Course 216: Ordinary Differential Equations

Notes by Chris Blair

These notes cover the ODEs course given in 2007-2008 by Dr. John Stalker.

Contents

Ι	Solving Linear ODEs	2
1	Reduction of Order	2
2	Computing Matrix Exponentials	2
3	Higher Order Scalar ODEs	4
4	Non-constant Coefficients	4
5	Method of Wronski	5
II	Stability	6
6	Non-linear ODEs	6
7	Equilibria and Stability	6
8	Linearisation	8
9	Method of Lyapunov	8

Terminology

Scalar equation A single ODE.

System of equations Several ODEs.

Order The order of an ODE is the order of the highest derivative appearing in it.

Linear / Non-linear A linear ODE is an ODE that is linear, etc.

Homogeneous / Inhomogeneous Homogeneous means no constant terms present. Inhomogeneous means constant terms are present.

Invariants An invariant of a system of ODEs is a function of the dependent and independent variables and their derivatives which is constant for any solution of the equation. They can be used to place bounds on solutions.

Part I

Solving Linear ODEs

1 Reduction of Order

- Any higher order ODE or system of ODEs can be reduced to a system of first order ODEs by introducing new variables to replace the derivatives in the original equation/system.
- For example, the third order equation

$$c_1x'''(t) + c_2x''(t) + c_3x'(t) + c_4x(t) = 0$$

can be reduced to a first order system using the following set of substitutions:

$$x_1 = x, \ x_2 = x', \ x_3 = x''$$

giving:

$$x_1' = x_2, \ x_2' = x_3, \ x_3' = -\frac{c_4}{c_1}x_1 - \frac{c_3}{c_1}x_2 - \frac{c_2}{c_1}x_3$$

We can write this in matrix form:

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\frac{c_4}{c_1} & -\frac{c_3}{c_1} & -\frac{c_2}{c_1} \\ \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

• Hence, any ODE or system of ODEs can be written in the following matrix form:

$$\vec{x}'(t) = A(t)\vec{x}(t)$$

which has solution:

$$\vec{x}(t) = \exp(tA) \, \vec{x}(0)$$

2 Computing Matrix Exponentials

• The exponential of the matrix tA is given by:

$$\exp(tA) = \sum_{n=0}^{\infty} \frac{1}{n!} t^n A^n$$

• For a diagonal matrix,

$$\exp \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \dots & 0 \\ \vdots & & \ddots & \\ 0 & \dots & 0 & n \end{pmatrix} = \begin{pmatrix} \exp(a) & 0 & \dots & 0 \\ 0 & \exp(b) & \dots & 0 \\ \vdots & & \ddots & \\ 0 & \dots & 0 & \exp(n) \end{pmatrix}$$

\bullet Given two matrices A and B then

$$\exp(A+B) = \exp(A)\exp(B)$$

if AB = BA. Note that any scalar multiple of the identity commutes with all matrices.

• 2 by 2 Matrices

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = \left(\begin{array}{cc} \frac{a+d}{2} & 0 \\ 0 & \frac{a+d}{2} \end{array} \right) + \left(\begin{array}{cc} \frac{a-d}{2} & b \\ c & \frac{d-a}{2} \end{array} \right) = B + C$$

and we have BC = CB so that $\exp(B+C) = \exp B \exp C$. Letting $\mu = \frac{a+d}{2}$, we then have

$$\exp(tA) = \exp(tB) \exp(tC)$$

$$\Rightarrow \exp(tA) = \left(\begin{array}{cc} \exp(\mu t) & 0 \\ 0 & \exp(\mu t) \end{array} \right) \exp(tC)$$

Now, the discriminant Δ of A is

$$\Delta = \left(\operatorname{tr} A \right)^2 - 4 \det A$$

and $C^2 = \frac{\Delta}{4}I$. This leads to three cases:

i) $\Delta = 0$, then

$$\exp(tC) = I + tC$$

ii) $\Delta < 0$, then

$$\exp(tC) = \cos\left(\frac{t\sqrt{-\Delta}}{2}\right)I + \frac{\sin(\frac{t\sqrt{-\Delta}}{2})}{\frac{\sqrt{-\Delta}}{2}}C$$

iii) $\Delta > 0$, then

$$\exp(tC) = \cosh\left(\frac{t\sqrt{\Delta}}{2}\right)I + \frac{\sinh(\frac{t\sqrt{\Delta}}{2})}{\frac{\sqrt{\Delta}}{2}}C$$

• $n \times n$ Matrices

Every n by n matrix A is similar to its Jordan form J, which can be written as the sum of a diagonal and a nilpotent matrix, J = D + N. We have

$$A = PJP^{-1}$$

$$\Rightarrow \exp(tA) = P \exp(tJ) P^{-1}$$

$$\Rightarrow \exp(tA) = P \exp(tD) \exp(tN) P^{-1}$$

The Jordan form J has the eigenvalues of A on the diagonal, and some ones below the diagonal, depending on whether the eigenvalues are distinct. The columns of the matrix P are the eigenvectors of A. The entries of P can also be found once you know J, using AP = PJ.

The exponential of the nilpotent matrix N is computed directly using the exponential formula.

Note that in the case of a higher order scalar equation, we only need the first row of P, as we are just looking for x(t).

3 Higher Order Scalar ODEs

• Consider a higher order scalar ODE,

$$c_n \frac{d^n x}{dt^n} + \dots + c_2 \frac{d^2 x}{dt^2} + c_1 \frac{dx}{dt} + c_0 x = 0$$

which we can write as

$$p\left(\frac{d}{dt}\right)x = 0$$

where p is the polynomial

$$p(s) = c_n s^n + \ldots + c_2 s^2 + c_1 s + c_0 = 0$$

which has roots λ_i .

• A basis for the solution space is then

$$\left\{ \exp(\lambda_1 t), t \exp(\lambda_1 t), \dots, t^{r_1 - 1} \exp(\lambda_1 t), \dots, \exp(\lambda_k t), \dots, t^{r_k - 1} \exp(\lambda_k t) \right\}$$

where the λ_i are the individual roots of the equation and r_i is the multiplicity of the i^{th} root.

• In the inhomogeneous case, we have $p(\frac{d}{dt})x = f$, and have the special case where f itself satisfies some differential equation $q(\frac{d}{dt})f = 0$. Hence

$$q\left(\frac{d}{dt}\right)p\left(\frac{d}{dt}\right)x = 0$$

and we can form a basis for the solution space using the roots of r(s) = q(s)p(s). It is then possible to evaluate the coefficients of the particular solution to the inhomogeneous equation by evaluating $p(\frac{d}{dt})x = f$

4 Non-constant Coefficients

• Homogeneous Scalar Equations

The homogeneous equation

$$x'(t) = a(t)x(t)$$

has unique solution:

$$x(t) = x(0) \exp\left(\int_0^t a(s)ds\right)$$

• Inhomogeneous Scalar Equations

The inhomogeneous equation

$$x'(t) = a(t)x(t) + f(t)$$

has unique solution:

$$x(t) = x(0) \exp\left(\int_0^t a(s)ds\right) + \int_0^t \exp\left(\int_s^t a(r)dr\right) f(s)ds$$

• Systems

The equation

$$\vec{x}'(t) = A(t)\vec{x}(t) + \vec{f}(t)$$

has unique solution:

$$\vec{x}(t) = W(t)\vec{x}(0) + \int_0^t W(t)W^{-1}(s)\vec{f}(s)ds$$

where W(t) satisfies the matrix initial value problem

$$W'(t) = A(t)W(t), W(0) = I$$

5 Method of Wronski

• Consider a second order scalar linear homogeneous ODE:

$$p(t)x''(t) + q(t)x'(t) + r(t)x(t) = 0$$
(1)

which has a two-dimensional solution space.

• We define

$$w(t) = x_1(t)x_2'(t) - x_1'(t)x_2(t)$$

giving

$$p(t)w'(t) + q(t)w(t) = x_1(t) \left\lceil p(t)x_2''(t) + q(t)x_2'(t) + r(t)x_2(t) \right\rceil - x_2(t) \left\lceil p(t)x_1''(t) + q(t)x_1'(t) + r(t)x_1(t) \right\rceil$$

so if x_1, x_2 solve (1) then w(t) solves

$$p(t)w'(t) + q(t)w(t) = 0$$
 (2)

• Hence, if we have x_1 a solution to (1) and w a solution to (2), we can then find x_2 such that x_2 is a solution to (1), and is linearly independent to x_1 .

• Then, given (1) and x_1 :

$$w(t) = w(0) \exp\left(-\int_0^t \frac{q(s)}{p(s)} ds\right)$$

and as $\frac{d}{dt}\left(\frac{x_2(t)}{x_1(t)}\right) = \frac{w(t)}{x_1^2(t)}$,

$$\frac{x_2(t)}{x_1(t)} = \frac{x_2(0)}{x_1(0)} + \int_0^t \frac{w(s)}{x_1(s)^2} ds$$

• The general solution is then any linear combination of x_1 and x_2 :

$$x(t) = c_1 x(t) + c_2 x_2(t)$$

Part II Stability

6 Non-linear ODEs

• Non-linear ODEs

A non-linear ODE is of the form

$$\vec{x}'(t) = \vec{F}(\vec{x}(t), t)$$

• Autonomous Systems

An autonomous system is of the form

$$\vec{x}'(t) = \vec{F}(\vec{x}(t))$$

7 Equilibria and Stability

ullet Equilibria

An equilibrium of an autonomous system $\vec{x}'(t) = \vec{F}(\vec{x}(t))$ is a \vec{c} such that

$$\vec{F}(\vec{c}) = 0$$

i.e. the equilibria of a system are the zeros of \vec{F} .

• Stability

An equilibrium \vec{c} is said to be stable if $\forall \varepsilon > 0, \exists \delta > 0$ such that if

$$||\vec{x}(0) - \vec{c}|| \le \delta$$

then

$$||\vec{x}(t) - \vec{c}|| \le \varepsilon$$

for all positive t.

• Asymptotic Stability

An equilibrium \vec{c} is said to be asymptotically stable if $\exists \delta > 0$ such that

$$||\vec{x}(0) - \vec{c}|| \le \delta \Rightarrow \lim_{t \to \infty} \vec{x}(t) = \vec{c}$$

• Strict Stability

An equilibrium \vec{c} is said to be strictly stable if it is both stable and asymptotically stable.

• Stability and Invariants

If \vec{c} is an equilibrium of an autonomous system and E is a continuously differentiable invariant of the system which has a strict local minimum at \vec{c} , then \vec{c} is stable but not asymptotically stable.

• Stability of Linear Constant Coefficient First Order Systems

These are systems

$$\vec{x}'(t) = A\vec{x}(t)$$

with solution

$$\vec{x}(t) = \exp(tA)\vec{x}(0) = P\exp(tJ)P^{-1}\vec{x}(0)$$

 $\vec{0}$ is always an equilibrium, and each equilibrium is stable/asymptotically stable if and only if $\vec{0}$ is stable/asymptotically stable.

We can determine the stability of the system by considering the real parts of the eigenvalues of A:

Real Parts	Stable	Asymptotically Stable
all < 0	Yes	Yes
$all \leq 0,$	Yes	No
geometric multiplicity = algebraic multiplicity for all imaginary eigenvalues		
$all \leq 0,$	No	No
geometric multiplicity < algebraic multiplicity for some imaginary eigenvalue		
some > 0	No	No

In the 2 by 2 case, then if trace A < 0 and det $A \ge 0$, then $\vec{0}$ is strictly stable. If trace $A \le 0$ and det $A \ge 0$ then $\vec{0}$ is stable. Otherwise it is not stable or asymptotically stable.

In the scalar high order case where $p(\frac{d}{dt})x = 0$, p(s) a polynomial, if all roots of p(s) = 0 have negative real parts, then we have strict stability. If all roots have non-positive real parts, and all imaginary roots have multiplicity one, then we have stability but not strict stability. Otherwise, neither stability nor asymptotic stability.

8 Linearisation

• The linearisation of an autonomous system $\vec{x}'(t) = \vec{F}(\vec{x}(t))$ about an equilibrium \vec{c} is the matrix A defined by

$$a_{jk} = \frac{\partial F_j}{\partial x_k}(\vec{c})$$

- If all eigenvalues of A have negative real parts, then \vec{c} is strictly stable.
- If some eigenvalue of A has positive real part, then \vec{c} is neither stable nor asymptotically stable.
- Otherwise, we learn nothing.

9 Method of Lyapunov

• Lyapunov Function

A Lyapunov function for the equilibrium \vec{c} of an autonomous system is a continuously differentiable function V with a strict local minimum at \vec{c} such that

$$\sum_{i} \frac{\partial V}{\partial x_j} F_j \le 0$$

• Strict Lyapunov Function

A strict Lyapunov function is a Lyapunov function satisfying

$$\sum_{j} \frac{\partial V}{\partial x_{j}} F_{j} \le -r \left[V(\vec{x}) - V(\vec{c}) \right]$$

for some positive r.

• An equilibrium \vec{c} is stable if it admits a Lyapunov function, and strictly stable if it admits a strict Lyapunov function.