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I review the old idea that M-theory (in Minkowski spacetime, or compacti�ed
on a lightlike direction) is described by Matrix Theory, namely the low energy
theory on D0 branes aka super Yang-Mills in no spatial dimensions, where the
physical degrees of freedomare N by Nmatrices. I sketch (with ever-increasing
sketchiness) the Matrix Theory conjecture and some of its successes and puz-
zles. I suggest the topic is still topical by mentioning recent work on Lorentz
invariance of Matrix Theory and on non-Lorentz invariance of its duality web.
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... but, I assure you, one of the reasons for doing science, especially the kind of science I do (elementary particle

physics, high energy theory) is that it makes your head feel funny, Goddamned strange.

– Sidney Coleman on the similarities between sciences �ction and fact

Unfortunately, no one can be told what the Matrix is. You have to see it for yourself.

– Morpheus
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1 Introduction

Motivation These notes were prepared to give a journal club on an “old topic nobody talks about anymore”:
Matrix Theory. Matrix Theory was, or is, an approach tomaking sense of M-theory. M-theory was introduced as
a uni�cation of the �ve superstring theories, with the eponymous letter allegedly hypothetically standing for
‘Membrane’ or ‘Magical’ or ‘Mystery’ or ‘Mother’. Following the BFSS Matrix Theory conjecture [1], and a stronger
follow-up conjecture by BFSS’ second S [2], ‘Matrix’ became an alternative possibility: the claim being that
M-theory could be described using a simple quantum mechanical system of matrices.

The BFSS Matrix Theory conjecture [1]

M-theory in �at spacetime is described by the Matrix Theory action:

S =
∫

dτTr ( 1
2RẊ

iẊi + 1
4
R

4π2 [Xi, Xj ][Xi, Xj ]) + fermions , (1.1)

whereXi, i = 1, . . . , 9, areN ×N matrices, in the limitN →∞,R→∞

The Susskind Matrix Theory conjecture [2]

M-theory in �at spacetime compacti�ed on a compact null circle withN units of momentum in the null

direction is described by the Matrix Theory action (1.1) for �niteN .

These conjectures inspired a �urry of activity between 1996 and 2000/2001, as can be seen from their citation
counts, see �gure 1 (which shows that the BFSS conjecture remains part of the global ‘background’ of string
theory/M-theory research) and �gure 2 (which shows perhaps more accurately the drop-o� in activity on
Matrix Theory as a �rst principles de�nition of M-theory). However, if you squint you can see a clear uptick
in recent citations in �gure 2, which I conjecture to be statistically signi�cant. This uptick includes recent
work on Lorentz invariance of Matrix Theory, and the non-Lorentz invariance of its dual incarnations, which
I’ll mention (very) brie�y below.

Figure 1: References to the BFSS Matrix Theory conjecture of [1]: largeN Matrix Theory describes M-theory in
Minkwoski spacetime

The literature Matrix Theory was subjected to a number of reviews during its in�ationary phase. These
include ones by Bigatti and Susskind [3], Bilal [4] and Banks [5]. Aspects related to U-duality are treated
in detail in the review by Obers and Pioline [6]. The most comprehensive overview of the state of the art at
freeze-out is found in the review by Taylor [7] (the third installment in a trilogy of overlapping reviews, starting
with [8] and [9]).
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Figure 2: References to the SusskindMatrix Theory conjecture of [2]: �niteN Matrix Theory describesM-theory
on a compact null circle withN units of momentum

2 M-theory and String Theory

2.1 M-theory on a circle

M-theory to type IIA M-theory compacti�ed on a circle gives rise to weakly coupled type IIA string theory,
in the limit where the circle shrinks to zero size [10]. Let’s take this circle to be parametrised by a coordinate
x10 ∼ x10 + 2π and to have radius R10. The only parameter in uncompacti�ed M-theory is the eleven-
dimensional Planck length, `p. Once we compactify, we can combine this with the circle radius to de�ne
the ten-dimensional string length, `s, and string coupling, gs. The eleven-dimensional and ten-dimensional
quantities are related as:

R10 = `sgs , `p = g1/3
s `s , (2.1)

gs = (R10/`p)3/2 , `s = `3/2p R
−1/2
10 . (2.2)

Kaluza-Klein reductionofmassless�elds Themassless bosonic �elds ofM-theory are the eleven-dimensional
metric and a three-form gauge �eld,A(3). These can be Kaluza-Klein reduced to obtain the massless bosonic
�elds of ten-dimensional type IIA string theory. The Kaluza-Klein metric can be written simply as

ds2
11 = R2

10(dx10 + C(1))2 + ds2
10 , (2.3)

or
ds2

11
`2p

= e4Φ/3(dx10 + C(1))2 + e−2Φ/3 ds2
10
`2s

. (2.4)

The metric ds2
10 gives the ten-dimensional string frame metric, the Kaluza-Klein vector C(1) is the RR one-

form, and Φ is the dilaton. The string coupling is related to the dilaton by gs ≡ eΦ (or more precisely to the
asymptotic value of the dilaton). Meanwhile, the three-form reduces as:

A(3) = C(3) +B(2) ∧ dx10 , (2.5)

giving the RR three-form C(3) and the NSNS two-form B(2). Note that the convention here is to take all
p-forms to be dimensionless.

2.2 D0 branes

D0 branes from Kaluza-Klein excitations In the Kaluza-Klein reduction, we restrict to the zero modes on the
circle. However, the tower of Kaluza-Klein excitations (of the massless �elds in eleven dimensions) carrying
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non-zero momentum on the eleventh dimension also have a string theory interpretation. These are identi�ed
with D0 branes. Let pµ̂, µ̂ = 0, 1, . . . , 10, denote the eleven-dimensional momentum. The momentum in the
circular direction is quantised as p10 = N/R, and the eleven-dimensional massless condition pµ̂pµ̂ = 0
implies that the ten-dimensional (string frame) mass-squared of a Kaluza-Klein excitation is:

M2 ≡ −pµpµ = (NR )2 = ( N
`sgs

)2 . (2.6)

The tension of a single D0 brane is known to be TD0 = 1
`sgs

, matching the above formula.

Bosonic D0 brane action from dimensional reduction A massless state (also called a momentum mode) in
eleven-dimensions has the following worldline action:

S = 1
2`2p

∫
dτλ ĝµ̂ν̂Ẋ µ̂Ẋ ν̂ , (2.7)

where ĝµ̂ν̂ denotes the eleven-dimensional metric, and λ is an auxiliary worldline �eld (essentially the ein-
bein/metric on the worldline). The factor of `−2

p is inserted on dimensional grounds. For the Kaluza-Klein
form of the metric of equation (2.3), this action is:

S = 1
2`2p

∫
dτλ

(
R2(Ẋ10 + CµẊ

µ)2 + gµνẊ
µẊν

)
. (2.8)

Let’s assume the background �elds (R,Cµ and gµν ) do not depend on the coordinate x10. We can dimen-
sionally reduce this action using the following steps. Pass to the Hamiltonian form of the action solely for the
X10 direction, de�ningH = Ẋ10P10−L, whereL denotes the Lagrangian andP10 = λ

`2p
R2(Ẋ10+CµẊµ).

Using L = Ẋ10P10 −H, we have an equivalent action:

S =
∫

dτ
(
Ẋ10P10 + 1

2

(
− `2p
λR2P

2
10 + λ

`2p
gµνẊ

µẊν
)

+ P10CµẊ
µ
)
, (2.9)

related to (2.8) by integrating out P10. Instead of doing that, integrate by parts on the �rst term, so thatX10

plays the role of a Lagrange multiplier enforcing that P10 is constant. Assuming this has been imposed, we
can integrate out λ to obtain:

S = |P10|
(
− 1
R

∫
dτ
√
−gµνẊµẊν + sgn(P10)

∫
dτ CµẊµ

)
= |P10|

(
− 1
`sgs

∫
dτ
√
−gµνẊµẊν + sgn(P10)

∫
dτ CµẊµ

)
.

(2.10)

where I assumed thatR was constant and used the basic relationship (2.1). For P10 = 1 this gives the action
for a single D0 brane, of tension 1

`sgs
, coupling electrically to the one-formCµ. (Normally one writes a factor

of the tension in front of this coupling, which can be done here on switching to conventions whereCµ orXµ

are dimensionful rather than dimensionless.)

Bosonic non-abelian D0 brane action We are more interested however in the description of multiple D0
branes. In this case, there are extra degrees of freedom resulting from open strings stretching between the D0
branes. ForN D0 branes, the worldline scalar �elds corresponding to the spacetime coordinates transverse
to the D0 brane are promoted toN ×N matrices. Let us denote these byXi, i = 1, . . . , 9. These live in the
adjoint of u(N), so are hermitianN×N matrices which transform under localU(N) gauge transformations.
The worldvolume theory then also includes a U(N) gauge �eld A with covariant derivativeDτX

i = Ẋi +
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i[A,Xi]. The low energy theory, in �at spacetime, is then U(N) super-Yang-Mills.
We can however give an action which generalises (2.10). This action follows from arguments using T-

duality covariance [11]. While a single D0 brane only couples to the metric and the RR one-form, this action
includes couplings to the NSNS B-�eld and to all RR p-forms. There are various subtleties arising from the
non-abelian nature of the coordinates, which I will not discuss. The action is:

S =− TD0

∫
dτ STr

(
e−φ

√
detQij

√
−P [g00]− P [E0i](Q−1 − δ)ikEkjP [Ej0]]

)
+ TD0

∫
STr

(
P [eiλ−1ιX ιX (

∑
n

C(n)e
B)]
)
,

(2.11)

with
Qij = δij + iλ−1[Xi, Xk]Ekj , λ ≡ 2π`2s , Eµν = gµν +Bµν . (2.12)

This has a lot going on. Let me unpack. The index i in (2.11) denotes a target space 9-dimensional index. The
notation P [. . . ] denotes the (non-abelian) pullback to the worldvolume (worldline) assuming a static gauge
choice to identify the worldsheet and target space time coordinates, τ ≡ x0, so that:

P [g00] ≡ g00 + 2gi0DτX
i + gijDτX

iDτX
j , P [E0i] ≡ E0i +DτX

jEji . (2.13)

The notation ιX denotes the interior product, (ιXC(p))µ1...µp−1 = XjCjµ1...µp−1 Relative to (2.10) I have ex-
tracted a factor of TD0 from the RR �elds. Finally, the notation ‘STr’ denotes a symmetrised trace prescription.
This won’t be relevant to us when we take the relevant low energy or Matrix Theory limit.

It’s great this action exists, but it’s mostly too much information for us. Let’s specialise to �at spacetime,
with no gauge �elds, where we can write1

S =− TD0

∫
dτ STr

(√
det(δij + iλ−1[Xi, Xj ])

√
1− δijDτXiDτXj

)
, (2.14)

and expand using det(I +A) = 1 + trA+ 1
2((trA)2 − trA2) to get the leading order interactions:

S = TD0

∫
dτTr(1

2DτX
iDτXi + 1

4λ
−2[Xi, Xj ][Xi, Xj ]) . (2.15)

We dropped a constant term, and used the fact that the trace here is of a product of two matrices and hence
automatically symmetric. What we get is the bosonic part of super-Yang-Mills in 0 + 1 dimensions. There is
of course no �eld strength for the gauge �eld in this case. In practice we often gauge �x A = 0.

Conventions for the D0 brane action This action appears in the literature with various normalisations. Let’s
explicitly restore the factors of `s and gs:

S = 1
gs`s

∫
dτTr(1

2DτX
iDτXi + 1

4
1

4π2`4s
[Xi, Xj ][Xi, Xj ]) . (2.16)

The coe�cient of the commutator squared term is often made nicer by picking string units where 2π`2s = 1.
We can alternatively rewrite in terms of M-theory variablesR = `sgs and `p = `sg

1/3
s :

S = 1
R

∫
dτTr(1

2DτX
iDτXi + 1

4
R2

4π2`6p
[Xi, Xj ][Xi, Xj ]) . (2.17)

1Exercise: �gure out how I made the dimensions consistent.
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Here one often uses Planck units, `p = 1. This gives the action in the form used in (1.1).
Finally, we can letXi = λΦi. Then we obtain

S = TD0λ
2
∫

dτTr(1
2DτΦiDτΦi + 1

4 [Φi,Φj ][Φi,Φj ]) (2.18)

This can be viewed more precisely as the bosonic part of super-Yang-Mills in one-dimension. The Yang-Mills
coupling is

g2
YM = T−1

D0λ
−2 = 1

4π2
gs
`3s
. (2.19)

Supersymmetric low energy D0 action The super-Yang-Mills action extends (2.16) with the addition of a
sixteen-component spinor of SO(9), denoted by θ, each component of which is again anN ×N hermitian
matrix transforming in the adjoint of U(N). The action is:

S = 1
gs`s

∫
dτTr(1

2DτX
iDτXi+ 1

4
1

4π2`4s
[Xi, Xj ][Xi, Xj ]+ 1

2π`2s
iθTDτθ− 1

(2π`2s)2 θ
Tγi[Xi, θ]) , (2.20)

where γi are gamma matrices realising the SO(9) Cli�ord algebra.

3 Two derivations of Matrix Theory

The goal of these derivations is to �nd a description of M-theory compacti�ed on a lightlike direction. This
means we are in Minkowski spacetime with lightcone coordinates x± and we identify x− ∼ x− + 2πR. We
want to show that this compacti�cation can be described by the same action that appears in the low energy
limit on D0 branes. The lightlike compacti�cation is known as the Discrete LightCone Quantisation (DLCQ): the
idea is to use x+ as the time coordinate for quantisation (which would be usual lightcone quantisation) and
then to compactify x− (which then has discrete momenta p−, quantised in units of 1/R). Given the DLCQ,
one takes the limitN,R → ∞, with p− �xed, to decompactify and return to Minkowski spacetime (Lorentz
boosts can change the value of R so it is not su�cient to just make it large). This provides the link from the
Susskind Matrix Theory conjecture – which is what the below derivations establish – and the BFSS one. I avoid
using the terminology ‘DLCQ’ below and instead refer to this situation as a lightlike or null compacti�cation.

Basic relativistic kinematics The very �rst thing we should do2 is remind ourself of some basic facts about
relativistic kinematics. Say we are working with Minkowski spacetime with coordinatesXµ = (X0, X10, Xi)
and momenta Pµ = (E,P 10, P i). The metric is ηµν = (−1, 1, δij). Physical states have PµPµ = −M2

and E > 0. We therefore have

E − (P 10)2 − P iP i = M2 ⇒ E − (P 10)2 ≥ 0⇒ E = P 0 ≥ |P 10| . (3.1)

I now de�ne lightcone coordinates
X± = 1√

2(X0 ±X10) , (3.2)

such that η+− = −1, η++ = η−− = 0. For the momentum, it follows that

− 2P+P− + P iP i = −M2 ⇒ P− = 1
2P+ (P iP i +M2) (3.3)

2This was actually – due to incompetence – the last section of these notes to be written.
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while
P+ = 1√

2(P 0 + P 10) ≥ 1√
2(|P 10|+ P 10) ≥ 0 . (3.4)

In lightcone quantisation, X+ is treated as the time coordinate. We take P− to be the Hamiltonian. We
see that the momenta P+ are positive, which is consistent by the mass-shell condition with positive energy.
When we compactify theX− direction, this means that P+ = N/R withN a positive integer.

3.1 Treating the null compacti�cation as a boosted spatial compacti�cation

This is Seiberg’s derivation [12]. It uses three descriptions of the null compacti�cation:

• Description 1: M-theory on a spatial circle

• Description 2: M-theory on an almost lightlike circle with an exact lightlike limit

• Description 1̃: M-theory on a spatial circle with rescaled Planck length

Description 2 is obtained from description 1 by applying a boost transformation. States of interest in some
�xed energy range in description 2 are mapped to states in description 1 in an energy range that vanishes in
the lightlike limit. Description 1̃ is obtained from description 1 by rescaling the Planck length such that the
this energy range in description 1 is �nite and �xed. This leads to a type IIA description via Matrix Theory.

I’ll use coordinates x′ for description 1, coordinates x̄ for description 2, and – because it is my favourite
– reserve clean coordinates x for description 3 which will be used in the next subsection.

Description 1 This is M-theory on a spatial circle of radiusRs. Let’s denote the coordinates by (x′0, x′10, xi),
i = 1, . . . , 9, with

x′10 ∼ x′10 + 2πRs , (3.5)

and metric
ds2 = −(dx′0)2 + (dx′10)2 + dxidxi . (3.6)

Boosting from description 1 to description 2 We apply a boost transformation to description 1 to obtain
description 2. This is M-theory on an almost lightlike circle. The boost de�nes new coordinates

x̄0 = 1√
1−β2

(x′0 − βx′10) , x̄10 = 1√
1−β2

(x′10 − βx′0) , (3.7)

both of which are periodically identi�ed as

x̄0 ∼ x̄0 − 2πRs β√
1−β2

, x̄10 ∼ x̄10 + 2πRs 1√
1−β2

. (3.8)

Now switch to lightcone coordinates:
x̄± = 1√

2(x̄0 ± x̄10) , (3.9)

such that the metric is
ds2 = −2dx̄+dx̄− + dxidxi . (3.10)

The lightcone coordinates are identi�ed as:

x̄+ ∼ x̄+ + 2πRs 1√
2

√
1−β
1+β , x̄− ∼ x̄− − 2πRs 1√

2

√
1+β
1−β . (3.11)
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Parametrising the boost Let’s consider the limit of an in�nite boost, for which β → 1. Parametrise this by
β = 1− ω−2 with ω →∞. (One convenient (but by no means unique) choice of boost parameter could be

β =
1− 1

2ω2

1 + 1
2ω2

, (3.12)

but I won’t explicitly use this below.) In this limit,

x̄+ ∼ x̄+ +O(1/ω) , x̄− ∼ x̄− − 2πRsω +O(1/ω) . (3.13)

If we de�ne
R = Rsω (3.14)

to be �xed in the limit, then we get the identi�cations

x̄+ ∼ x̄+ , x̄− ∼ x̄− − 2πR . (3.15)

We then take the limit ω →∞, withR �xed, to be our de�nition of the null compacti�cation. In the original
unboosted description 1, this implies thatRs → 0.

Relating energy and momentum The energy and momentum of description 1 are related to that of descrip-
tion 2 by:

p′0 = 1√
2

(√
1− β
1 + β

p̄+ +
√

1 + β

1− β p̄−

)
, p′10 = 1√

2

(√
1− β
1 + β

p̄+ −
√

1 + β

1− β p̄−

)
. (3.16)

In the in�nite boost limit, we get

p′0 ≈ 1
2

1
ω p̄+ + ω(1− 1

4ω2 )p̄− , p′10 ≈ 1
2

1
ω p̄+ − ω(1− 1

4ω2 )p̄− . (3.17)

Hence for ω →∞ we have:
p′10 ≈ −ωp̄− , p′0 + p′10 ≈ 1

ω p̄+ . (3.18)

Now, it follows from the brief discussion of relativistic kinematics above that p̄− = −p̄+ = −N/R, with
N > 0. As ω = R/Rs, states with N units of momentum on the null circle map in the limit to states with
N units of momentum on the spatial circle:

p′10 = N

Rs
. (3.19)

Now let’s consider what happens to the energy. The lightcone energy is p̄− = −p̄+. We also have p′0 = −E′.
WriteE′ = ∆E′+ N

Rs
to separate the contribution to the energy from the rest mass of themomentummodes

on the circle. Then we �nd
∆E′ ≈ 1

ω p̄
− = Rs

R p̄
− . (3.20)

So if we are interested in describing the physics in the lightlike compacti�ed theory at lightfront energy p̄−,
say ofO(1), we are concentrating on an energy range ∆E′ which in fact goes to zero in the limit.

From description 2 to string theory in description 1 The above arguments indicate that the lightlike com-
pacti�cation on a null circle of radius R of M-theory (description 2, in the limit) can be understood as an
in�nite boost limit of a spatial compacti�cation, on a circle of radius Rs = R/ω, which goes to zero in the
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limit. This sounds like good news, because in this limit M-theory reduces to type IIA sting theory, something
we understand much better! States withN units of momentum on the null circle get mapped to states with
N units of momentum on the spatial circle, i.e. D0 branes, and states of �nite energy in the lightlike com-
pacti�cation get mapped to states with (vanishing) energy∆E′ in the spatial compacti�cation. We also have
that

gs = (Rs/`p)3/2 → 0 , `s = `3/2p R−1/2
s →∞ . (3.21)

This is string theory at weak coupling but with the string massMs = 1/`s going to zero. This is not actually
a very tractable limit of the theory (e.g. all the string oscillator modes are becoming massless). But according
to our energy mapping, we’re only interested in states in the energy range ∆E′ ∼ ω−1p̄−. Note thatMs ∼
ω−1/2 so ∆E′/Ms ∼ ω−1/2 → 0, that is the energy range we care about goes to zero faster than the string
mass does. So we can try to ‘zoom in’ on this energy range.

From description 1 to description 1̃ Instead of describing physics at small energies and �xed Planck scale,
we can �x the energy and let the Planck scale become large in the limit. This amounts to ‘transposing the
problem to an auxiliary M-theory’ [13].

The argument for choosing the Planck scale rescaling goes something like the following. Firstly, let’s
consider the energy p̄+ in the lightlike compacti�cation. Suppose we perform a boost transformation here,
with β = tanh γ. The lightcone coordinates transform as x̄± → e∓γ x̄±, so the radius of the lightlike circle
transforms as R → eγR. Meanwhile the momenta transform as p̄± → e±γp±. So p̄+ and R transform the
same way. We conclude that p̄+ ∼ R/`2p, which matches what you would expect from dimensional grounds.
It follows from (3.20) that ∆E′ ∼ Rs/`2p.

Now transpose to an auxiliary M-theory with Planck length ˜̀
p. The states we’re interested in now have

energy ∆Ẽ ∼ Rs/˜̀2
p. The simplest thing to do now is to identify this with the energies p̄+ in the lightlike

compacti�cation. Thus we make the identi�cation:

Rs
˜̀2
p

= R

`2p
⇒ ˜̀2

p = 1
ω
`2p . (3.22)

We also keep transverse lengths �xed. This amounts to requiring the transverse coordinates x̃i in descripton
1̃ to obey x̃i/˜̀

p = xi/`p, or x̃i = ω−1/2xi.

From description 2 to string theory in description 1̃ Now we combine all the above steps. M-theory with
Planck length `p compacti�ed on a lightlike circle of radiusR, withN units of lightlike momentum, is equiv-
alent, by an in�nite boost and a transposition to the auxiliary description 1̃, to the ω →∞ limit of M-theory
with Planck length ˜̀

p on a spatial circle of radiusRs, withN units of spatial momentum, with

Rs = ω−1R , ˜̀
p = ω−1/2`p (3.23)

with R and `p held �xed. We can reduce this to type IIA string theory. As we haveN units of momentum on
the circle, we are in the sector of type IIA withN D0 branes. The string coupling and string length are :

g̃s = (Rs/˜̀
p)3/2 = ω−3/4gs , ˜̀

s = ˜̀3/2
p R−1/2

s = ω−1/4`s . (3.24)

where gs and `s are �xed, withR = gsls. Now we have both g̃s → 0 and ˜̀
s → 0, so we’re at weak coupling

and the string mass scale becomes in�nite. This is a limit we can work with. Note that the combination g̃s/˜̀3
s

is �xed: this is the Yang-Mills coupling of the low energy theory on D0 branes.
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From description 1̃ to Matrix Theory We can now write down the non-abelian D0 action in the type IIA ob-
tained from description 1̃, and apply the above scaling rules:

S =− 1
˜̀
sg̃s

∫
dτ STr

(√
det(δij + iλ̃−1[X̃i, X̃j ])

√
1−Dτ X̃iDτ X̃i

)
= − ω

`sgs

∫
dτ STr

(√
det(δij + iω−1/2λ−1[Xi, Xj ])

√
1− ω−1DτXiDτXi

)
= − 1

R

∫
dτ Tr

(
ω − 1

2DτX
iDτX

i − 1
4λ
−2[Xi, Xj ][Xi, Xj ] +O(1/ω)

)
.

(3.25)

The leading term gives a constant piece involving the D0 energy Nω/R = N/Rs, which we ignore: this is
the same term that we subtracted in (3.20) when comparing to the energy of the lightlike compacti�cation.
This is exactly like discarding the formally divergent constant rest mass of a relativistic point particle in the
non-relativistic limit. In the alternative way of taking this limit which I will present in the next subsection,
this naively divergent term will cancel against a contribution from the RR one-form. The �nite term gives the
Matrix Theory Lagrangian:

S = 1
R

∫
dτ Tr

(
1
2DτX

iDτX
i + 1

4λ
−2[Xi, Xj ][Xi, Xj ]

)
. (3.26)

You might wonder about the justi�cation that this is the relevant description of all physics in this limit. This
amounts to observing that the e�ect of gs → 0 and ls → 0 is to decouple all string theory modes except
those of massless open strings stretched between the D0 branes. This means we are guaranteed to get the
low energy super-Yang-Mills description of the D0 system.

3.2 Treating the null compacti�cation as a limit

Here’s an alternative derivation, which avoids mucking about with the Planck length. It uses again three
descriptions:

• Description 1: M-theory on a spatial circle

• Description 2: M-theory on an almost lightlike circle with an exact lightlike limit

• Description 3: M-theory on a spatial circle with an exact lightlike limit

Description 1 and 2 are the same as before. Description 3 is obtained from description 2 by a simple change
of coordinates.

From description 2 to description 3 After boosting from description 1, we have periodically identi�ed light-
cone coordinates

x̄+ ∼ x̄+ + 2πRs 1√
2

√
1−β
1+β , x̄− ∼ x̄− − 2πRs 1√

2

√
1+β
1−β . (3.27)

and metric
ds2 = −2dx̄+dx̄− + dxidxi . (3.28)

Now we de�ne new coordinates
x− = x̄− x+ = x̄+ + 1−β

1+β x̄
− , (3.29)

such that
x− ∼ x− − 2πRs 1√

2

√
1+β
1−β , x+ ∼ x+ , (3.30)
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and the metric is
ds2 = −2dx+dx− + 21−β

1+β (dx−)2 + dxidxi . (3.31)

For β < 1, we can treat x+ as the time direction and x− as a compact spatial coordinate. For β → 1, x−

becomes null. Let’s let R = Rs
1√
2

√
1+β
1−β and assume this is �xed for β → 1. Rescaling x−we can rewrite

this metric as:
ds2 = 21−β

1+βR
2(dx− − 1

2R
1+β
1−βdx+)2 − 1

2R2
1+β
1−β (dx+)2 + dxidxi , (3.32)

where now x− ∼ x− − 2π. The radius squared of the x− circle is 21−β
1+βR

2 and this goes to zero for β → 1,
meaning that this limit takes us to type IIA string theory.

From description 3 to type IIA string theory We therefore reduce on the x− direction using (2.3). We have

R− = `sgs =
√

2
√

1−β
1+βR , C(1) = − 1

2R
1+β
1−βdx+ , ds2

10 = − 1
2R2

1+β
1−β (dx+)2 + dxidxi , (3.33)

along with `p = g
1/3
s `s. Solving for the string theory parameters, and writing β ≈ 1− 1

ω2 again, we have

gs = (
√

2
√

1−β
1+βR/`p)

3/2 ≈ ω−3/2ĝs , `s = `3/2p (
√

2
√

1−β
1+β )−1/2R−1/2 ≈ ω1/2 ˆ̀

s , (3.34)

where ĝs ≡ (R/`p)3/2 and ˆ̀
s ≡ `3/2p R−1/2 are �xed in the limit. We similarly have

C(1) ≈ −ω2

R dx+ , ds2
10 ≈ −ω2(dx+)2 + dxidxi . (3.35)

These expressions de�ne the IIA description of the limit leading to the null compacti�cation of M-theory.
Relative to the previous description 1̃, the limit involves not only the string length and coupling, but also the
background metric and one-form �eld.

Here are some technical observations:

• the limit appears singular at the level of the background �elds

• the limit for the metric has the same form as a non-relativistic limit, with ω playing the role of the
speed of light. This generalises to curved backgrounds and other branes, leading to a duality web of
‘non-Lorentzian decoupling limits’ [14]

• if we use the boost (3.12), the expressions (3.34) and (3.35) are true for �nite ω (i.e. replacing the≈ with
an =)

• technically we again have gs → 0 and `s →∞, which we said was a complicated limit previously. The
string length becoming in�nite is compensated by the scaling of the metric itself. We could instead
work with a string length ˜̀

s = ω−1/2 ˆ̀
s which goes to zero in the limit, if we change the metric to

ds̃2 = −(dx+)2 + ω−2dxidxi, such that

1
`2s

ds2
10 = 1

˜̀2
s

ds̃2
10 . (3.36)

The scaling of the transverse coordinates xi shows that essentially this is recovering the previous de-
scription 1̃.

And back to Matrix Theory again Despite the singular nature of the limit in spacetime, it leads to a �nite
D0 worldvolume action – which is that of Matrix Theory. Let’s relabel x+ ≡ x0 and start again with the
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non-abelian action3, noting that g00 = −ω2 and we have to include the one-form coupling, so that:

S =− 1
`sgs

∫
dτ STr

(√
det(δij + iλ−1[Xi, Xj ])

√
ω2 −DτXiDτXi

)
−
∫

dτSTr(P [C(1)])

= − ω2

ˆ̀
sĝs

∫
dτ STr

(√
det(δij + iω−1λ̂−1[Xi, Xj ])

√
1− ω−2DτXiDτXi

)
+
∫

dτω2N
R

= 1
R

∫
dτ Tr

(
1
2DτX

iDτX
i + 1

4 λ̂
−2[Xi, Xj ][Xi, Xj ] +O(1/ω)

)
.

(3.37)

where now the divergent terms cancel.

4 Matrix Theory successes and puzzles

Let me write the Matrix Theory Lagrangian one more time, using convenient units:

S = 1
R

∫
dτ Tr

(
1
2Ẋ

iẊi + 1
4 [Xi, Xj ][Xi, Xj ] +

(
iθT θ̇ − θTγi[Xi, θ]

))
. (4.1)

The momenta and Hamiltonian are:

Pi = 1
RẊi , H = 1

2RẊ
2 − 1

4R [Xi, Xj ][Xi, Xj ] . (4.2)

The classical equations of motion are:

Ẍi + [[Xi, Xj ], Xj ] = 0 . (4.3)

We also have the Gauss constraint [Xi, Ẋi] = 0 from the equation of motion of the Yang-Mills gauge �eld,
which we’ve �xed to zero.

I’ll now discuss – brie�y – some of the M-theoretic physics captured by this Lagrangian. I follow most
closely the review [7], to which I refer you for further details and references.

4.1 Gravitons and branes

Gravitons from classical solutions Matrix Theory describes (super)gravitons in 11-dimensions. Classically,
we can �nd solutions of the equations of motion (4.3) consisting of commuting matrices:

Xi =


xi1 + vi1τ 0 . . .

0 xi2 + vi2τ . . .
. . .

xiN + viNτ

 . (4.4)

From (4.2), the ath entry on the diagonal has momenta (Pa)i = 1
Rv

i
a and energy Ea = v2

a
2R , such that

Ea =
∑

i
pi

ap
i
a

2p+ , which is the expected energy of a massless state in lightcone coordinates with p+ = 1/R,
compare (3.3). We interpret this solution as describing N gravitons in 11-dimensions, each with lightcone
momentum p+ = 1/R.

We describe a single graviton with p+ = N/R if all xia are equal and all via are equal.
3Referring to the abelian action (2.10), we realise we need to now insert a minus sign in the coupling to the RR one-form, because

the lightcone momentum p− = −N/R is negative.
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Supergravitons from quantisation TheN = 1 Matrix Theory is

S = 1
R

∫
dτ
(

1
2Ẋ

iẊi + iθT θ̇
)
. (4.5)

The interesting part of the quantum theory comes from the 16-component fermion. Writing θα we have the
usual anticommutation relations {θα, θβ} = δαβ . From these we can de�ne eight creation and eight anni-
hilation operators, θα± = 1√

2(θα ± iθα+8) obeying {θα+, θ
β
−} = δαβ , (θα±)2 = 0. Then we can build a Fock

space from a vacuum |0〉 with states |0〉, θα+|0〉, θα+θ
β
+|0〉 and so on. This gives 256 states, and corresponds

to the physical polarisations of the massless states in eleven-dimensions: the graviton (44), three-form (84)
and gravitino (128).

For N > 1, we can write Xi = xi1 + X̃i where xi = 1
NX

i and trX̃i = 0. This corresponds to
decomposingU(N) = U(1)×SU(N). TheU(1) part, corresponding to xi, describes the centre of mass of
the system. Making a similar decomposition for the fermions, we �nd that the Matrix Theory action splits into
aU(1) part given by (4.5) and a SU(N) part given by the original Lagrangian restricted to traceless matrices.
Hence we get the 256 supergraviton states from the U(1) part. The SU(N) theory is then believed to have
a single zero energy bound state.

Membranes from Matrix Theory and Matrix Theory from Membranes Matrix Theory can also describe the
membrane of M-theory. In fact, Matrix Theory can be derived as a matrix regularisation of the light-cone
quantisation of the supermembrane – this was in fact done in the 1980s [15]. After lightcone quantisation, the
bosonic degrees of freedom on the membrane worldvolume are 9 scalars Xi(τ, σa) which depend on the
worldvolume time coordinate τ and two spatial coordinates σa. The functional dependence on σa can be
regularised by treating the coordinates asN ×N matrices (i.e. with row and column indices playing the role
of discretised coordinates), with the large N limit returning to the functional description. For instance, the
membrane dynamics involves the ‘Poisson bracket’ {Xi, Xj} = εab∂aX

i∂bX
j , a = 1, 2, de�ned using the

two spatial coordinates of the membrane worldvolume, and the matrix regularisation transforms this into a
matrix commutator. The details depend on the topology of the membrane.

A simple example is the spherical membrane. We can choose three of the coordinate matricesXi to be
given byXA = 2r

N J
A,A = 1, 2, 3, where JA form theN -dimensional representation of SU(2), [JA, JB] =

iεABCJC . Recall the quadratic Casimir for the spin-j representation is C2(j) = j(j + 1) and we have
N = 2j+1 henceC2(N) = 1

4(N2−1). Then
∑
A(XA)2 = 4r2

N2C2(N)I = r2(1−N−2)I and for largeN
we recover the de�ning equation for a sphere of radius r. This is an example of a ‘fuzzy’ or ‘non-commutative’
geometry, something which naturally appears when studying the description of multiple D-branes. Arbitrary
functions on the sphere can be expanded in spherical harmonics: these are symmetric traceless polynomials
(of degree l) in the embedding coordinates. The matrix approximation (forN < l) to these polynomials just
uses the matricesXA for these embedding coordinates.

4.2 Interactions

Multiple objects from multiple blocks A very important observation about Matrix Theory is that it can de-
scribe multi-graviton (or multi-brane, or multi-whatever) states simply by viewing these as corresponding to
block diagonal matrix con�gurations, for example:

Xi =
(
Xi

1 0
0 Xi

2

)
, (4.6)
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where here X1 and X2 are N1 × N1 and N2 × N2 matrices, respectively, and N1 + N2 = N . Indeed
we already made use of this when describing classical graviton solutions, above. We can de�ne a notion of
‘separation’ between two such blocks via

ri = 1
N1
trXi

1 − 1
N2
trXi

2 , r ≡
√
riri . (4.7)

Classically such a block diagonal decomposition leads to a set of distinct non-interacting subsectors, each
described by its own U(Ni) Matrix Theory Lagrangian.

Graviton scattering We can use Matrix Theory to study interactions between M-theoretic objects viewed as
subblocks (as in (4.6)) of the matrices Xi. The classic example is two-graviton scattering. Here we suppose
that initially (at τ = −∞) we have a con�guration of the form:

Xi =
(
Xi

1 0
0 Xi

2

)
(4.8)

describing two gravitons, one withN1 units of lightcone momentum, and the other withN2 units of lightcone
momentum, and a �nal con�guration (at τ = +∞) of the form:

Xi =
(
Xi

3 0
0 Xi

4

)
(4.9)

describing two gravitons, one withN3 units of lightcone momentum, and the other withN4 units of lightcone
momentum. EvidentlyN1 +N2 = N3 +N4 = N . The interactions between these gravitons leads to some
complicated intermediate state (which will not be block diagonal).

If we consider quantum mechanical �uctuations about a classical background of the form (4.6), the o�-
diagonal �uctuations are of course not zero. However, they will generically be massive, with masses that
grow like r2, with r the separation (4.7). For some graviton interaction, such as the two-to-two scattering
above, we can then compute the amplitude perturbatively by assuming these are well-separated gravitons,
and integrating out these very massive modes. We do this at �xed N1, N2, N3, N4 andN . Then at the end
to compare to M-theory in uncompacti�ed Minkowski spacetime we are supposed to take N1, . . . , N4 and
N to in�nity (along withR).

This procedure was shown in a number of cases to successfully reproduce classical 11-dimensional super-
gravity scattering amplitudes. Now, the Matrix Theory conjecture(s) make no reference to supergravity, so a
priori one should not necessarily expect any agreement. Indeed, the perturbative Matrix Theory calculation
outlined in the previous paragraph is not what you should do if you really want to take the large N limit to
make contact with M-theory. Instead of �xingN and assuming r, the separation between the Matrix Theory
objects, is large, you should �x r and then takeN to be large. The issue with this is that for largeN we can
not really describe each block as its own independent con�guration (the size of the wavefunction for each
block grows withN ).

When doing computations at �niteN , one is dealing (according to our derivations of Matrix Theory) with
M-theory compacti�ed on a lightlike circle of radius R, or equivalently a spatial circle of radius Rs with
Rs → 0. We should trust 11-dimensional SUGRA when all radii are large (i.e. at large gs). On the other hand,
the 10-dimensional D0 brane description is valid for small radius (i.e. small gs). Put di�erently, the D0 brane
system describes states with 11-dimensional momenta N/Rs which are large compared to the Planck scale.
This is not the supergravity regime, where all momenta should be small compared to the Planck scale.
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Generically, for calculations that are �niteN in practice, one does not expect to be able to compare with
classical supergravity. It is further expected that to make the connection with classical supergravity work,
subtleties in the largeN limit will appear and need to be dealt with.

Despite these expectations, a lot of e�ort was expended into computing various Matrix Theory ampli-
tudes and trying to compare them with supergravity quantities, including multi-graviton interactions. The
remarkable thing was that some quantities agree precisely! This was explained using supersymmetry: some
particular calculations (at one- and two-loops in particular) are in fact protected inMatrix Theory by supersym-
metric non-renormalisation theorems. This explains why Matrix Theory can compute supergravity quantities
in the �rst place, despite the fact one is not doing the calculation in the regime where supergravity applies:
anything that matches with supergravity is a protected quantity. It’s still non-trivial that Matrix Theory pro-
duces the correct supergravity answer for these cases (and if it didn’t, of course that would signal the Matrix
Theory conjecture was just plain wrong).

The best-studied computation of this form involved two-to-two graviton scattering with no longitudinal
momentum transfer, i.e. N1 = N3, N2 = N4. Let’s con�rm some of the expectations outlined above. We
can e�ectively do this calculation in the N = 2 theory. We expand the matrices Xi in terms of a classical
background plus a �uctuation, Y :

Xi =
(
xi1 0
0 xi2

)
+ Y i = (xic + yic)I2 + 1

2r
iσ3 + yiασ

α (4.10)

where xic = 1
2(xi1 + xi2) is the centre of mass position of the classical con�guration, and ri = 1

2(xi1 − xi2)
is the separation. We conveniently parametrised Y in terms of the Pauli sigma matrices, such that:

Y i =
(
yic + yi3 yi1 − iyi2
yi1 + iyi2 yic − yi3

)
(4.11)

To quadratic order in the �uctuations, the Matrix Theory action is:

S = Scl + 1
R

∫
dτ
(

1
2tr(Ẏ iẎ i)− r2(y2

1 + y2
2)− (r · y1)2 − (r · y2)2

)
, (4.12)

where Scl denotes the classical action evaluated on the backgroundXi. We see indeed that the o�-diagonal
parts of the �uctuations have mass squareds of order r2.

The classic Matrix Theory calculation is then to compute the quantum e�ective action:

eiSe�[x] ∼
∫
Dy eiScl[x]+iS�uct[y] . (4.13)

In practice this is not done using (4.12) but by reintroducing the gauge �eld (which was gauge �xed to zero
above) and working in background �eld gauge. The result is an e�ective potential for the interaction of two
gravitons. The one- and two-loop e�ective potential can then be shown to match the expected result from
classical supergravity.

Let me sketch this matching in slightly more detail. In this case, one can treat the e�ective potential as
an expansion in powers of the relative velocity v, and inverse powers of the separation r. On dimensional
grounds one can identify which terms could arise in classical supergravity (by virtue of involving integral pow-
ers of the 11-dimensional Newton’s constant) and which could not. Then one checks the coe�cient of these
terms and �nds, at least for certain leading terms, that they match. It might be expected that higher-loop
calculations in Matrix Theory could further correct these coe�cients, which would invalidate this agreement.
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However, it has been shown that this is not possible due to supersymmetry non-renormalisation theorems.
In this example, there are also other terms (in the r, v expansion) appearing from the Matrix Theory

calculation which could be viewed as Matrix Theory predictions for quantum corrections to classical super-
gravity. However the status of these is less clear (for instance, attempts to reproduce the e�ects of the known
curvature corrections to 11-dimensional supergravity from Matrix Theory were not successful).

Lorentz invariance An immediate outstanding issue since the formulation of the link between Matrix Theory
and M-theory in 11-dimensional Minkowski spacetime was the question of how – or whether – 11-dimensional
Lorentz invariance appears. Recently a number of papers have argued that 11-dimensional Lorentz invariance
can be shown (in the relevant largeN limit) using soft theorems [16–19]. Soft theorems are statements about
the behaviour of amplitudes in limits where an external momentum corresponding to a massless particle (e.g.
a graviton or photon) vanishes, and are closely connected to (asymptotic) symmetries. It’s amusing(?) to note
that soft theorems date to the 1960s, the Matrix Theory conjecture to the 1990s, and now they have been
combined in the 2020s.

4.3 Duality

Finally, let’s consider the Matrix Theory description of M-theory on a p-dimensional torus with radiiRa, a =
1, . . . , p. According to Seiberg’s derivation, when we pass to description 1̃, we have to introduce radii R̃a such
that R̃a/˜̀

p = Ra/`p, i.e. so that R̃a = ω−1/2Ra. Taking ω →∞ means that the torus shrinks to zero size.
In the string theory description this tells us we should T-dualise on the torus directions. We reach the same
conclusion in description 3, noting that there (Ra/`s)→ 0.

This means the D0 branes of Matrix Theory become Dp branes, and in place of Matrix Theory we have SYM
in 1 + p dimensions. This picture works perfectly for p = 0, 1, 2, 3, for which the string coupling is going to
zero or a constant in the limit. Note that the p = 1 case is known as Matrix String Theory [20], and there’s also
a p = −1 case (which follows formally from a timelike T-duality) known as the IKKT Matrix Model [21]. For
p > 3, the string coupling diverges meaning that we need to deal with strong coupling. For p = 4 this means
lifting SYM on D4 branes to a theory living on M5 branes. For p = 5 this means S-dualising SYM on D5 branes
to a theory living on NS5 branes. For p = 6 the D6 should lift to the Kaluza-Klein monopole in M-theory, and
it’s much less clear whether the Matrix Theory description works, or is useful, in this case. More details about
(U-)duality and Matrix Theory are reviewed nicely in [5,6].

In my second derivation of Matrix Theory, I ended up taking a limit of the metric and RR-one form given
by (3.35). I noted this was like a non-relativistic limit, as the time coordinate was scaling like ω2, with ω →∞
and the spatial coordinates were �xed. When one T-dualises, what you get from this are generalised non-
relativistic limits where all ‘longitudinal’ coordinates, including time and p spatial coordinates (associated
with a p-brane worldvolume), scale like ω2 relative to the ‘transverse’ spatial coordinates. Taking the S-dual
of the p = 1 case gives a non-relativistic limit associated with a fundamental string (rather than a D1 brane).
This is known as ‘non-relativistic string theory’ [22, 23]: it has a non-relativistic target space but a relativistic
worldsheet. There is also a ‘non-relativistic M-theory’ which is U-dual to the null compacti�cation leading
to Matrix Theory, and which uplifts both type IIA non-relativistic string theory and the p = 2 version of
Matrix Theory on D2 branes. This corner of M-theory has been recently revived with a view to making sense
of quantum gravity in its non-relativistic corner. One can also argue that these provide, via duality, another
‘de�nition’ of M-theory/string on a null circle. See [14] for an updated roadmap of the ‘non-Lorentzian duality
web’.
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