2}$$
$$= |w^{1}|^{2} + \dots + |w^{t}|^{2} - |w^{t+1}|^{2} - \dots - |w^{t+k}|^{2} + 0|w^{u+k+1}|^{2} + \dots + 0|w^{n}|^{2}$$

then r = t and s = k.

Adjoints

Theorem 14 Let $M \xrightarrow{T} M$ have matrix $A = (\alpha_i^i)$ with respect to an orthonormal basis, then T^* has matrix A^t (Euclidean) or \overline{A}^t (Hilbert).

Theorem 15 Let $M \xrightarrow{T} M$ be self-adjoint and M be a Hilbert space then all the eigenvalues of T are real numbers.

Theorem 16 If A an $n \times n$ Hermitian matrix then all the roots of its characteristic polynomial are real.

Theorem 17 Let N be invariant under T, then N^{\perp} invariant under T^* .

Theorem 18 (Spectral Theorem) Let $M \xrightarrow{T} M$ be either a self-adjoint operator on a finite dimensional Euclidean space M or a normal operator on a finite dimensional Hilbert space M, then M has an orthonormal basis of eigenvectors of T, thus $M = M_1 \oplus \cdots \oplus M_k$, a direct sum of mutually orthogonal eigenspaces.

Theorem 19 (Heisenberg Uncertainty Relation) Let P, Q be linear operators satisfying commutation relation $PQ - QP = \alpha \mathbb{I}, \alpha \in \mathbb{C}$, then

$$(\Delta P)(\Delta Q) \le \frac{1}{2}|\alpha|$$

Tensors

Theorem 20 Let u_i be a basis for M then e.g. $u^i \otimes u_j \otimes u^k$ is a basis for $M^* \otimes M \otimes M^*$.

Theorem 21 Contraction is well-defined.

Theorem 22 $D(Ax_1 \dots Ax_n) = \det AD(x_1 \dots x_n)$ for all $x_i \in K^n$.

Theorem 23 If $A, B \in K^{n \times n}$ then det $AB = \det A \det B$.

Theorem 24 $A \in K^{n \times n}$ invertible $\Leftrightarrow \det A \neq 0$.

Theorem 25 (Cramer's Rule) If $A \in K^{n \times n}$ invertible and Ax = b then

$$x_i = \frac{D(a_1 \dots b \dots a_n)}{\det A} \quad b \text{ in } i^{th} \text{ slot}$$

Theorem 26 (Inverse Formula) The (i, j)-entry of A^{-1} is given by

$$\frac{D(a_1 \dots e_j \dots a_n)}{\det A} \quad e_j \text{ in } i^{th} \text{ slot}$$

Theorem 27 Let $T \in \mathcal{T}^r M$, then $\sum_{\phi \in S_r} \varepsilon^{\phi} \phi \cdot T$ is skew-symmetric.

Theorem 28 Let dim M = n and u_i a basis for M, then

i) $M^{(r)} = \{0\}, M_{(r)} = \{0\}$ if r > n, ii) $\{u^{i_1} \land \dots \land u^{i_r}\}_{i_1 < \dots < i_r}$ a basis for $M^{(r)}, \{u_{i_1} \land \dots \land u_{i_r}\}_{i_1 < \dots < i_r}$ a basis for $M_{(r)}$, for each $0 \le r \le n$.

Theorem 29 The skew-symmetriser satisfies

$$\mathcal{A}\left[\left(\mathcal{A}S\right)\otimes T\right] = \mathcal{A}\left[S\otimes T\right] = \mathcal{A}\left[S\otimes\left(\mathcal{A}T\right)\right]$$

and

$$\mathcal{A}(S \otimes T) = (-1)^{st} \mathcal{A}(T \otimes S)$$

Theorem 30 The wedge product is bilinear, associative, super-commutative and satisfies

$$R_1 \wedge \dots \wedge R_k = \frac{(r_1 + \dots + r_k)!}{r_1! \dots r_k!} \mathcal{A} \left(R_1 \otimes \dots \otimes R_k \right)$$

Push-forward and Pull-back

Theorem 31 Let $M \xrightarrow{T} M$ be a linear map of finite dimensional *K*-vector spaces then for each integer $r \ge 1$ the push-forward

$$\underbrace{\underline{M} \otimes \cdots \otimes \underline{M}}_{r} \xrightarrow{T_{*}} \underbrace{\underline{N} \otimes \cdots \otimes \underline{N}}_{r}$$

is a covariant functor from K-vect fd to K-vect fd, and the pull-back

$$\underbrace{M^* \otimes \cdots \otimes M^*}_r \xleftarrow{T^*} \underbrace{N^* \otimes \cdots \otimes N^*}_r$$

is a contravariant functor.

Theorem 32 The push-forward and pull-back preserve tensor products, commute with permutations and preserve wedge products.

Orientation

Theorem 33 The volume form $u^1 \wedge \cdots \wedge u^n$ is independent of choice of standard basis $u_1 \dots u_n$, and if $(\cdot | \cdot)$ has components $g_{ij} = (w_i | w_j)$ with respect to a positively oriented basis $w_1 \dots w_n$ then

$$\operatorname{vol} = \sqrt{|\det g_{ij}|} w^1 \wedge \dots \wedge w^n$$

Theorem 34 Let $u_1 \ldots u_n$ be a standard basis for M, then

 $*u^1 \wedge \dots \wedge u^r = s_{r+1} \dots s_n u^{r+1} \wedge \dots \wedge u^n$

where $s_i = (u_i | u_j) = \pm 1$.

Continuity

Theorem 35 $B_X(a,r)$ is open in X.

Theorem 36 Let $M \supset X \xrightarrow{f} Y \subset N$, then f is continuous at $a \Leftrightarrow$ for each V open in Y such that $f(a) \in V$ there exists W open in X such that $fW \subset V$.

Theorem 37 Let $X \xrightarrow{f} Y$, X, Y topological spaces, then f is continuous $\Leftrightarrow V$ open in $Y \Rightarrow f^{-1}V$ open in X.

Theorem 38 Let

$$X \xrightarrow{f} Y$$

 $\bigvee_{q} f \neq g$
 Z
then f, g continuous $\Rightarrow gf$ continuous.

Differentiability

Theorem 39 Let $M \supset V \xrightarrow{f} W \subset N$ be differentiable at $a \in V$. Then the derivative f'(a) is uniquely determined by the formula

$$f'(a)h = \lim_{t \to 0} \frac{f(a+th) - f(a)}{t}$$
$$= \frac{d}{dt} f(a+th) \Big|_{t=0}$$
$$= \text{the directional derivative of } f \text{ at } a \text{ along } h$$

Theorem 40 Let $\mathbb{R}^n \supset V \xrightarrow{f} \mathbb{R}^m$ be differentiable, V open, where $f(x) = (f^1(x), \ldots, f^m(x))$, $f^i(x) = f^i(x_1, \ldots, x_n)$. Then the derivative

$$\mathbb{R}^n \stackrel{f'(a)}{\to} \mathbb{R}^m$$

is the $m \times n$ matrix

$$f'(a) = \left(\frac{\partial f^i(a)}{\partial x^j}\right) \quad i = 1 \dots m \ , \ j = 1 \dots n$$

Theorem 41 (Chain Rule For Functions on Finite Dimensional Real or Complex Vector Space) Let $U \xrightarrow{g} V \xrightarrow{f} W$ and $U \xrightarrow{f \cdot g} W$ where U, V, W are open subsets of finite dimensional real or complex vector spaces. Let g be differentiable at a, f differentiable at g(a), then $f \cdot g$ is differentiable at a and

$$(f \cdot g)' = f'(g(a))g'(a)$$

Theorem 42 Let $\mathbb{R}^n \supset V \xrightarrow{f} \mathbb{R}$, V open, then f is $C^1 \Leftrightarrow \frac{\partial f}{\partial x^i}$ exists and is continuous for all i.

Theorem 43 If $\mathbb{R}^n \supset V \xrightarrow{f} \mathbb{R}$, V open, is C^2 , then

$$\frac{\partial^2 f}{\partial x^i \partial x^j} = \frac{\partial^2 f}{\partial x^j \partial x^i}$$

Theorem 44 (Mean Value Theorem for Functions on Finite Dimensional Normed Spaces) Let $M \supset V \xrightarrow{f} N$ be C^1 . Let $x, y \in V$ such that

$$[x, y] = \{tx + (1 - t)y \mid 0 \le t \le 1\} \subset V$$

Let

$$\left| \left| f'\left[tx + (1-t)y \right] \right| \right| \le k \quad \forall 0 \le t \le 1$$

then

$$\left|\left|f(x) - f(y)\right|\right| \le k \left|\left|x - y\right|\right|$$

Theorem 45 (Inverse Function Theorem) Let $M \supset V \xrightarrow{f} N$ be a C^r function on open V, with M, N finite dimensional real or complex vector spaces. Let $a \in V$ at which

$$M \stackrel{f'(a)}{\to} N$$

is invertible, then there exists an open neighbourhood W of a such that

 $W \xrightarrow{f} f(W)$

is a C^r diffeomorphism onto open f(W) in N.

Manifolds

Theorem 46 (Implicit Function Theorem) Let $f = (f^1 \dots f^l)$ be C^r real-valued functions on an open set V in \mathbb{R}^n , so

$$\mathbb{R}^n \supset V \xrightarrow{f} \mathbb{R}^l$$
$$\mathbb{R}^n \xrightarrow{f'(x)} \mathbb{R}^l \quad (l \times n \text{ matrix})$$

and let

$$X = \{ x \in V | f(x) = 0 \}$$

be the space of solutions of the l equations, $f^1 = 0, \ldots, f^l = 0$. Let $a \in X$ be a point at which rank f'(a) = l with (say) the first l columns of f'(a) being linearly independent. Then there exists an open neighbourhood U of a in X such that

 $x^{l+1} \dots x^n$

are coordinates on X with domain U, and $x^1 \dots x^l$ are C^r functions of $x^{l+1} \dots x^n$ on U. Thus, if $X = \{x \in V | f(x) = 0, \operatorname{rank} f'(x) = l\}$, then X is an (n-l)-dimensional C^r manifold.

Theorem 47 Let X be a smooth n-dimensional manifold and let $a \in X$, then T_aX is a real n-dimensional vector space and if $y = (y^i)$ coordinates at a then

$$\frac{\partial}{\partial y^1_{\ a}} \dots \frac{\partial}{\partial y^n_{\ a}}$$

a basis for $T_a X$.

Theorem 48 Let $X \xrightarrow{\phi} Y$ be smooth, and $f \in C^{\infty}(Y)$, then

$$\phi^* df = d\phi^* f$$

ie the pull-back commutes with differentials, and the following diagram is commutative:

$$\phi^* f \ C^{\infty}(X) \underbrace{\downarrow}_{\phi^*} C^{\infty}(Y) \quad f$$

$$\downarrow d \qquad \qquad \downarrow d$$

$$\phi^* df = d\phi^* f \ \Omega^1(X) \underbrace{\downarrow}_{\phi^*} \Omega^1(Y) \quad df$$

Theorem 49 (Chain Rule for Maps of Manifolds) Let

be a commutative diagram of smooth maps of manifolds, then

is a commutative diagram, ie $(\psi \cdot \phi)_* = \psi_* \cdot \phi_*$, or $(\psi \cdot \phi)'(x) = \psi'(\phi(x))\phi'(x)$