Course 216: Ordinary Differential Equations

Notes by Chris Blair

These notes cover the ODEs course given in 2007-
2008 by Dr. John Stalker.
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Terminology

Scalar equation A single ODE.

System of equations Several ODEs.

Order The order of an ODE is the order of the highest derivative appearing in it.
Linear / Non-linear A linear ODE is an ODE that is linear, etc.

Homogeneous / Inhomogeneous Homogeneous means no constant terms present. Inhomo-
geneous means constant terms are present.



Invariants An invariant of a system of ODEs is a function of the dependent and independent
variables and their derivatives which is constant for any solution of the equation. They can be
used to place bounds on solutions.

Part 1
Solving Linear ODEs

1 Reduction of Order

e Any higher order ODE or system of ODEs can be reduced to a system of first order ODEs
by introducing new variables to replace the derivatives in the original equation/system.

e For example, the third order equation
12" (t) + cox” (t) + c32'(t) + cax(t) = 0
can be reduced to a first order system using the following set of substitutions:

/ "
r1 =T, T2 =T, T3 =T

giving:
r /o ;G4 C3 C2
Ty =2, Ty =123, Tg=——"T1— —Ta— —I3
C1 C1 C1
We can write this in matrix form:
!
x} 0 1 0 T
!
Ty | = 0 0 1 T2
/ _ca _c _c2
T3 c1 c1 c1 T3

e Hence, any ODE or system of ODEs can be written in the following matrix form:
7'(t) = A)Z(t)
which has solution:
Z(t) = exp(tA) £(0)
2 Computing Matrix Exponentials

e The exponential of the matrix tA is given by:

o0

— 1 n n
exp(tA) = Z at A
n=0
e For a diagonal matrix,
a 0 0 exp(a) 0 e 0
0 b ... 0 0 exp(b) ... 0
exp | . . = .
0 ... 0 n 0 0 exp(n)



e Given two matrices A and B then
exp(A + B) = exp(A)exp(B)

if AB = BA. Note that any scalar multiple of the identity commutes with all matrices.
e 2 by 2 Matrices

_ bY_ (5% 0 Stb Y L
A=(0a)= (5 ) (7 e )mmee

and we have BC' = CB so that exp(B+C) = exp B exp C. Letting y = a;d, we then have

o

exp(tA) = exp(tB) exp(tC)

= exp(tA) = ( expé,ut) exp(z,ut) )exp(tC’)

Now, the discriminant A of A is
2
A= (tr)” - 4detA

and C? = %I . This leads to three cases:

i) A =0, then
exp(tC) =1 +tC

ii) A <0, then

tv—A sin(tV;A)
exp(tC) = cos( 5 )I—i— \/? C
iii) A > 0, then
VA inh(1Y2
exp(tC) = cosh( \F)I+ sinh( )C'

YA
2
e n X n Matrices

Every n by n matrix A is similar to its Jordan form J, which can be written as the sum of
a diagonal and a nilpotent matrix, J = D 4+ N. We have

A=prJjp!

= exp(tA) = P exp(tJ) P!
= exp(tA) = P exp(tD) exp(tN) P~*

The Jordan form J has the eigenvalues of A on the diagonal, and some ones below the
diagonal, depending on whether the eigenvalues are distinct. The columns of the matrix
P are the eigenvectors of A. The entries of P can also be found once you know J, using
AP =PJ.

The exponential of the nilpotent matrix N is computed directly using the exponential
formula.

Note that in the case of a higher order scalar equation, we only need the first row of P, as
we are just looking for x(¢).
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Higher Order Scalar ODEs

Consider a higher order scalar ODE,

cdn—x—&— —|—cd2—w—|—cd—x+cx—0
Tage T A T e T

(3)

p(s):cns”+...+0252+cls+00:0

which we can write as

where p is the polynomial

which has roots A;.

A basis for the solution space is then
{ exp(Mit), t exp(Ait), ..., " " Lexp(Mt), ..., exp(Agt), ..., ¢! exp()\kt)}
where the ); are the individual roots of the equation and r; is the multiplicity of the i*"

root.

In the inhomogeneous case, we have p(%)x = f, and have the special case where f itself

satisfies some differential equation q(4)f = 0. Hence

(Ep(3)

and we can form a basis for the solution space using the roots of r(s) = q(s)p(s). It is
then possible to evaluate the coefficients of the particular solution to the inhomogeneous
equation by evaluating p(%)x =f

Non-constant Coefficients

Homogeneous Scalar Equations

The homogeneous equation

has unique solution:



Inhomogeneous Scalar Equations

The inhomogeneous equation
a'(t) = a(t)z(t) + £(t)

has unique solution:

Systems

The equation

has unique solution:

Z(t) = W()Z(0) + i W (W~ (s)f(s)ds

where W (t) satisfies the matrix initial value problem

W'(t) = AW (t), W(0) =1

Method of Wronski

Consider a second order scalar linear homogeneous ODE:

p(t)a” (t) + q(t)z'(t) + r(t)a(t) = 0 (1)
which has a two-dimensional solution space.

We define

giving
p(0' () +a(tw(t) = 22 (8) [p(0)5 (0)+ () (0) (D) ~aa(t) [P (1) +a(0) () (B 1)
so if 21, x2 solve (1) then w(t) solves

p(t)w'(t) + q(t)w(t) =0 (2)

Hence, if we have 21 a solution to (1) and w a solution to (2), we can then find x5 such
that xo is a solution to (1), and is linearly independent to ;.



e Then, given (1) and x;:

. d xo(t _ o w(t
and ab%(;gt;) = ul)

x2(t)  x2(0) /'t w(s)
+ d
0

21(t)  1(0) 71(s)2

e The general solution is then any linear combination of z; and xs:

x(t) = crx(t) + cowa(t)

Part 11
Stability

6 Non-linear ODEs

e Non-linear ODEs
A non-linear ODE is of the form

e Autonomous Systems

An autonomous system is of the form

7 Equilibria and Stability
¢ Equilibria
An equilibrium of an autonomous system Z'(t) = ﬁ(f(t)) is a ¢ such that
F(@)=0

i.e. the equilibria of a system are the zeros of F.

e Stability
An equilibrium ¢ is said to be stable if Ve > 0, 3 > 0 such that if

|Z(0) —¢[ <6
then

for all positive t.



Asymptotic Stability
An equilibrium ¢ is said to be asymptotically stable if 36 > 0 such that

[|Z(0) —¢c|| <6 = tlim Zt)y=c
Strict Stability

An equilibrium ¢ is said to be strictly stable if it is both stable and asymptotically stable.

Stability and Invariants

If ¢ is an equilibrium of an autonomous system and FE is a continuously differentiable
invariant of the system which has a strict local minimum at ¢, then ¢ is stable but not
asymptotically stable.

Stability of Linear Constant Coefficient First Order Systems

These are systems
7(t) = AZ(t)
with solution
#(t) = exp(tA)Z(0) = Pexp(tJ)P~1#(0)

0 is always an equilibrium, and each equilibrium is stable/asymptotically stable if and only
if 0 is stable/asymptotically stable.

We can determine the stability of the system by considering the real parts of the eigenvalues
of A:

Real Parts Stable | Asymptotically Stable
all <0 Yes Yes

all <0, Yes No

geometric multiplicity = algebraic multiplicity for all imaginary eigenvalues

all <0, No No

geometric multiplicity < algebraic multiplicity for some imaginary eigenvalue

some > 0 No No

In the 2 by 2 case, then if trace A < 0 and det A > 0, then 0 is strictly stable. If trace
A <0 and det A > 0 then 0 is stable. Otherwise it is not stable or asymptotically stable.

In the scalar high order case where p(%)x =0, p(s) a polynomial, if all roots of p(s) =0
have negative real parts, then we have strict stability. If all roots have non-positive real
parts, and all imaginary roots have multiplicity one, then we have stability but not strict
stability. Otherwise, neither stability nor asymptotic stability.
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Linearisation

The linearisation of an autonomous system #'(t) = F (f(t)) about an equilibrium ¢ is the
matrix A defined by

OF;
Ajk = Tj@

T

If all eigenvalues of A have negative real parts, then ¢ is strictly stable.

If some eigenvalue of A has positive real part, then ¢ is neither stable nor asymptotically
stable.

Otherwise, we learn nothing.

Method of Lyapunov

Lyapunov Function

A Lyapunov function for the equilibrium ¢ of an autonomous system is a continuously
differentiable function V' with a strict local minimum at ¢ such that

ZalF-<0
j

J =
833]-

Strict Lyapunov Function

A strict Lyapunov function is a Lyapunov function satisfying

N p < olv@ -vie
; 8%—

for some positive 7.

An equilibrium ¢ is stable if it admits a Lyapunov function, and strictly stable if it admits
a strict Lyapunov function.



