
Super Happy Fun 141 Revision Notes

Chris Blair

These notes cover (very badly) some of the lecture ma-
terial from MP Fry’s 141 course from 2006-2007. Of
extraordinarily dubious helpfulness for the current 141
course.
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1 Momentum and Gravity

• Momentum: The momentum ~P of a body of mass m moving with speed ~v is:

~P = m~v

• Force: The change in total momentum of a body or system equal to the sum of external forces ~Fext
on the body or system:

d~Ptot
dt

=
∑

~Fext

• Gravity: The gravitational attraction between two bodies of mass M1, M2 is:

~F = −GM1M2
~r

r3

or,
~F = −GM1M2

r2
r̂

where ~r is the separation of the masses and r = |~r|.
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• Mass in sphere: For a mass m inside a sphere, we have:

~F = −GmM(r)
r2

r̂

where

M(r) =
4πr3ρ

3
giving

~F = −4πρGmr
3

r̂

Note that the density ρ may vary with radius.

2 Non-inertial Reference Frames

• Inertial and non-inertial, pseudo-forces: An inertial (non-accelerating) reference frame is one in
which the equation ~F = m~a is valid. In a non-inertial (accelerating) frame it becomes necessary to
introduce a pseudo-force such that ~F = m~a holds in that frame. The pseudo-force on a particle of
mass m in a non-inertial frame accelerating with acceleration ~a is:

~Fpseudo = −m~a

• Rotating frames: The essential relationship between a frame rotating with angular velocity ~ω and
an inertial frame is given by the expression:(

d

dt

)
inertial

=
(
d

dt

)
rotating

+ ~ω×

which holds for any vector. Here the × denotes the vector cross product.

• Rotating and accelerating frames: For a frame that is both rotating with angular velocity ~ω

and accelerating away from the origin of the inertial frame with acceleration ~̈R, then the relationship
between the acceleration of a body as viewed in the inertial frame, ~aI , and the accleration ~a, velocity
~v and position ~r of the body in the non-inertial frame is:

~aI = ~̈R+ ~a+ ~̇ω × ~r + 2~ω × ~v + ~ω × (~ω × ~r)

We also have

~aI =
~F

m

where ~F is the sum of the true forces on m, giving the final expression for the acceleration ~a of a body
in a rotating and inertial frame:

m~a = ~F −m~̈R−m~̇ω × ~r − 2m~ω × ~v −m~ω × (~ω × ~r)

Here, ~F = true force on m, −m~̈R = pseudo-force due to acceleration of frame, −2m~ω × ~v = Coriolis
force, −m~ω × (~ω × ~r) = centripetal force.

• Earth’s surface: For the case of a body close to the Earth’s surface, ~F = −m~g, ~̈R = ~ω×(~ω× ~R), ~̇ω = 0
and the centripetal force is negligibly small. This gives the following expression for the accleration ~a
of a body close to the Earth’s surface:

~a = −~g − ~ω × (~ω × ~R)− 2~ω × ~v
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3 Charged Particles In Electric And Magnetic Fields

• Coulomb’s law: Coulomb’s Law for the force between two charged particles of charge q1, q2 is:

~F =
1

4πε0
q1q2
r2

r̂

where ε0 is the permittivity of free space, and r is the separation of the two charges. Note that the
signs of the charges determine whether the force is attractive or repulsive.

• Electric and magnetic forces: The force on a particle of charge q in an electric field ~E is given by:

~F = q ~E

The force on a particle of charge q moving with velocity ~v in a magnetic field ~B is given by:

~F = q~v × ~B

In solving problems involving these forces, determine the x, y, z components of the force and hence of
the acceleration of the particle. Then solve, partially by guessing what x(t), y(t) and z(t) solutions
will look like.

4 Energy

• Kinetic energy: The kinetic energy of a body of mass m, velocity ~v is denoted by

T =
1
2
mv2

and the change in kinetic energy is given by:

T2 − T1 =
1
2
mv2(t2)− 1

2
mv2(t1) =

∫ t2

t1

~F · ~v dt

This is also equal to the work W done on a body by a force. If ~F is only a function of the position ~r
of the body, then:

T2 − T1 =
∫ 2

1

~F · d~r

• Conservative force: A conservative force is one such that∫ 2

1

~F · d~r = path independent

i.e, the change in kinetic energy is the same no matter what path is taken to move the body from point
1 to point 2.

• Potential energy: For a conservative force there is then a scalar function V known as the potential
energy, given by: ∫ 2

1

~F · d~r = V (~r1)− V (~r2)

and so

T2 − T1 =
∫ 2

1

~F · d~r = V (~r1)− V (~r2)
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and
T1 + V1 = T2 + V2

so
T + V = E = total energy = constant

for a conversative force.

In this case, we also have the following relationship between force and potential energy:

~F (~r) = −~∇V (~r)

where
~∇ = î

∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

known as the gradient.

If V is centrally symmetric, or F a central force, then:

~F (r) = −dV (r)
dr

r̂

The condition for a conservative force is:
~∇× ~F = 0

Gravity and the electro-magnetic force (Coulomb’s Law) are both conservative.

• Non-conservative Forces: If a non-conservative force is present, the total energy is not constant,
and the rate of change of energy is given by:

d ~E

dt
= ~Fnon−cons · ~v

• Equilibrium: A particle is in equilibrium when dV
dr = 0. It is in stable equilibrium when dV

dr = 0 and
d2V
dr2 > 0. (Although the notation here uses V (r), this of course holds for V (x, y, z),V (r, θ) and so on.)

A particle is bounded when E < 0. It is just bounded when E = 0, and in this case when applied to
particles in orbit, the velocity of the particle is known as the escape velocity.

5 The Harmonic Oscillator

• General solution: A harmonic oscillator is a particle subject to a linear restoring force:

~F = −kxî

⇒ ~F = m~̈x = −kxî

⇒ ẍ+
k

m
x = 0

where x is the displacement of the particle from equilibrium, and k is the spring constant.

The general solution (or homogeneous solution) to this equation is:

x(t) = A sinωt+B cosωt

where A and B are constants fixed by the inital conditions, and ω =
√

k
m .

The potential energy of a harmonic oscillator is:

V =
1
2
kx2
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• Forced oscillator: A forced oscillator is a harmonic oscillator driven by a time varying external force,
~F (t). The equation of motion is:

mẍ+ kx = F (t)

We already know the general solution to the homogeneous equation mẍh + kxh = 0 to be xh =
A sinωt + B cosωt. As the restoring force is linear, it follows that the most general solution to a
problem of this sort is:

x(t) = xh + xp

where xp is known as the particular solution; it is the solution of:

mẍp + kxp = F (t)

In most cases, F (t) will be of the form F (t) = F0 sinω0t (or cos as the case may be), then the particular
solution will be xp = C sinω0t where C is an arbitrary constant.

The general solution is then:

x(t) = A sinωt+B cosωt+ C sinω0t

Solving for the constants, say for intial conditions x(o) = ẋ(0) = 0, will lead to a solution of the form:

x(t) =
F0
m

ω2 − ω2
0

(
sinωt− ω0

ω
sinω0t

)
When ω0 = ω, resonance occurs.

• Harmonic oscillator with friction: The equation of motion is of the form

mẍ = −kx− βẋ

where β is the coefficient of friction.

To solve this, let x = eat, a an arbitrary constant. This leads to a quadratic in a with solutions of the

form a = − β
2m ± iω, with i =

√
−1, ω =

√
4mk−β2

2m . Combining the possible solutions should give you
a solution of the form:

x(t) = e
−βt
2m (A cosωt+B sinωt)

It is also possible to have harmonic oscillators with friction and driving forces. In this case, the solution
x(t) above becomes the homogeneous solution, and there is a particular solution xp to the equation
mẍp = −kxp − βẋp + F (t).

6 Centre of Mass

• Centre of mass of 2 particles: The centre of mass of two bodies of masses m1, m2 is defined by:

~R =
m1 ~r1 +m2 ~r2
m1 +m2

In the absence of external forces, the centre of mass moves with constant velocity, as all internal forces
between particles cancel out.

(m1 +m2) ~̈R =
∑

Fext

• Centre of mass of n particles: The centre of mass of n particles is given by:

~R =
∑n
i=1mi~ri∑n
i=1mi
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• Centre of mass frame: It is often useful to consider the motion of masses in relation to their centre
of mass frame. For instance, in the centre of mass frame, the total momentum is always zero.

• Energy in centre of mass frame: We can also split the total energy of a two-particle system
(interacting with a conservative force) up into the motion of the centre of mass and motion about the
centre of mass (plus potential energy).

Then, the energy due to the motion of the centre of mass is given by:

Ecm =
1
2

(m1 +m2) ~̇R · ~̇R

and the energy due to rotation about the centre of mass is:

Erot =
1
2

m1m2

m1 +m2
~̇r · ~̇r + V (~r)

where ~r is the separation vector of the two masses, and V (~r) is the potential energy of the system.

• Reduced mass: We also define the reduced mass of two masses to be:

µ =
m1m2

m1 +m2

and then the total energy of a two-body system may be written:

Etot =
1
2

(m1 +m2) ~̇R · ~̇R+
1
2
µ ~̇r · ~̇r + V (~r)

7 Angular Momentum

• Angular momentum: The angular momentum ~J of a mass m about a point O is given by:

~J = ~r × ~p

or
~J = m~r × ~v

• Torque: The torque about the point 0 is given by:

~N = ~r × ~F

The torque is equal to the rate of change of angular momentum, hence:

~̇J = ~r × ~F

The direction of ~J and ~̇J are given by the right hand rule. In the absence of external torques, angular
momentum is conserved.

• Moments of inertia: The moment of inertia of a body about an axis in the body is given by:

I =
∑

mir
2
⊥

that is, the sum of: each particle of mass composing the body multiplied by the perpendicular distance
to the axis squared.

Moments of inertia are related to angular momentum by the expression:

~J = I~ω

where ω is the angular velocity of the body as it rotates about that axis. However, ~J and ~ω need not
be parallel.
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• Parallel axis theorem: The parallel axis theorem states that if Icm is the moment of inertia through
the centre of mass of a body, and I is the moment of inertia about a parallel axis a distance R away,
then:

I = Icm +MR2

with M the mass of the body.

• Kinetic Energy Of A Rigid Body: The rotational kinetic energy of a body is given by:

Trot =
1
2
~ω · ~J =

1
2
Iω2

The total kinetic energy is then:
Ttot = Ttrans + Trot

⇒ Ttot =
1
2
M~v · ~v +

1
2
Iω2

where ~v is the translational velocity of the centre of mass.

Note that when a body rolls without slipping, then:

v = ωR

8 Orbits (Two Body Central Force Problem)

• Useful relationships: Letting ~r be the separation of two bodies, then their angular momentum about
their centre of mass is:

~Jcm = µ~r × ~̇r

If in polar co-ordinates then
Jcm = µr2θ̇

The energy due to motion about the centre of mass can be rewritten as:

Erot =
1
2
µṙ2 +

J2
cm

2µr2
+ V (r)

Knowing these is useful for problems involving orbits.
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