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Prologue

This is a course on gravity, from the black death to black holes.
In 1665, a plague outbreak forced the University of Cambridge to close, sending Isaac Newton

back to his family home (and apple trees). There, he began to develop a theory of gravity,
explaining why moons and fruit fall the same way, and leading to the famous expression

~F = −Gm1m2

r2

~r

r
, (0.1)

detailing the gravitational force between two objects of mass m1 and m2 separated by the vector
~r of length r ≡ |~r|. This is an attractive, long-ranged force between any two massive bodies
in the universe, which is relevant on extremely large length-scales. However, on the scale of
individual particles, gravity is “weak”. For instance, the gravitational force between a proton and
an electron is 39 orders of magnitude less than the electrical force expressed by Coulomb’s law,
Fc = 1

4πε0
q1q2
r2

, which is the other classic inverse square force law in physics.
Newton’s Law of Universal Gravitation is not universal, and the whole Newtonian system

of the world is an approximation to relativistic physics. At high velocities, excluding gravity,
the theory of Special Relativity applies. The absolute time of human intuition and Newtonian
dynamics breaks down, with the introduction of spacetime as the setting for physics. Special
relativistic spacetime is characterised by the invariance of the speed of light, c, in all inertial (non-
accelerating) frames. Energy and mass are related via Einstein’s catchphrase equation E = mc2.
More accurately, this equation is a consequence of the relativistic relationship between energy
and momentum, and so applies also to massless particles, such as the photon.

The special relativistic spacetime is a fixed structure, criss-crossed by the coordinate axes of
privileged observers in inertial frames, whose worldviews are related by Lorentz transformations.
General relativity elevates this spacetime from a background in which physics happens to a
dynamical geometry which evolves in time and interacts with the matter it contains. Gravity
is reinterpreted in terms of the curvature of the geometry, which is related dynamically to the
energy and momentum content of the matter.

The Einstein field equations, which are the explicit mathematical statement of the relation
between curvature and matter, are not quite as catchy as E = mc2. However, we can extract
from a solution of these equations a particularly striking expression, involving (as it should) not
only m and c but also G, the gravitational constant. This is the expression for the Schwarzschild
radius: rs = 2Gm/c2, which defines a black hole. The idea here is the following. As Einstein
gravity interacts with all energy and momentum, it impacts the motion of both massive and
massless particles: light bends in gravitational fields. If enough mass is gathered in a small
enough spatial volume, the impact on light will be severe. If a total mass m is contained within
a spherical region of radius rs, then this region forms a black hole, defined by the property that
no light (and hence no other matter) can propagate from r < rs to r =∞.

Black holes can be viewed as the simplest things in the universe. No matter what matter went
into their formation, they are in a sense formed of pure geometry, characterised solely by their
mass M , as well as perhaps by their electric charge and angular momentum. Simultaneously, for
a variety of reasons both classical and quantum, they are the most complicated things in physics.

1.4 billion years ago, a pair of black holes collided and merged. These black holes were 36
and 29 times the mass of the Sun, and combined into a single black hole 62 times the mass of
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the Sun. The remaining 3 solar masses was transformed into energy (by E = mc2) and radiated
away in the form of gravitational waves: localised perturbations in the structure of spacetime
itself, travelling outwards from the merger at the speed of light. At the instant of collision, to an
observer capable of “seeing” in both the electromagnetic and gravitational spectrum, this was the
single most powerful source of energy in the entire visible universe, far exceeding the mundane
electromagnetic output of all the stars in the sky.

On Earth, 1.4 billion years ago, there were no such observers. The lifeless super-continent
Columbia was in the process of breaking up, the ocean home to single-celled organisms. As the
gravitational waves travelled outwards through the vacuum, on Earth, continents wandered, seas
and mountains appeared, disappeared, reappeared, and an incomprehensible number of lifeforms
lived brief (but meaningful) existences. With the timeless inevitability of the laws of physics
in vacuum, the gravitational waves of this long-ago merger finally reached and passed through
Earth, on the 14th September, 2015, just after one set of the great-great-descendants of those
single celled organisms had turned on a new scientific sense.

The idea of the LIGO gravitational wave detector is to split light from a laser into two
separate beams, which then travel in orthogonal directions down “arms” of length L, reflect off
a mirror before being recombined in a detector (see figure 1). If the distances travelled by the
two beams are the same, then they will still be in sync when they recombine. If the distances
travelled are not the same, then they will be out of sync, and the difference in distance can be
inferred from the resulting interference observed in the light received.

A gravitational wave will briefly cause the lengths of each arm to fluctuate, with one arm first
stretching while the other compresses, then vice versa. The amount of fluctuation is minuscule:
perhaps 10−21L. The arms used by LIGO are about 4 km long, meaning that the length changes
detected are of the order of 10−18m.1 The radius of the proton is 10−15m. Think about that the
next time you read that general relativity is the theory of large scales and quantum mechanics
the theory of small scales.

The fluctuations δL/L (known as the strain) detected from that first gravitational wave signal
are shown in figure 2. As the gravitational waves propagate through the apparatus, δL/L begins
to oscillate, with increasing frequency, before the oscillations suddenly damp and die away.

This reflects the pair of black holes beginning to spiral closer together (in the “inspiral” phase
of the merger), gaining angular velocity while radiating away energy. This angular velocity is
directly related to the frequency of the oscillations measured by the detector, and it peaks at the
instant of the merger, after which the signal drops off (in the “ringdown” phase).

LIGO is now observing gravitational wave signals (involving both black holes and neutron
stars) at the rate of about one a week. Future detectors may have sufficiently high sensitivity to
upgrade this to the order of several hundred a day. These signals link us to events that happened
at immense distances from Earth, involving objects whose existence and fundamental properties
we still do not fully understand. In order to begin to describe gravitational waves, black holes,
and indeed the whole history of the universe, we need to study General Relativity.2

1In fact, to be able to observe this sort of change, the light in each arm is reflected multiple times between the
original mirror and a second one, to allow the difference in path length travelled to build up.

2Many courses on General Relativity begin by motivating the subject with a discussion of GPS satellites, the
time-keeping of which requires knowledge of the effects of curved spacetime described by the theory. For this
author, there is more of a scientific thrill to detecting one billion year old black hole collisions than there is to
ordering an Uber.
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Figure 1: Gravitational wave detector. A passing gravitational wave causes the lengths of the
paths taken by the split laser beam to fluctuate, for instance in the order shown with t1 < t2 < t3.
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Figure 2: A chirping comes across the sky: the first gravitational wave detection. The strain is
δL/L, where L is the length of the arm that the laser light travels, and δL is the fluctuation
(positive and negative) due to the passage of the gravitational wave. Hanford and Livingston
are the locations of LIGO’s two detectors. The frequency increases as the merging black holes
draw closer together (“inspiral”) and is directly related to the angular velocity of their orbits
as they rotate around each other, before cutting off at the merger. The data here for the
graphs is taken from https://www.gw-openscience.org/events/GW150914/, and the original
detection paper is: B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], “Observation
of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, no. 6, 061102
(2016), arXiv:1602.03837.
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About these notes

These notes accompany a one-semester, Masters level course (24 hours worth of lectures). The
overall outline is close to the previous version given by Ben Craps, and I thank Ben for sharing
his handwritten lecture notes. I also thank the students of the 2019/20 to 2021/22 courses for
their questions during the lectures and constructive feedback, and also for their keen eye for
typos in these notes.

The precise contents of these notes are based, mainly, on the following sources:

• Spacetime and Geometry by Sean Carroll

• Lecture notes by Harvey Reall and Ulrich Sperhake for Part II and Part III of the Mathe-
matical Tripos, University of Cambridge, available online at:

– http://www.damtp.cam.ac.uk/user/hsr1000/teaching.html

– http://www.damtp.cam.ac.uk/user/us248/Lectures/lectures.html

• Gravity by James Hartle

• Geometry, Topology and Physics by Mikio Nakahara

• “The basics of gravitational wave theory,” by Éanna Flanagan and Scott Hughes, New J.
Phys. 7 (2005) 204, arXiv:gr-qc/0501041

• “The basic physics of the binary black hole merger GW150914,” by B. P. Abbott et al.
[LIGO Scientific and Virgo Collaborations], Annalen Phys. 529 (2017) no.1-2, 1600209,
arXiv:1608.01940

Many other sources are available: each one constituting a specific chart with which to explore
the space of General Relativity. Although we do not recommend building up a complete atlas,
the use of one set of coordinates to understand the subject is not recommended!

I would appreciate being informed of typos and errors at christopher.blair@vub.be.
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1 Spacetime

1.1 Newtonian space and time

In Newtonian physics, time and space form a four-dimensional continuum whose individual points
we call events. An observer using Cartesian spatial coordinates associates to each event a set of
four numbers, (t, x, y, z).

There is a clear distinction between the temporal coordinate t and the spatial coordinates
(x, y, z). For any two events p and p̃, with p = (t, x, y, z), p̃ = (t̃, x̃, ỹ, z̃), we can order them such
that p occurs before p̃ (t < t̃), p occurs after p̃ (t > t̃), or the events are simultaneous (t = t̃).
Furthermore, these distinctions are absolute: all observers agree on the time interval ∆t between
any two events. Thus the time interval is an invariant of the Newtonian world.

The other invariant is the spatial separation between simultaneous events, given by the
Cartesian expression:

(∆s)2 = (∆x)2 + (∆y)2 + (∆z)2 . (1.1)

This is the same in all choices of Cartesian coordinates: it is clearly invariant under a shift of
the origin, ~x 7→ ~x′ = ~x + ~a, and also under rotations, ~x 7→ ~x′ = A~x, where A is an orthogonal
matrix, obeying ATA = I, such that

(∆s′)2 = ∆~x′T∆~x′ = ∆~xTATA∆~x = ∆~xT∆~x = (∆s)2 . (1.2)

In index notation, let’s write xi = (x, y, z), with i a three-dimensional spatial index. Then
equivalently we have xi 7→ x′i = Aijx

j and we require δij = AkiA
l
jδkl, where

δij =

1 0 0

0 1 0

0 0 1

 . (1.3)

The symmetric matrix δij is a first example of a “metric”: it measures the norms of vectors in
R3, or equivalently the distances between points, with (∆s)2 = δij∆x

i∆xj .

1.2 Special relativistic spacetime

The postulates of special relativity

In special relativity, we again have a four-dimensional continuum of events. However, there is
no longer an absolute separation between time and space, and there is no well-defined notion
of whether two events are simultaneous. We call this continuum spacetime. Our description of
physics in spacetime is governed by the postulates of special relativity.

1. The laws of physics are the same in all inertial (non-accelerating) frames.

2. The speed of light in vacuum is a constant, c, in all inertial frames.

Postulates of special relativity

There is therefore a preferred class of observers: inertial (non-accelerating) observers, each of
which labels events in spacetime by a set of coordinates (t, x, y, z) associated to their frame. In
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practical terms, we view (x, y, z) as a Cartesian coordinate system, which could be constructed
using a series of rigid rods extended through space. These are accompanied by synchronised
clocks placed at every point in space. Then measurements can be taken.

The invariant of the spacetime of special relativity is the spacetime interval :

(∆s)2 = −(c∆t)2 + (∆x)2 + (∆y)2 + (∆z)2 . (1.4)

It is convenient to introduce an index notation. We use Greek indices, µ, ν, ρ, σ, . . . as labels
for four-dimensional components. Thus our coordinates are xµ = (ct, x, y, z). We also write
xµ = (x0, xi), with i = 1, 2, 3 labelling the spatial components as before, and x0 = ct. Notice
that the speed of light gives x0 the dimensions of length.

We rewrite the spacetime interval in terms of the Minkowski metric:

ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , (1.5)

so that
(∆s)2 = ηµν∆xµ∆xν . (1.6)

The inverse metric is denoted by ηµν .

Null, timelike and spacelike trajectories

We can distinguish between three classes of spacetime intervals.

• (∆s)2 = 0, then the interval is null. Massless particles, or light rays, travel on null trajec-
tories.

• (∆s)2 > 0, then the interval is spacelike.

• (∆s)2 < 0, then the interval is timelike. Massive particles (and hence observers) travel on
timelike trajectories.

If two events p and q are timelike separated, then it is possible for an observer starting at p to
travel between them. On the other hand, if they are spacelike separated, then it is impossible
for an observer starting at p to travel to q.

The lightcone of a point p consists of all points q such that the spacetime interval between p
and q is null. Thus it is the set of all points which can be reached by a light ray passing through
p.

This causal structure is shown in figure 3.
A special role is played by straight paths (whether timelike, null, or spacelike): they represent

geodesics of Minkowski spacetime (paths minimising, or maximising, the “distance” between two
points). The proper time ∆τ experienced by an observer travelling on a straight path is defined
by

(c∆τ)2 = −(∆s)2 . (1.7)
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x

ct

∆s = 0∆s = 0

(∆s)2 > 0(∆s)2 > 0

(∆s)2 < 0

(∆s)2 < 0

Figure 3: Causal structure of Minkowski spacetime

More generally, an arbitrary path can be viewed as a curve xµ(λ) in spacetime, parametrised
by some parameter λ ∈ R. We can measure distances along such a curve by integrating the
infinitesimal line element:

ds2 = ηµνdx
µdxν , (1.8)

leading to the following general expressions for proper distance ∆s (on a spacelike curve for which
ds2 > 0 always):

∆s =

∫
dλ

√
ηµν

dxµ

dλ

dxν

dλ
, (1.9)

and proper time ∆τ (on a timelike curve for which ds2 < 0 always):

c∆τ =

∫
dλ

√
−ηµν

dxµ

dλ

dxν

dλ
. (1.10)

(For a path between p and q such that xµ(λ0) are the coordinates of p and xµ(λ1) are the
coordinates of q, the range of integration is from λ0 to λ1.)

This means that time experienced is observer dependent. Consider two observers, Alice and
Bob (who may or may not be twins). Suppose they take two separate journeys through spacetime,
depicted on the diagram 4. We work with coordinates such that the point p corresponds to
(0, 0, 0, 0), where Alice and Bob start with synchronised clocks. Alice does nothing and eventually
ends up at the point p′, corresponding to (ctf , 0, 0, 0). Meanwhile, Bob shoots off with velocity
v in the x-direction, before accelerating and decelerating about the turnaround point q and
returning to Alice with velocity −v in the x-direction, arriving back at p′ to meet Alice.

According to the inertial coordinates we have chosen, Alice’s worldline is given by xµ(λ) =

(cλ, 0, 0, 0), with λ ∈ [0, tf ]. The elapsed proper time for Alice is

τA =

∫ tF

0
dλ . (1.11)

The precise details of Bob’s worldline are in fact unimportant. We know it is of the form
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Figure 4: Alice and Bob, a spacetime odyssey.

xµ(λ) = (cλ, xi(λ)). The proper time that elapses for Bob is

τB =

∫ tF

0
dλ

√
1− v2(λ)

c2
, v2 ≡ δij

dxi

dλ

dxj

dλ
. (1.12)

The factor
√

1− v2(λ)
c2

is less than one because v(λ) is not identically zero for his worldline, and
the Euclidean norm means that v2 ≥ 0. As a result, no matter what path is taken by Bob, it
must be the case that the integral of τB comes out less than the integral for τA. Thus:

τB < τA , (1.13)

and Bob returns to find that Alice has aged more. (This result holds regardless of the precise
details of the decelerating/accelerating turnaround phase. We would need to work out the details
of this to repeat the calculation from Bob’s rest-frame. This rest-frame, however, is obviously
not inertial. If it was then we would naively find the infamous twin paradox, namely that both
Bob and Alice would by relativity calculate that the other had aged less.)

In fact, this thought experiment has been carried out in reality, for instance by synchronising
atomic clocks and sending one off in a plane, leading to the expected result.

Transformations between inertial frames

The transformation from one inertial frame, with coordinates xµ, to another, with coordinates
x′µ, is achieved by a Poincaré transformation. These transformations include spacetime transla-
tions by a constant four-vector aµ,

xµ 7→ x′µ = xµ + aµ , (1.14)

and Lorentz transformations (spacetime “rotations”):

xµ 7→ x′µ = Λµνx
ν , (1.15)

where to preserve the spacetime interval we require

ηµν = ΛρµΛσνηρσ . (1.16)

The set of all matrices Λ obeying (1.16) forms the Lorentz group O(1, 3). This is the gener-
alisation of the orthogonal group of spatial rotations, O(3), to spacetime transformations. By
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taking the determinant of both sides, we see that det Λ = ±1. We can restrict to the “proper
orthochronous” Lorentz group SO(1, 3)↑ consisting of those elements of O(1, 3) with det Λ = +1

and Λ0
0 positive. This is the group of transformations preserving the direction of time: it is also

the component of O(1, 3) which can be continuously connected to the identity matrix.
The combination of Lorentz transformations (1.15) and spacetime translations (1.14) forms

what is known as the Poincaré group. As the symmetry group of Minkowski spacetime, it is of
fundamental importance in special relativistic theories, especially quantum field theory. We will
not study it in detail here, but you should certainly do so elsewhere!

To gain some understanding of the transformations that are allowed, we can write down for
example the Lorentz transformation generating rotations in the xy plane:

Λµν =


1 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 1

 , θ ∈ [0, 2π) , (1.17)

and that generating what you might have previously thought of as a genuine Lorentz transfor-
mation, namely a so-called “boost” acting on t and x:

Λµν =


coshφ − sinhφ 0 0

− sinhφ coshφ 0 0

0 0 1 0

0 0 0 1

 , φ ∈ (−∞,∞) . (1.18)

This leads to

ct′ = ct coshφ− x sinhφ ,

x′ = −ct sinhφ+ x coshφ .
(1.19)

The point x′ = 0 corresponds to the worldline defined by x = ct tanhφ in the original frame:
thus relative to this frame it is moving with velocity v = c tanhφ. Rewriting in terms of v, the
transformation (1.19) takes the form usually written in elementary treatments of relativity:

t′ = γ(t− vx/c2) ,

x′ = γ(x− vt) ,
(1.20)

where γ = 1/
√

1− (v/c)2.

Show that (Λ0
0)2 ≥ 1.

Verify that the transformations (1.17) and (1.18) indeed obey the defining condition (1.16),
and that the expressions (1.19) and (1.20) are equivalent.

Exercise 1.1 (Lorentz transformations)
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1.3 Physics, vectors and tensors

Physics in inertial frames

The laws of physics are the same in all inertial frames, which are related to each other by Lorentz
transformations and spacetime translations. What form do these laws take?

Let’s begin with the laws governing the motion of particles. Consider a curve xµ(λ) in
Minkowski spacetime, parametrised by some parameter λ ∈ R. The rate of change of the curve
with respect to λ is dxµ

dλ , and at each particular value of λ gives the tangent vector to the curve
at that point. What can we do with this tangent vector? We can use the Minkowski metric to
measure its norm: at any given point on the curve, the tangent vector will be timelike, spacelike,
or null, and the curve is said to be timelike, spacelike or null (for a given range of the parameter
λ) according to whether the tangent vector dxµ

dλ is timelike, spacelike, or null.
Massive particles travel on timelike curves. Let’s use proper time τ as the parameter for such

a curve. Then the tangent vector is the four-velocity:

Uµ =
dxµ(τ)

dτ
, (1.21)

and as c2dτ2 = −ηµνdxµdxν we have

ηµνU
µUν = −c2 . (1.22)

In the rest frame of the particle, we have Uµ = (c, 0, 0, 0). If m is the rest mass of the particle,
then we can also define the momentum four-vector

pµ = mUµ , (1.23)

which obeys ηµνpµpν = −m2c2. This equation effectively defines the rest mass in a Lorentz
invariant manner: up to a factor of −c2, it is given by the norm of the four-momentum. The
time component is p0 = E/c, where E corresponds to the energy of the particle: in general,
E = c

√
m2c2 + ~p 2. (You can see why only the ~p = 0 version of this equation caught on.)

The equation governing the motion of free massive particles is:

d

dτ
pµ(τ) = m

d2

dτ2
xµ(τ) = 0 . (1.24)

Now, under a Lorentz transformation, xµ 7→ x′µ = Λµνx
ν , the tangent vector transforms in the

same way:

Uµ =
dxµ

dτ
7→ U ′µ =

dx′µ

dτ
= Λµν

dxν

dτ
= ΛµνU

ν , (1.25)

hence also pµ 7→ p′µ = Λµνp
ν . Suppose we have a particle that is not free, but responding to some

force. The requirement that the laws of physics remain invariant under Lorentz transformations
means that this force must also be a four-vector, fµ, such that

d

dτ
pµ(τ) = m

d2

dτ2
xµ(τ) = fµ , (1.26)

and under Lorentz transformations fµ 7→ f ′µ = Λµνf
ν .

Indeed, all other physical quantities that enter into the description of relativistic physics in
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inertial frames must have a well-defined transformation under Lorentz transformations: and all
physical laws must be written in a way that is covariant under such transformations. This will
ensure that the form of these laws is indeed the same in all inertial frames.

Vectors and tensors in special relativity

Fundamentally, this means that all physical quantities that we will use have a well-defined
geometric definition. We will make this very precise in section 3. However, let’s set out the
basic definitions now in a slightly simpler fashion.

In special relativity, we can define a vector to be a quantity Xµ transforming under Lorentz
transformations “the same way” as the coordinates, that is:

Xµ 7→ X ′µ = ΛµνX
ν . (1.27)

Examples of vectors are provided as above by the tangent vectors to curves, such as particle
worldlines, through spacetime. Indeed the general definition of a vector on a more general
spacetime is in terms of tangents and curves.

As well as vectors, we have covectors, which carry a lower index. Denoting a covector by ωµ,
we specify its transformation under Lorentz transformations to be:

ωµ 7→ ω′µ = (Λ−1)νµων . (1.28)

Covectors are dual to vectors, in grossly simplified terms you can think of them as “row vectors”
while vectors with upper indices are “column vectors”. This in particular means that given a
vector and a covector we can form a scalar quantity ωµX

µ which is invariant under Lorentz
transformations: ωµXµ = ω′µX

′µ.
More generally, we have tensors carrying r upper indices and s lower indices (which we can

refer to as an (r, s) tensor), transforming under Lorentz transformations as

Tµ1...µrν1...νs 7→ T ′µ1...µrν1...νs = Λµ1ρ1 . . .Λ
µr
ρr(Λ

−1)σ1ν1 . . . (Λ
−1)σsνsT

ρ1...ρr
σ1...σs . (1.29)

The most important tensor in relativity (special or general) is the metric. The metric is a (0,2)
tensor field which is symmetric and non-degenerate. Hence we can write it in components (in
special relativity) as ηµν = ηνµ, and there exists an inverse ηµν such that ηµρηρν = δµν . The
Minkowski metric of special relativity is of course invariant under Lorentz transformations, but
not invariant under more general coordinate transformations, while the Kronecker delta δµν is a
(1, 1) tensor and invariant under all coordinate transformations. The metric gives a map taking
two vectors, X,Y and giving a scalar η(X,Y ) = ηµνX

µY ν . Thus it defines an inner product on
vectors, which we can use to measure norms, amongst other geometrically useful quantities.

Another important practical consequence of the metric’s existence is that we can use it to
identify vectors and covectors: if Xµ is a vector then ηµνXν is a covector, and if ωµ is a covector
then ηµνων is a vector. To reduce the number of indices in expressions, we actually use the
metric to raise and lower, meaning we write Xµ ≡ ηµνXν and ωµ ≡ ηµνων . In special relativity,
the metric is constant, and diagonal, so the only thing to be concerned about here is the fact
that the minus sign means X0 = −X0, Xi = Xi (i = 1, 2, 3).

Here we are automatically using the fact that one can sum over, or contract, repeated upper
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and lower indices, whether on different tensors, or on the same tensor. In the latter case, we
obtain what is known as a contraction of a tensor. For instance, given an (r, s) tensor, we can
generically produce rs individual contractions which are themselves (r − 1, s− 1) tensors, given
by:

(T ′)µ1...µr−1
ν1...νs−1 = Tµ1...µi−1µµi...µr−1

ν1...νj−1µνj ...νs−1 , (1.30)

where here we contract the ith upper index with the jth lower index. Mechanically, the process
is just so: one takes the tensor components and contracts one upper index with one lower index
by labelling each with the same dummy index instructing us to sum over them. The result gives
the components of a new tensor.

We will also have cause to impose symmetry properties on tensors, as already apparent from
the existence of the metric. We define symmetrisation by

T (µ1...µn) =
1

n!
(Tµ1...µn + permutations of 1, . . . , n) , (1.31)

and antisymmetrisation by

T [µ1...µn] =
1

n!
(Tµ1...µn + signed permutations of 1, . . . , n) , (1.32)

where the sign is +1 for even permutations and −1 for odd permutations. For example,

T (µν) =
1

2
(Tµν + T νµ) ,

T (µνρ) =
1

6
(Tµνρ + T νρµ + T ρµν + Tµρν + T νµρ + T ρνµ) ,

(1.33)

T [µν] =
1

2
(Tµν − T νµ) ,

T [µνρ] =
1

6
(Tµνρ + T νρµ + T ρµν − Tµρν − T νµρ − T ρνµ) .

(1.34)

Symmetry properties can be useful when contracting:

T (µ1...µn)T ′[µ1...µn] = 0 ,

T (µ1...µn)T ′µ1...µn = T (µ1...µn)T ′(µ1...µn) , T [µ1...µn]T ′µ1...µn = T [µ1...µn]T ′[µ1...µn] .
(1.35)

If we have a tensor such that Sµ1...µn = S(µ1...µn) we say that it is symmetric on the indices
µ1 . . . µn. If a tensor such that Aµ1...µn = A[µ1...µn] we say it is antisymmetric on the indices
µ1 . . . µn.

Physical fields in special relativity (and more generally) are tensors of various types. The
simplest are scalar fields, φ(x), which are just functions on spacetime. More interestingly, the
electromagnetic field strength Fµν is an antisymmetric tensor, F νµ = −Fµν . Its components
give the electric field Ei and magnetic field Bk, with F 0i = 1

cE
i and F ij = εijkBk. Maxwell’s

equations in the presence of a source Jµ = (cρ, J i) are:

∂µF
νµ = Jν , ∂[µFνρ] = 0 . (1.36)

We can solve the latter equation by writing Fµν = 2∂[µAν], where Aµ is the electomagnetic gauge
potential. Notice here we are raising and lowering indices using the Minkowski metric without a
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second thought. In the presence of an electromagnetic field, the relativistic generalisation of the
Lorentz force law for the motion of a particle is of the form (1.26) with fµ = qUνFµν , where
q is the charge of the particle. This can be checked to reduce to ~F = q( ~E + ~v × ~B) for small
velocities.

Note that in defining the components of the B-field, we used the alternating symbol εijk

which is totally antisymmetric. The four-dimensional covariant version of this is the Levi-Civita
symbol εµνρσ defined such that ε0123 = +1. (This is not a true tensor as under certain Lorentz
transformations it changes sign: more generally it transforms under general coordinate transfor-
mations up to a Jacobian factor. This means that more precisely it is something known as a
tensor density, or a pseudo-tensor.)

Any physical system will have an energy-momentum tensor, Tµν , which is symmetric, and
conserved, ∂µTµν = 0. We can view Tµν as the conserved quantity resulting from invariance
under spacetime translations. Intuitively, it describes the flux of four-momentum across surfaces
of constant xµ. The energy-momentum tensor will play an important role in general relativity,
and we will describe it in more detail later in the course.

Vectors and tensor in mathematics

Before bringing gravity into the picture, let’s have a first look at how one should really think
about vectors and tensors mathematically. Physicists tend to refer to, if not think of, the objects
Xµ, ωµ, . . . as vectors, covectors and tensors in their own right. This is not mathematically
accurate. In fact, Xµ and ωµ are not the vector and covector themselves, but instead are the
components of a particular vector and covector in a certain basis. The Lorentz transformations,
which we naively used above to “define” tensors, are then particular examples of a change of
basis.

The other mathematical distinction that needs to be made concerns how and where exactly
a vector is defined. Any vector must be an element of a vector space. Hence geometrically we
have to associate a vector space to every point of spacetime. Then the objects Xµ(x) which
we naively call ‘vectors’ are really the components of so-called vector fields, which at each x in
spacetime give a vector which is an element of a particular vector space at x.

This is called the tangent space at x. The name is due to the fact that we can intrinsically
define all vectors in the tangent space as being tangent vectors to curves through the point x.
An intuitive basis for the tangent space at x is provided by the coordinate basis. We can define
curves which correspond to moving away from the point x along the coordinate axes:

x(0)(λ) = (x0 + λ, x1, x2, x3) ,

x(1)(λ) = (x0, x1 + λ, x2, x3) ,

x(2)(λ) = (x0, x1, x2 + λ, x3) ,

x(3)(λ) = (x0, x1, x2, x3 + λ) .

(1.37)

The bracketed indices label the curves themselves.
For each of these curves we can define a tangent vector which we denote here by

e(µ) ≡
dx(µ)

dλ
, (1.38)
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such that e(0) = (1, 0, 0, 0), e(1) = (0, 1, 0, 0) and so on. This is perhaps a complicated way to
define the usual unit vectors which are the standard basis for the vector space R4. Note the
brackets around the µ on e(µ). This notation is used to label the vectors themselves, so (µ)

should not be thought of as the component index itself. It is common to write these coordinate
basis unit vectors as

e(µ) =
∂

∂xµ
≡ ∂µ . (1.39)

The reason for this notation is because tangent vectors at x can be used to describe the rate of
change of functions along curves through x. In particular, the rate of change of a function f(x)

in the direction µ is
d

dλ
f(x(µ)(λ))

∣∣∣
λ=0

=
dxν(µ)

dλ

∣∣∣∣
λ=0

∂f

∂xν
=

∂f

∂xµ
(1.40)

We identify the basis tangent vector e(µ) with the differential operator that gives us the rate
of change along the curve x(µ)(λ) i.e. with d

dλ of functions evaluated on this curve, leading to
(1.39). For an arbitrary curve x(λ) we have

d

dλ
f(x(λ))

∣∣∣
λ=0

=
dxµ

dλ

∣∣∣∣
λ=0

∂f

∂xµ
=
dxµ

dλ

∣∣∣∣
λ=0

e(µ)(f) , (1.41)

which defines a tangent vector whose components with respect to the basis e(µ) are dxµ

dλ .
More abstractly, given the basis e(µ), then a general vector consists of a linear combination

of the e(µ) and so can be written
X = Xµe(µ) . (1.42)

So it is the components Xµ of the vector X in the coordinate basis given by the e(µ) are what
we were previously thinking of as the vector itself.

The vector X, and not its components Xµ, is independent of the choice of basis. The
transformation rule of Xµ under a Lorentz transformation follows from the requirement that

Xµe(µ) = X ′µe′(µ) , (1.43)

where by definition of the coordinate basis

e′(µ) =
∂

∂x′µ
=
∂xν

∂x′µ
∂

∂xν
= (Λ−1)νµeν . (1.44)

We can similarly discuss bases for covectors. In general we will denote the basis for covectors by
θ(µ). Again, the index here is not a component or coordinate index but merely labels the basis
covectors. We want our basis to be dual to the basis e(µ) in the sense that there should be a
natural pairing between vector and covector with

θ(µ)(e(ν)) = δµν . (1.45)

A general covector is then expanded as

ω = ωµθ
(µ) , (1.46)

with ωµθ
(µ) = ω′µθ

′(µ) such that θ′(µ) = Λµνθ
(ν), ω′µ = (Λ−1)νµων . The basis dual to the
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coordinate basis is provided by the diffentials of the coordinates:

θ(µ) = dxµ , (1.47)

which will be clearer later when we give more careful definitions of vectors and covectors.
One can already in special relativity begin to generalise the treatment of vectors and tensors.

First of all, although the coordinate basis is convenient, it is not mandatory, and one could
take at any point x an arbitrary basis for the tangent space. More generally, one can note that
Lorentz transformations are a very special class of coordinate transformations xµ 7→ x′µ = Λµνx

ν

which preserve the form of the Minkowski metric. (They are therefore called isometries of the
Minkowski metric: we will see more about this in section 8.) When more properly defined,
vectors transform also under arbitrary coordinate transformations, which will generically change
the form of the metric. An obvious example would be to switch to spherical spatial coordinates
instead of Cartesian coordinates. Physics in Minkowski spacetime can be formulated in such
coordinates, however explicit physical expressions will not be as simple as in the special inertial
frames related by Lorentz transformations.
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2 Gravity and equivalence principles

Cesc gave me a pass, Newton appeared ... When I control the ball, I know it’s going to be a
goal. I just had to wait for it to come down to kick it. And why did it come down? Because
of the law of gravity.

Andrés Iniesta to El País (7th Sep 2010)

Although from Iniesta’s perspective, “the apple was the ball and Newton’s head was my foot,”
in this section we will realise we can also view the 2010 men’s World Cup Final from the point
of view of the freely falling ball: which saw Iniesta’s boot, and the Earth, accelerating towards
it at about 9.8 metres a second squared. This simple change of perspective will lead us to the
idea that gravity can be described in terms of a curved spacetime.

2.1 Newtonian gravity

Newton’s law of gravitation states that the attractive gravitational force of a mass M located at
~x′ felt by a mass m located at ~x (see figure 5) is:

~F = −GMm

r2

~x− ~x′

r
, r ≡ |~x− ~x′| . (2.1)

~x′

M~x

m

~x− ~x′

Figure 5: Newtonian gravity

This force is the gradient of a gravitational potential,

~F = −~∇V (~x) , V (~x) ≡ mΦ(~x) , Φ(~x) = − GM

|~x− ~x′|
. (2.2)

Newton’s second law is then:
m~̈x = m~g , (2.3)

where the acceleration due to gravity is

~g = −~∇Φ . (2.4)

In this case,

~g = −GM
r2

~x− ~x′

r
. (2.5)

The equations (2.3) and (2.4) hold for general gravitational fields due to different distributions
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of matter, specified by a matter density ρ such that

∇2Φ(~x) = 4πGρ(~x) . (2.6)

2.2 Equivalence principles

A more careful treatment realises that in Newtonian theory, we could choose to distinguish
between two types of mass. There is inertial mass, which appears in Newton’s second law
relating acceleration to force:

~F = mi~a , (2.7)

and gravitational mass, which appears in the equation describing the gravitational force due to
a gravitational field ~g:

~F = mg~g . (2.8)

In principle, these need not be equal: however the following Principle asserts that they are.

Inertial mass equals gravitational mass,

mi = mg . (2.9)

Weak equivalence principle (WEP)

The WEP has been experimentally verified to high accuracy. To be precise, there is a scaling
ambiguity on the right-hand-side of (2.8), as we could send mg → λmg, ~g → ~g/λ. We can
therefore fix mi = mg for one test mass, thereby defining ~g unambiguously, and then calculate
1−mi/mg for all other bodies. The discrepancy here is found to be of order 10−12, confirming
the WEP.

As mi = mg, the motion of a test body in the presence of a gravitational field is given simply
by:

~̈x = ~g(~x(t), t) , (2.10)

and is independent of its mass. We can therefore restate the WEP as follows:

The trajectory of a freely falling test body depends only on its initial position and velocity
and is independent of its composition.

By freely falling, we mean that the gravitational force is the only force acting on the body. By
a test body, we mean that we are assuming we can neglect the gravitational self-interaction
of the body (if it is a composite object rather than some idealised point particle), and that
its size is less than the scales on which ~g varies.

Weak equivalence principle (WEP)

Let’s define a new frame (t′, ~x′) which is accelerating with respect to our original coordinates ~x:

t′ = t ,

~x′ = ~x− ~X(t) , ~̈X(t) = ~a .
(2.11)
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In the new frame, the equation of motion is

~̈x′ = ~g − ~a ≡ ~g ′ . (2.12)

This means that uniform acceleration and the presence of a gravitational field are equivalent:

• If ~g 6= 0, we can take ~a = ~g in our definition of the new frame, to find that in the latter
there is no gravitational field, ~g ′ = 0.

• If on the other hand there was initially no gravitational field, ~g = 0, we find that the new
frame has a gravitational field, ~g ′ = −~a.

We should distinguish between whether or not ~g is uniform:

• If ~g is uniform, we can define an inertial frame as that in which the laws of physics are
simplest, which in this case is the freely falling frame with ~a = ~g.

• If ~g is non-constant, we can approximate it as uniform in a small enough region. Then
in this region, we can define a local inertial frame (t, ~x) using same coordinates we would
define in flat Minkowski spacetime, and the laws of physics will be the same as in special
relativity.

The Einstein equivalence principle generalises the WEP to encompass not just the motion of
test bodies, but all non-gravitational physics.

1. The WEP holds.

2. In a local inertial frame, the results of all non-gravitational experiments are indistin-
guishable from the results of the same experiments performed in an inertial frame in
Minkowski spacetime.

Einstein equivalence principle (EEP)

It is important to understand the local nature of this statement. The claim of the EEP is that
in any theory of gravity, it should still always be possible to locally ignore the presence of the
gravitational field by defining a freely falling frame as above. However, if we try to extend the
region in which this frame is valid, it will in general not be possible to eliminate all gravitational
effects. For instance, there can be “tidal effects” caused by the non-uniformity of a gravitational
field, which will cause test bodies separated by a distance to fall differently.

2.3 Gravitational time dilation

Time runs slower the deeper you are in a gravitational potential.

Gravitational time dilation from equivalence principle

This is illustrated (literally, if inartistically, in figure 6) by Alice and Bob sitting in a gravitational
field ~g = (0, 0,−g) at different positions on the z-axis. We put Bob at z = 0 and Alice at z = h.
Alice sends light signals to Bob at regular intervals ∆τA. These will be received by Bob at
intervals ∆τB. How are these intervals related?
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z

Alicez = h

Bobz = 0

−g

Figure 6: Alice and Bob are in a gravitational field.

We use the equivalence principle to analyse this in the frame where both Alice and Bob are
accelerating with acceleration −~g in Minkowski space. This frame, with the sequence of light
transmissions, is shown in figure 7. We can choose this frame such that at t = 0 both Alice
and Bob are at rest. We will neglect special relativistic effects by assuming that throughout
the course of this experiment, our observers do not reach relativistic speeds. As their common
velocity in the positive z direction is v = gt, this means we assume that gt/c is small.

z

ttA
tA + ∆τA

tB

tB + ∆τB

A

A

B

B

z(tA)

z(tA + ∆τA)

z(tB)

z(tB + ∆τB)

Figure 7: Using an inertial frame, in which Alice and Bob are accelerating. The red lines denote
light signals sent from Alice to Bob. The blue and green curves denote their trajectories.

Consider Alice and Bob, travelling along the z-axis with trajectories zA(t) and zB(t) respec-
tively. Alice sends light signals to Bob at times t = tA and t = tA + ∆τA. The light signal
trajectories are:

z1(t) = zA(tA)− c(t− tA) , z2(t) = zA(tA + ∆τA)− c(t− tA −∆τA) . (2.13)

The first signal is received by Bob at time t = tB and the second at t = tB +∆τB. That is, when

zA(tA)− c(tB − tA) = zB(tB) , (2.14)

zA(tA + ∆τA)− c(tB − tA + ∆τB −∆τA) = zB(tB + ∆τB) . (2.15)
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Subtracting the former from the latter, we obtain

zB(tB + ∆τB)− zB(tB) + c∆τB = zA(tA + ∆τA)− zA(tA) + c∆τA (2.16)

We have assumed nothing about the trajectories of Alice and Bob so far. Let’s assume that the
time intervals involved are small, and that we can Taylor expand to first order to find:

(c+ z′B(tB))∆τB ≈ (c+ z′A(tA))∆τA (2.17)

Denoting the velocities of Alice and Bob by vA = z′A, vB = z′B, we find:

∆τB ≈
1 + vA(tA)

c

1 + vB(tB)
c

∆τA ≈
(

1 +
vA(tA)− vB(tB)

c

)
∆τA . (2.18)

Therefore the perceived time dilation depends on Alice’s velocity when she emits the first signal,
and on Bob’s velocity when he receives the first signal. Note that if vA(t) = vA and vB(t) = vB

are constant, we would find the usual non-relativistic Doppler effect. In the case we are interested
in, Alice and Bob have the same acceleration from the same initial velocity, so vB(tB) > vA(tA).
As a result, we inevitably are led to ∆τB < ∆τA: time is running slower for Bob.

Let’s now specialise to the trajectories of Alice and Bob given by:

zA(t) = h+
1

2
gt2 , zB(t) =

1

2
gt2 . (2.19)

Hence, vA(tA) = gtA and vB(tB) = gtB. Now, we can approximate tB − tA by the time it takes
light to travel from z = h to z = 0, so (tB − tA) ≈ h/c. Then we can write the result (2.18) as:

∆τB ≈
(

1− gh

c2

)
∆τA . (2.20)

Less time has elapsed for Bob: time runs slower for the observer deeper down the gravitational
well.

We can rephrase this result in terms of wavelength, if Alice emits a continuous beam of
light. With ∆τA = λA/c, ∆τB = λB/c we find that the light is blueshifted (towards shorter
wavelengths):

λB ≈
(

1− gh

c2

)
λA . (2.21)

Conversely, light emitted by Bob would be redshifted (towards longer wavelengths). This effect
has been confirmed experimentally in the Pound-Rebka experiment.

In terms of the gravitational potential, Φ = gz, the general result is:

∆τB ≈
(

1 +
ΦB − ΦA

c2

)
∆τA . (2.22)

Gravitational time dilation from curved geometry

We have found that in a gravitational field, clocks run at different speeds. This used the equiv-
alence principle to map the gravitational field to a situation with accelerating observers in an
inertial frame.
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In special relativity, we also found that clocks carried by different observers gave differ-
ent measurements for the proper time elapsed. This followed from the fundamental properties
of Minkowski spacetime, in particular from the definition of the spacetime interval using the
Minkowski metric.

Inspiration follows: can we try to account for the gravitational time dilation effect by sup-
posing it arises from having a metric that is not constant? Consider the following definition for
the proper time of an observer:

c2dτ2 =

(
1 +

2Φ(~x)

c2

)
c2dt2 −

(
1− 2Φ(~x)

c2

)
d~x2 ≡ −gµν(~x)dxµdxν , (2.23)

which replaces the Minkowski metric ηµν by

gµν(~x) =


−1− 2Φ(~x)

c2
0 0 0

0 1− 2Φ(~x)
c2

0 0

0 0 1− 2Φ(~x)
c2

0

0 0 0 1− 2Φ(~x)
c2

 . (2.24)

(This particular metric is time independent, but more generally it could also depend on time.)
We assume that Φ(~x)/c2 is small: in fact, this corresponds to a particular weakly curved limit of
a genuine background geometry solving the Einstein equation, which we will discover later on.

We now interpret Alice and Bob’s lightshow as if they were sitting in the spacetime where
distances are described using this metric. Let’s put Alice at ~xA and Bob at ~xB. We don’t yet
know how to calculate the trajectories of photons in a curved geometry. This does not matter,
because the only difference between the first and second signal is the time they are sent at, and
the geometry is entirely time independent. Therefore each light signal takes the same path from
Alice to Bob, but shifted by a time ∆t. We can say that Alice sends signals at tA and tA + ∆t,
and these are received by Bob at tB and tB + ∆t. This is depicted in figure 8.

~x

t
tA tA + ∆ttB tB + ∆t

A

B

Figure 8: Signals in the curved geometry. The red curves denote the photon paths and are not
an accurate depiction: all that matters is that the two separate signals follow the same path at
different times.

We calculate the proper times measured in Alice and Bob’s frames, using (2.23). The dif-
ference in proper time comes from the explicit ~x dependence of this expression. We abbreviate
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ΦA ≡ Φ(~xA) and ΦB ≡ Φ(~xB). We have:

(∆τA)2 =

(
1 +

2ΦA

c2

)
(∆t)2 ⇒ ∆τA ≈

(
1 +

ΦA

c2

)
∆t , (2.25)

(∆τB)2 =

(
1 +

2ΦB

c2

)
(∆t)2 ⇒ ∆τB ≈

(
1 +

ΦB

c2

)
∆t (2.26)

from which we immediately obtain the same result:

∆τB ≈
(

1 +
ΦB − ΦA

c2

)
∆τA . (2.27)

The gravitational time dilation now comes from an intrinsic property of the curved spacetime.

The speed of light in vacuum SI units is c = 299, 792, 458 metres/second. There is nothing
special about metres or seconds. We are free to use whatever units we want to measure
length and time. What we want to do is choose units such that the speed of light is just
c = 1. This means our unit of time is the same as our unit of length, so that any time
interval ∆t is measured by the distance that light travels in ∆t. Put differently, we choose
to measure time using some unit T ′ = L and length also using the unit L. In a “conventional”
system of units where length is measured by some unit L (for example, the length of a king’s
forearm), and time is measured by some unit T (for example, the maximum duration of a
recording possible to be stored on an audio CDa), then we have the conversion T = cT ′,
where c denotes the value of the speed of light in T/L.

From now on, we set c = 1.
aThis is one Beethoven’s Ninth, if that helps younger readers.

Choice of units
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3 Manifolds, vectors and tensors

The simplest example of a manifold is Rn, a set of points each labelled by n numbers. The
choice of the numbers with which we label the points is called a choice of coordinates. We can
use Cartesian coordinates, in which points in Rn are labelled by xµ = (x1, . . . , xn), with each
xµ ∈ R. Other coordinates are possible: for instance, we could translate or rotate our Cartesian
coordinates. We could also use n independent functions of the original Cartesian coordinates
instead. This is what we do in order to define polar coordinates in R2 or spherical coordinates
in R3.

Examples of less trivial manifolds can be generated by considering surfaces embedded in Rn.
The most obvious example is the unit sphere, Sn−1, defined as the set of points in Rn obeying
(in a choice of standard Cartesian coordinates)

(x1)2 + . . . (xn)2 = 1 . (3.1)

This is an (n − 1)-dimensional space, and so we should introduce coordinates on it which are
a set of n − 1 numbers. These coordinates of the sphere correspond to a subset of Rn−1. For
instance, the unit circle with n = 2 can be parametrised using a single coordinate θ ∈ [0, 2π).
(Later on, we will refine this description.) If we like, we can relate this to the coordinates in R2

by x1 = cos θ and x2 = sin θ.

x2

x1

x3

φ

θ

Figure 9: Spherical coordinates

In n = 3, we have the unit sphere. As coordinates we most obviously use the pair (θ, φ) where
now θ ∈ [0, π] is the polar angle (running from the north to the south pole), and φ ∈ [0, 2π) is
the azimuthal angle (running around the sphere for a fixed value of θ). The embedding in R3 is
given by:

x1 = sin θ cosφ , x2 = sin θ sinφ , x3 = cos θ . (3.2)

However, these coordinates do not provide a perfect description of the sphere. When θ = 0 or
θ = π, sin θ = 0, and the value of φ can be arbitrary. This is problematic if we want a single
unambiguous mapping of points in R2 to describe points on the sphere. (Ultimately this is not
possible: note that another way of constructing a sphere is to take the unit disc (x1)2 +(x2)2 ≤ 1

in R2 and to identify all points on its boundary circle with each other.) For instance, if we are
taking a limit, or differentiating some function at θ = 0 or θ = π, we will have difficulties if
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any value of φ is allowed, for example the derivative ∂f
∂φ

∣∣∣
θ=0

= limh→0
1
h (f(0, φ+ h)− f(0, φ)) is

naively not well-defined because the points (0, φ + h) and (0, φ) cannot be distinguished using
these coordinates. In fact, also the derivative with respect to θ is problematic, because for
instance ∂f

∂θ

∣∣∣
θ=π

= limh→0
1
h (f(π + h, φ)− f(π, φ)), and there is no point on the sphere with θ

coordinate π + h for positive h. This problem is present whenever our coordinates take values
in a closed rather than open interval (and so is also present for the circle S1).

We therefore need to refine our description of coordinates on the sphere. To deal with
derivatives in general, we will need to be more careful about the ranges of our coordinates,
restricting them to open subsets. This is a mathematical requirement that will allow us to use
the theory of calculus on Rn. (Later on, when we start doing physics in curved manifolds we
will not always be so particular in worrying about whether we write down the ranges correctly.)
To solve the ambiguity at the north and south poles, we will have to abandon the desire to have
only one set of coordinates describing our space uniquely.

This is the most important aspect of manifolds: they require multiple choices of coordinates.
For the sphere, you could object to this requirement by pointing out that points on the sphere
are perfectly labelled using the embedding coordinates (x1, x2, x3) ∈ R3. However, in general
a manifold need not have any description in terms of an embedding as a surface into a higher-
dimensional Rn. Our ultimate goal is to describe the full spacetime universe as a manifold,
and this is meant to be reality itself, describable without introducing an inaccessible unphysical
space in which it is embedded. What we want is to describe manifolds in terms which are purely
intrinsic.

3.1 Manifolds

A manifold makes mathematically rigourous our intuitive idea of a curved space. This is achieved
by regarding a curved space as looking locally like a simpler flat one: the names used below invite
you to think of the description of the surface of the Earth – to a good approximation, a sphere –
via an atlas consisting of individual charts which look like regions of flat two-dimensional space.
The important mathematics appears in the way that we glue different charts together to build
up a complete description of the space we are interested in.

We will define a manifold “backwards”, by beginning with the constituents: open sets in Rn,
which appear in charts describing some patch of the manifold; these charts are compiled into an
atlas to give a complete description covering the whole manifold. When reading these definitions,
keep an eye on figure 10, depicting the scene.

We open with a technical definition:

The open ball Br(y) in Rn, with y ∈ Rn and r > 0 some constant, consists of all points
x ∈ Rn such that |x− y| < r.

An open set V in Rn consists of an arbitrary (potentially infinite) union of open balls: V is
open if for all y ∈ V , there exists some r > 0 such that Br(y) ⊂ V .

Open

The reason that we like open sets is that they are needed to define limits and derivatives.
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Recall for instance the definition of the derivative of a function f(x) at a point a is given by
limh→0(f(a+ h)− f(a))/h, which requires being able to choose a point a+ h close to the point
a in the first place. This will be guaranteed in an open set, but not a closed one.

We now suppose that M is some set, that we wish to view as a manifold by modelling it
locally as Rn. The tool for carrying out this modelling is provided by the next definition:

A chart or coordinate system on a set M is a subset U of M together with a one-to-one
(injective) map φ : U → Rn, such that the image φ(U) is open in Rn. We can then call U
an open set in M .

Chart

Practically, we will often write φ = (x1, . . . , xn) or φ = (xµ), where the individual xµ are the
coordinate functions in the chart (U, φ). If we are being precise, we will denote the coordinates
of the point p by φ(p) = (xµ(p)) or φ(p) = (xµp ). Later on, we will begin to drop explicit mention
of the map φ, and just refer to the coordinates xµ in some chart. This is how physicists think in
practice.

Generically, it is impossible to describe a manifold with a single chart. We need to introduce
collections of (overlapping) charts:

A (C∞ or smooth) atlas on a set M is a collection of charts {(Uα, φα)}, labelled by some
index α, such that

1. M is covered by the Uα, that is
⋃
α Uα = M .

2. The transformations between charts are smooth; that is, if two charts overlap, Uα ∩
Uβ 6= ∅, then the following map:

φα ◦ φ−1
β : φβ(Uα ∩ Uβ) ⊂ Rn → φα(Uα ∩ Uβ) ⊂ Rn (3.3)

is smooth.

We say that two atlases are compatible if their union is also an atlas: the union of all atlases
compatible with a given atlas is called a complete atlas (or a maximal atlas).

Atlas

All these ideas come together to define a manifold:

A (C∞ or smooth) manifold is a set M together equipped with a complete (C∞ or smooth)
atlas.

Manifold

In practical terms, given two charts (Uα, φα) and (Uβ, φβ) as shown in figure 10, we will write
φα = (xµ) and φβ = (x′µ). Then the map φα ◦ φ−1

β relating the two charts can be viewed just as
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Uβ

Uα

φα(Uα)

φα

φβ(Uβ)

φβ

φα ◦ φ−1
β

M

Rn Rn

Figure 10: A manifold, showing two charts, and the transformation between their overlap.

a change of coordinates in Rn, φα ◦φ−1
β = xµ(x′). As this is a map from Rn to Rn, we can apply

all results from calculus, such as the chain rule.

Example: Rn

It is always mathematically appealing to start with a trivial example. So, Rn is a manifold,
which can in fact be covered by a single coordinate chart, φ : (x1, . . . , xn)→ (x1, . . . , xn).

Example: S1

The unit circle is the set of all points (x, y) in R2 obeying x2 + y2 = 1. It can be parameterised
by (x, y) = (cos θ, sin θ), with θ ∈ [0, 2π). However, this is not a good chart, because the interval
[0, 2π) is not open.

We can define a first chart (U1, φ1) by letting U1 be S1 with the point (1, 0) removed, and
letting φ1(p) = θ1 ∈ (0, 2π).

A second chart (U2, φ2) involves letting U2 be S1 with the point (−1, 0) removed, and letting
φ2(p) = θ2 ∈ (−π, π).

Clearly U1∪U2 = S1, and the overlap U1∩U2 consists of the points (x, y > 0) and (x, y < 0).
On the former region, we have θ2 = φ2◦φ−1

1 (θ1) = θ1. On the latter, we have θ2 = φ2◦φ−1
1 (θ1) =

θ1 − 2π. These are obviously smooth.

Example: S2

The unit sphere is the set of all points (x, y, z) in R3 obeying x2 + y2 + z2 = 1. It can be
parameterised by (x, y, z) = (sin θ cosφ, sin θ sinφ, cos θ), with θ ∈ [0, π] and φ ∈ [0, 2π). Again
these are problematic, due to not being open, furthermore at θ = 0 or π (the north and south
poles) φ is arbitrary.

We define a first chart (U1, ϕ1) by restricting to θ ∈ (0, π) and φ ∈ (0, 2π). This means that
U1 is the sphere with the poles plus arc given by (x > 0, y = 0) removed, and ϕ1 : U1 → (θ, φ) ∈
{(0, π)× (0, 2π)} ⊂ R2.
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A second chart (U2, ϕ2) compatible with the first, providing a covering of the sphere could
then be given by the parametrisation (x, y, z) = (− sin θ′ cosφ′, cos θ′, sin θ′ sinφ′) with θ′ ∈ (0, π),
φ′ ∈ (0, 2π). This means that U2 is the sphere with points (0,±1, 0) plus the arc given by
(x < 0, z = 0) removed, and ϕ2 : U2 → (θ′, φ′) ∈ {(0, π)× (0, 2π)} ⊂ R2.

Clearly S2 = U1 ∪ U2, and ϕ1 ◦ ϕ−1
2 , ϕ2 ◦ ϕ−1

1 can be checked to be smooth on U1 ∩ U2.

3.2 Everything in its right place: vectors and tensors at a point

On a manifold, we introduce coordinates in order to describe its geometry in terms of standard
coordinates on (subsets of) Rn. Changes of coordinates give maps from Rn to Rn, which allow
us to apply results from calculus. We will develop these ideas into the theory of differential
geometry, which allows us to define functions on manifolds and take their derivatives, leading to
an intrinsic definition of vectors and other geometric objects, which can also be differentiated if
our manifold admits additional geometric structures.

We will start our study by concentrating on a single point in a manifold, at which differential
geometry reduces to linear algebra. It can be argued that the two most important ideas in
physics are calculus and linear algebra. Calculus is important because it allows us to make non-
linear problems linear; linear algebra is important because it allows us to solve these linearised
problems. We can then try to use calculus to build up the solution to the original non-linear
problem using the solutions of the linear problem.

In classical physics, for instance, we are fundamentally interested in knowing the future
position of a particle at time t + dt, given its position at time t. Calculus tells us that, at the
linearised level, ~x(t+dt) ≈ ~x(t) + ~̇x(t)dt. The linear approximation to the position at time t+dt

is determined in terms of the velocity vector ~v ≡ ~̇x at time t. If we know all the velocities at
each point, we can build up the full trajectory as ~x(t) =

∫ t
dt′~v(t′).

In flat space, R3, velocities of particles are again vectors in R3. When learning classical
mechanics, you do not normally distinguish between the two copies of R3 that appear. Intuitively,
it is clear that at each point in R3 we can put the origin of another R3 consisting of all possible
velocity vectors of particle trajectories passing through that point. Each such space of velocity
vectors is however the same (isomorphic) to the original position space R3.

Now instead of flat space, let’s think about the simplest curved manifold to visualise, namely
the sphere S2. Trajectories on the sphere, in terms of the coordinates of an R3 in which the sphere
can be embedded, correspond to ~x(t) such that ~x(t) ·~x(t) = 1. Differentiating this condition tells
us that ~x(t) · ~̇x(t) = 0. The velocity of a particle on a sphere is at each point on its trajectory
orthogonal to its position, in the embedding R3. The possible velocities of particle trajectories
through each point on the sphere therefore lie in an orthogonal “tangent plane” touching the
sphere at this point. The position space being S2, a two-dimensional manifold, each space of
velocity vectors is then a copy of R2. In this case, the two spaces are not isomorphic, though
they do have the same dimension.

In general, rather than speak of “velocity” vectors, we should think of curves through a
manifold, and tangent vectors to these curves. Then at each point p in the manifold M , we
can associate an n-dimensional vector space of all possible tangent vectors. This is called the
tangent space to M at p, denoted TpM , with TpM ∼= Rn. This is the description we will now
make precise.
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Functions and curves

A function on a manifold is a map f : M → R, and is smooth if and only if for any chart
(U, φ) the map F ≡ f ◦ φ−1 : φ(U)→ R is smooth.

The set of all smooth functions on M is denoted by C∞(M).

Smooth functions

Note that we have introduced some extra notation here to distinguish between the function
f on the manifold itself, and the composition of the function with a choice of coordinates, F . If
p ∈M has coordinates x in some chart, then we have f(p) = F (x) ∈ R.

Conversely, a curve through the manifold can be viewed as a map from the real numbers to
the manifold.

A curve γ on a manifold M is a smooth function γ : I →M where I is an open interval in
R. This means that φ ◦ γ is a smooth map from I to φ(U) ⊂ Rn for all charts (U, φ).

Curves

Tangent vectors

Given a function f : M → R and a curve γ : I → M , then f ◦ γ : I → R. Let’s parametrise the
interval, and hence the curve γ, by a parameter t ∈ I. Then the rate of change of f along the
curve γ is given by:

d

dt
[(f ◦ γ)(t)] =

d

dt
f(γ(t)) . (3.4)

At a point p in M , we can consider all possible curves through p. Then for all possible functions
f on M we can compute how they change along these curves. Intuitively, this captures the
changes in f in all directions passing through p. These rates of change can be expressed in terms
of the tangent vector at p. An illustration of these ideas is to be found in figure 11.

Given a curve γ : I →M with γ(0) = p ∈M , then the tangent vector to γ at p is the linear
map Xp : C∞(M)→ R such that

Xp(f) =

[
d

dt
(f(γ(t)))

]
t=0

. (3.5)

Tangent vector

This definition is such that the tangent vector, for any functions f and g:

• is linear: Xp(αf + βg) = αXp(f) + βXp(g), where α, β are constants,

• obeys the Leibniz property (product rule), Xp(fg) = Xp(f)g(p) + f(p)Xp(g).

A more useful explicit expression for the tangent vector Xp acting on f in a chart φ, which
we will use below, is the following. We introduce a chart in the neighbourhood of p, which we
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write as φ = (x1, . . . , xn). In such a chart, a function f is described by F = f ◦ φ−1, by which
we mean f(p) = F (x(p)). We can write f ◦ γ = F ◦ φ ◦ γ, and apply the chain rule to the maps
F : Rn → R and φ ◦ γ : R→ Rn, in order to write (i.e. using f(γ(t)) = F (x(γ(t))):

Xp(f) =

(
∂F (x)

∂xµ

)
φ(p)

(
dxµ(γ(t))

dt

)
t=0

. (3.6)

Observe that the first derivative only involves F as a function of the coordinates in the chart,
while the second involves the parametrisation of the curve γ in the same chart. Note that by(
∂F (x)
∂xµ

)
φ(p)

we mean
(
∂F (x)
∂xµ

)
x=x(p)

i.e. we evaluate this quantity in the chart (U, φ) at the point

φ(p) which has coordinates xµ(p).

U γ(t)

p

Xp

I 3 t

γ

Rn
φ(U)

φ

R

F = f ◦ φ−1

f

M

Figure 11: Viewing a tangent vector in a chart

The set of all tangent vectors at p forms an n-dimensional vector space, called the tangent
space at p, denoted TpM .

Tangent space

Verifying that the tangent space is a vector space: To confirm that the set of all tangent
vectors at p is indeed a valid definition of an n-dimensional vector space, we need to check that
the vector space axioms hold, and that we can construct an n-dimensional basis.

For the former, consider γ1, γ2 two curves with γ1(0) = γ2(0) = p, and corresponding tangent
vectors Xp, Yp. We define addition and multiplication by constants α, β in the obvious way:

(αXp + βYp)(f) = αXp(f) + βYp(f) . (3.7)

To confirm that this combination meets our definition of a tangent vector, let φ = (x1, . . . , xn)
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be a chart, and define a curve ν(t) with ν(0) = p via:

ν(t) = φ−1
(
α(φ(γ1(t))− φ(p)) + β(φ(γ2(t))− φ(p)) + φ(p)

)
. (3.8)

We can calculate the corresponding tangent vector at p using (3.6):

Zp(f) ≡
(
∂F (x)

∂xµ

)
φ(p)

(
d

dt

[
α(xµ(γ1(t))− xµ(p)) + β(xµ(γ2(t))− xµ(p)) + xµ(p)

])
t=0

=

(
∂F (x)

∂xµ

)
φ(p)

(
α
d

dt
xµ(γ1(t)) + β

d

dt
xµ(γ2(t))

)
t=0

= αXp(f) + βYp(f)

= (αXp + βYp)(f) .

(3.9)

This true for all smooth functions f , and so we conclude that the definition (3.7) for the usual
addition and multiplication by constants of vectors indeed produces another tangent vector at
p. We define the zero vector to be given by the tangent vector to the curve γ(t) = p for all t.

Next, we need to show that the tangent space is n-dimensional. We will do this by construct-
ing a basis.

Using the same chart φ = (x1, . . . , xn), define the following n curves:

γ(µ)(t) = φ−1
(
x1(p), . . . , xµ−1(p), xµ(p) + t, xµ+1(p), . . . , xn(p)

)
, (3.10)

i.e. we have xν(γ(µ)(t)) = (x1(p), . . . , xµ−1(p), xµ(p)+ t, xµ+1(p), . . . , xn(p)). Denote the tangent
vectors to these curves (temporarily) by (e(µ))p. We have from (3.6):

(e(µ))p(f) =

(
∂F

∂xν

)
φ(p)

(
dxν(γ(µ)(t))

dt

)
t=0

=

(
∂F

∂xµ

)
φ(p)

. (3.11)

Thus these curves provide tangent vectors which in this chart are just the partial derivatives
with respect to the coordinate functions. Let us write these as(

∂

∂xµ

)
p

, (3.12)

and by definition we have (
∂

∂xµ

)
p

f =

(
∂F

∂xµ

)
φ(p)

. (3.13)

The subscript p here on the left-hand side means that we are differentiating functions defined
at p in the chart xµ around p, and evaluating these derivatives at p. The subscript φ(p) on the
right-hand side corresponds to the fact that all quantities on the right-hand side are defined in
the chart with coordinates xµ themselves, and evaluated at the point φ(p) i.e. at the point xµ(p).

The n tangent vectors (3.12) form a basis for the tangent space. This is the coordinate basis.
To confirm they are indeed a basis, we have to check that they are linearly independent and span
the tangent space.

For linear independence, suppose first that there exist constants αµ such that αµ(∂/∂xµ)p =

0. Then αµ(∂F (x)/∂xµ)φ(p) = 0 for all functions F = f ◦ φ−1. However if we take F = xν for
each ν, we get αν = 0 for all ν. Thus we cannot have a linear combination of the (3.12) equal to
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zero, and they are therefore linearly independent.
To check that an arbitrary tangent vector can be expressed in this basis, we note that for

any function f

Xp(f) =

(
dxµ(γ(t))

dt

)
t=0

(
∂

∂xµ

)
p

(f)⇒ Xp =

(
dxµ(γ(t))

dt

)
t=0

(
∂

∂xµ

)
p

. (3.14)

Therefore we have shown that the tangent space is a vector space, and found an n-dimensional
basis.

Changes of basis

We constructed the coordinate basis (∂/∂xµ)p above. A general basis need not be based on
coordinates. Suppose {e(µ) : µ = 1, . . . , n} is an arbitrary basis for TpM . Then Xp ∈ TpM can
be written as Xp = Xµ

p e(µ). We call the Xµ
p the components of the tangent vector Xp in the

basis e(µ).
A change of basis can be implemented using some arbitrary invertible n× n matrix Aµν (an

element of the matrix group GL(n)), with

e(µ) 7→ e′(µ) = (A−1)νµe(ν) , Xµ
p 7→ X ′µp = AµνX

ν
p . (3.15)

This means that the tangent vector itself is invariant, Xp = Xµ
p e(µ) = X ′µp e′(µ).

A special case is provided by a change of coordinate basis. Let φ = (x1, . . . , xn) and φ′ =

(x′1, . . . , x′n) be two charts both defined in a neighbourhood of p. Then, starting with the basis
vector (3.12) of the coordinate basis associated to the chart φ we can use the chain rule to
calculate as follows:

(
∂

∂xµ

)
p

(f) =

 ∂

∂xµ
(f ◦ φ−1)︸ ︷︷ ︸

F


φ(p)

=

 ∂

∂xµ
(f ◦ φ′−1)︸ ︷︷ ︸

F ′

◦ (φ′ ◦ φ−1)︸ ︷︷ ︸
x′µ(x)


φ(p)

=

(
∂(F ′(x′(x)))

∂xµ

)
φ(p)

=

(
∂x′ν

∂xµ

)
φ(p)

(
∂F ′(x′)

∂x′ν

)
φ′(p)

=

(
∂x′ν

∂xµ

)
φ(p)

(
∂

∂x′ν

)
p

(f) .

(3.16)

Therefore for a change of coordinate basis we have:(
∂

∂xµ

)
p

=

(
∂x′ν

∂xµ

)
φ(p)

(
∂

∂x′ν

)
p

, X ′µp =

(
∂x′µ

∂xν

)
φ(p)

Xν
p . (3.17)

Again, notice the (irritating) subscripts. This is because we have so far only defined vectors
at a particular point p. Here xµ and x′µ are two different sets of coordinates available in the
neighbourhood of the point p, with the coordinate of the point p itself being φ(p) ≡ xµp or
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φ′(p) ≡ x′µp . Also notice that we have the identity(
∂x′µ

∂xν

)
φ(p)

(
∂xν

∂x′ρ

)
φ′(p)

= δµρ (3.18)

following from the chain rule.

Covectors

The idea now is to import everything we know from linear algebra. Given the tangent space
TpM at p, we can define the cotangent space T ∗pM which is the dual vector space. Elements of
T ∗pM are called covectors, and are linear maps from TpM to R. Extending to multilinear maps
from products of TpM and T ∗pM to R, we can define tensors.

The dual space of the tangent space TpM at p ∈ M is called the cotangent space, denoted
by T ∗pM , and consists of all linear maps from TpM to R. Elements of the cotangent space
are called covectors. Hence if ωp ∈ T ∗pM , ωp : TpM → R is defined as a linear map
Xp 7→ ωp(Xp) ∈ R.

Covectors

Given a basis {e(µ)} of TpM , let’s denote the dual basis of T ∗pM as {θ(µ)}, with θ(µ)(e(ν)) = δµν .
Then if Xp = Xµ

p e(µ) ∈ TpM , we have θ(µ)(Xp) = Xµ
p , while using linearity

ωp(Xp) = (ωp)µθ
(µ)(Xν

p e(ν)) = (ωp)µX
ν
p θ

(µ)(e(ν)) = (ωp)µX
µ
p . (3.19)

An example of a covector is the gradient of a function.

The gradient (df)p of the smooth function f : M → R at the point p is the covector
(df)p ∈ T ∗pM defined by

(df)p(Xp) = Xp(f) , ∀Xp ∈ TpM . (3.20)

Gradient

To find the basis dual to the coordinate basis for vectors, let’s consider the special case where
we choose the function f to correspond to one of the components of the coordinate map φ, i.e.
we take f = xµ.3 This is obviously a map from M to R. By the definition of the gradient,

(dxµ)p

(
∂

∂xν

)
p

=

(
∂

∂xν

)
p

xµ =

(
∂xµ

∂xν

)
φ(p)

= δµν . (3.21)

Hence, the dual basis consists of the gradients (dxµ)p. In this basis, the components of the
gradient of an arbitrary smooth function f can be worked out by applying df to the coordinate

3That is, the function f(p) = xµ(p) gives the µ component of the coordinates defined by (xµ) = φ(p). We then
have F (x) = xµ(φ−1(x)) = xµ(p) = xµ.
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basis at p:

((df)p)µ = (df)p

(
∂

∂xµ

)
p

=

(
∂

∂xµ

)
p

(f) =

(
∂F

∂xµ

)
φ(p)

. (3.22)

This is just the statement that df = ∂µfdx
µ by the chain rule. There is an extra layer of

convolution here as we are making a distinction between objects defined on the manifold M and
how they appear in the chart φ.

Under a change of basis, the pairing between the vector basis e(µ) at p and its dual basis θ(µ)

must be preserved, so that the value of the number ωp(Xp) is invariant under choice of basis.
This means that

e(µ) 7→ e′(µ) = (A−1)νµe(ν) , Xµ
p 7→ X ′µp = AµνX

ν
p . (3.23)

and
θ(µ) 7→ θ′(µ) = Aµνθ

(ν) , (ωp)µ 7→ (ωp)
′
µ = (A−1)νµ(ωp)ν . (3.24)

For a change of coordinate basis,

(dxµ)p 7→ (dx′µ)p =

(
∂x′µ

∂xν

)
φ(p)

(dxν)p , (ωp)µ 7→ (ω′p)µ =

(
∂xν

∂x′µ

)
φ′(p)

(ωp)ν . (3.25)

Tensors

Just as vectors are linear maps from functions on M to R, and covectors are linear maps from
vectors on M to R, then a tensor is a linear map from (products of) vectors and covectors to R.

An (r, s) tensor Tp at p ∈M , or tensor of type (r, s) at p ∈M , is a multilinear map from r

copies of the cotangent space at p and s copies of the tangent space at p to R:

Tp : T ∗pM × · · · × T ∗pM︸ ︷︷ ︸
r

×TpM × · · · × TpM︸ ︷︷ ︸
s

→ R . (3.26)

Tensors

Thus, given r covectors ω1, . . . , ωr ∈ T ∗pM and s vectors X1, . . . , Xs ∈ TpM (we have dropped
the subscripts p from these quantities to avoid unnecessary clutter: at the moment everything is
living in spaces at the point p), we have a map

Tp : ω1, . . . , ωr, X1, . . . , Xs 7→ Tp(ω1, . . . , ωr, X1, . . . , Xs) ∈ R (3.27)

which is linear in each entry. In an arbitrary basis {e(µ)} for TpM and corresponding dual basis
{θ(µ)} for T ∗pM the components of Tp are:

T µ1...µrp ν1...νs ≡ Tp(θ(µ1), . . . , θ(µr), e(ν1), . . . , e(νs)) , (3.28)

such that
Tp(ω1, . . . , ωr, X1, . . . , Xs) = T µ1...µrp ν1...νsω1µ1 . . . ωrµrX

ν1
1 . . . Xνs

s . (3.29)

This should be invariant under choice of basis, hence under an arbitrary change of basis of the
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tangent space at p, θ′(µ) = Aµνθ
(ν), e′(µ) = (A−1)νµe(ν) we have

T ′µ1...µrp ν1...νs ≡ Aµ1ρ1 . . . Aµrρr(A−1)σ1ν1 . . . (A
−1)σsνsT ρ1...ρrp σ1...σs . (3.30)

A special case is the change of coordinate basis:

T ′µ1...µrp ν1...νs ≡
(
∂x′µ1

∂xρ1

)
φ(p)

. . .

(
∂x′µr

∂xρr

)
φ(p)

(
∂xσ1

∂x′ν1

)
φ′(p)

. . .

(
∂xσs

∂x′νs

)
φ′(p)

T ρ1...ρrp σ1...σs .

(3.31)
There are various operations one can perform on tensors to produce new tensors, which we

will next discuss.

Tensor manipulations

Given two tensors, we can take a product.

For Sp an (m,n) tensor at p and Tp a (r, s) tensor at p, the product Sp⊗Tp is an (m+r, n+s)

tensor at p given by:

(Sp ⊗ Tp)(ω1, . . . , ωm+r, X1, . . . Xn+s)

= Sp(ω1, . . . , ωm, X1, . . . , Xn)Tp(ωm+1, . . . , ωm+r, Xn+1, . . . , Xn+s) ,
(3.32)

for arbitrary covectors ω1, . . . , ωm+r ∈ T ∗pM and vectors X1, . . . , Xn+s ∈ TpM .

Outer product

Then we can expand a tensor in a vector and dual covector basis p as:

Tp = T µ1...µrp ν1...νse(µ1) ⊗ · · · ⊗ e(µr) ⊗ θ
(ν1) ⊗ · · · ⊗ θ(νs) . (3.33)

For example, in a coordinate basis

Tp = T µ1...µrp ν1...νs

(
∂

∂xµ1

)
p

⊗ · · · ⊗
(

∂

∂xµr

)
p

⊗ (dxν1)p ⊗ · · · ⊗ (dxνs)p . (3.34)

We can thus regard the tensor as being an element of a tensor product vector space:

Tp ∈ TpM ⊗ · · · ⊗ TpM︸ ︷︷ ︸
r

⊗T ∗pM ⊗ · · · ⊗ T ∗pM︸ ︷︷ ︸
s

. (3.35)

When we gave a preliminary definition of tensors in the context of special relativity, in section
1.3, we mentioned a number of other manipulations one can perform. These can all be defined
for tensors at a point in a general manifold. Let us give slightly more formal definitions here.
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For Tp a (r, s) tensor at p, then we can produce an (r−1, s−1) tensor by contraction. There
are rs possible such contractions, obtained by inserting a single basis covector θ(µ) and a
single basis vector e(µ) in one of the “slots” of the tensor Tp, producing:

(Tp)′(ω1, . . . , ωr−1, X1, . . . Xs−1)

= Tp(ω1, . . . , ωi−1, θ
(µ), ωi, . . . , ωr−1, X1, . . . , Xj−1, e(µ), Xj , . . . , Xs−1) ,

(3.36)

for arbitrary covectors ω1, . . . , ωr−1 and vectors X1, . . . , Xs−1. Here we have contracted in
the ith covector slot and jth vector slot.

Contraction

Show that the definition of contraction is basis independent.

Exercise 3.1 (Contraction)

In components, the above contraction is written as before as:

(T ′p )µ1...µr−1
ν1...νs−1 = (Tp)µ1...µi−1µµi...µr−1

ν1...νj−1µνj ...νs−1 . (3.37)

Next, we can define symmetrisations/antisymmetrisations of tensors. For example, we could
define the symmetrisation or antisymmetrisation S±(Tp) of a (0, 2) tensor by

S±(Tp)(X1, X2) =
1

2
(Tp(X1, X2)± Tp(X2, X1)) (3.38)

where X1, X2 are arbitrary vectors at p. There are obvious generalisations to higher rank tensors
by appropriately permuting the vectors and covectors that they act on. Similarly, we can define
a tensor to be totally symmetric or totally antisymmetric if it is equal to its symmetrisation (on
all arguments) or antisymmetrisation (on all arguments). In components, this corresponds to
the definitions we wrote down in section 1.3. We will not repeat these here.

3.3 Vector and tensor fields

We will now liberate ourselves from seeing only a single point in the manifold, and define notions
of vector and tensor fields, which will be defined on (possibly only subsets of) the manifold as a
whole, and which will give at each point a particular vector or tensor defined using the tangent
and covector spaces at that point.
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Vector fields

A vector field is a map X taking any point p ∈ M to a tangent vector Xp in the tangent
space TpM at p.

For any function f : M → R, given a vector field X we can define a new function X(f) :

M → R by X(f)(p) = Xp(f). The vector field is smooth if this map is a smooth function
for any smooth f .

Vector field

(This definition assumes that the vector field can be defined on the whole of the manifold. In
practice, we may encounter vector fields which are only defined in some subset of the manifold,
i.e. not in all coordinate charts. This is not an important distinction for this course.)

In a chart with coordinates xµ, we define the vector fields ∂/∂xµ by the assignation ∂/∂xµ :

p 7→ (∂/∂xµ)p, so that (
∂

∂xµ

)
(f) : p 7→

(
∂F

∂xµ

)
φ(p)

(3.39)

where recall F ≡ f ◦ φ−1. This is smooth because f is smooth and hence derivatives of F are
smooth. These “coordinate basis vector fields” correspond directly to the partial derivatives with
respect to the coordinates in the chart.

We expand an arbitrary vector field in this coordinate chart as:

X = Xµ

(
∂

∂xµ

)
(3.40)

and X is smooth if and only if the components Xµ are smooth functions.
Under a change of coordinates, the transformation rule for vector fields is exactly that of

vectors, (3.17), but with the subscripts removed:(
∂

∂xµ

)
=

(
∂x′ν

∂xµ

)(
∂

∂x′ν

)
, X ′µ =

(
∂x′µ

∂xν

)
Xν . (3.41)

By definition, a vector field obeys the linearity and Leibniz properties, in particular X(fg) =

X(f)g + fX(g) for functions f, g.
The coordinate basis vector fields provide at each point in a chart a set of basis vectors for

the tangent space at that point. In general, a set of n vector fields which are linearly independent
at each point in the chart provide a (generally non-coordinate) basis for the tangent space at
each point. For instance, for the sphere S2 in the chart with coordinates (θ, φ), the coordinate
basis is

∂

∂θ
,

∂

∂φ
, (3.42)

while an equally good basis (recalling that θ ∈ (0, π)) is

∂

∂θ
,

1

sin θ

∂

∂φ
(3.43)

(we will see in the next section that this is an orthonormal basis when measured in the usual
metric on a sphere). In general, it is not guaranteed to be able to find a set of vector fields which
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provide at all points on the whole manifold a basis for the tangent spaces. Indeed, for the sphere
S2 it is famously impossible to find a vector field which is nowhere vanishing (this is known as
the hairy ball theorem), which means in turn that it is impossible to find two vector fields which
are everywhere linearly independent, which is what we would need to get a tangent space basis
at each point.

If we have some vector fields, we can test whether or not they are the vector fields coming
from some coordinate basis using the following idea. Given two vector fields, X and Y , we can
construct a new vector field as follows:

The commutator of two vector fields X and Y is the vector field [X,Y ] defined by

[X,Y ](f) = X(Y (f))− Y (X(f)) , (3.44)

for arbitrary smooth function f .

Commutator

In a coordinate chart, we have

[X,Y ](f) = Xµ ∂

∂xµ

(
Y ν ∂F

∂xν

)
− (X ↔ Y )

= XµY ν ∂2F

∂xµ∂xν
+Xµ∂Y

ν

∂xµ
∂F

∂xν
− (X ↔ Y )

=

(
Xµ∂Y

ν

∂xµ
− Y µ∂X

ν

∂xµ

)
∂F

∂xν
,

(3.45)

from which we see that [X,Y ] = [X,Y ]µ(∂/∂xµ) with

[X,Y ]µ =

(
Xν ∂Y

µ

∂xν
− Y ν ∂X

µ

∂xν

)
. (3.46)

For the basis vector fields, we have [
∂

∂xµ
,
∂

∂xν

]
= 0 . (3.47)

Conversely, if X1, . . . Xm (m ≤ n) are commuting vector fields that are linearly independent
everywhere, then in a neighbourhood of any point p one can introduce coordinates (x̃1, . . . , x̃n)

such that Xi = ∂/∂x̃i for i = 1, . . . ,m. This means that if one is given a basis of vector fields, to
check whether or not they are a coordinate basis, one just checks the commutators. For example,
for the sphere we have for the basis of vector fields in (3.43)[

∂

∂θ
,

1

sin θ

∂

∂φ

]
= − cos θ

sin2 θ

∂

∂φ
(3.48)

which is not identically zero.
To see how this works, we need to find a way to associate a curve to a vector field.
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Integral curves

Given X a vector field on M and p ∈ M , then an integral curve of X through p is a curve
through p whose tangent vector at every point is given by the vector field X at that point.

In a coordinate chart, the integral curve γ(t) is specified by the first order ODE

dxµ(γ(t))

dt
= Xµ(x(γ(t))) , xµ(0) = xµp , (3.49)

for which a unique solution always exists locally.

Integral curve

Suppose we have two vector fields, X and Y . Given a point p with coordinates xµp , we can
consider the integral curves of both X and Y through that point. Let us use t as the parameter
on the integral curves of X and s as the parameter on the integral curves of Y . Then starting
at p we can define the integral curves of X and Y passing through points in the neighbourhood
of p as shown in figure 12.

Intuitively, we want to see if we can use these integral curves as “coordinate axes” to label
the points near p. That is, we would like to say a point has coordinates (t, s) if it is located
at the point found by following an integral curve of X a particular parameter distance t from
p, and then following an integral curve of Y a parameter distance s. However, for this to make
sense, this point better be the same as the one found by first following an integral curve of Y
a parameter distance s from p, and then switching to an integral curve of X for a parameter
distance t. In this case, it is natural to define the coordinates of this point to be (t, s), i.e. we
can change to a coordinate basis in which X = ∂

∂t and Y = ∂
∂s .

p t

t

t

t

s s s s

Figure 12: Integral curves in the neighbourhood of a point p.

More precisely (see figure 13), say we follow the integral curve of X an infinitesimal parameter
distance δt from p, to a point q, and then follow an integral curve of Y a distance δs from q, so
as to reach a point we can call p′. Alternatively, we can start at p, follow an integral curve of Y
a parameter distance δs, to a point r, and then follow an integral curve of X a distance δt from
r, in order to reach a point p′′. The claim is that if X and Y commute, then p′ and p′′ are the
same.

To show this, let σµX(t, x) denote the (coordinates of the) integral curve of X such that
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p

p′′

t

t

r

s

q

p′

s

Figure 13: Following integral curves, one way, then the other: first from p to q to p′, then from
p to r to p′′.

σµX(t = 0, x) = xµ (and similarly for Y ). This obeys by definition

d

dt
σµX(t, x) = Xµ(σX(t, x)) (3.50)

so to first order
σµX(0 + δt, x) ≈ xµ + δtXµ(x) . (3.51)

The point p′ corresponds to

σµY (δs, σX(δt, xp)) ≈ σµX(δt, xp) + δsY µ(σX(δt, xp))

≈ xµp + δtXµ(xp) + δsY µ(xp + δtX)

≈ xµp + δtXµ(xp) + δsY µ(xp) + δsδtXν∂νY
µ(xp) .

(3.52)

Similarly, we have that p′′ has coordinates

σµX(δt, σY (δs, xp)) ≈ xµp + δtXµ(xp) + δsY µ(xp) + δsδtY ν∂νX
µ(xp) . (3.53)

The difference between the coordinates of p′ and p′′ is hence

σµY (δs, σX(δt, xp))− σµX(δt, σY (δs, xp)) ≈ δsδt[X,Y ]µ (3.54)

This means that our attempted coordinates for the points p′ and p′′ will not agree unless the
vector fields X and Y commute.

1. Give an example of two linearly independent, nowhere-vanishing vector fields in R2

such that their commutator does not vanish. At each point, these provide a basis for
the tangent space at that point, however it is not the coordinate basis.

2. Construct and sketch the integral curves for the vector fields you have chosen.

Exercise 3.2 (Vector fields)

42



Covector and tensor fields

A covector field is a map ω assigning to each point p ∈M a covector ωp ∈ T ∗pM .

Then ω(X) defines a function from M to R for any vector field X, given by ω(X)(p) =

ωp(Xp) using the map ωp : TpM → R at each p. The covector field will be smooth if ω(X)

defines a smooth function from M to R, for any smooth vector field X.

Covector field

In this language, we can define the gradient as a covector field obeying

df(X) = X(f) , (3.55)

for arbitrary vector fields X. To find the components of the gradient in a coordinate basis, let’s
evaluate df acting on the coordinate basis vector fields:

df

(
∂

∂xµ

)
= ∂µf . (3.56)

We can further take f = xν , as each coordinate xν itself in a chart can be viewed as a function
from the manifold to R. Then

dxν
(

∂

∂xµ

)
= ∂µx

ν = δνµ . (3.57)

Therefore we see that dxµ define the basis of covector fields dual to the coordinate basis of vector
fields. We can expand:

df = ∂µfdx
µ , (3.58)

and more generally for a covector field ω,

ω = ωµdx
µ . (3.59)

Under a change of coordinate basis, we have

dxµ =

(
∂xµ

∂x′ν

)
dx′ν , ω′µ =

(
∂xν

∂x′µ

)
ων . (3.60)

A tensor field (of type (r, s)) is a map T assigning to each point p ∈M a tensor Tp (of type
(r, s)).

Then a tensor field defines a function fromM to R given any set of r covector fields and s vec-
tor fields, with T (ω1, . . . , ωr, X1, . . . , Xs)(p) = Tp((ω1)p, . . . , (ωr)p, (X1)p, . . . , (Xs)p). The
tensor field will be smooth if T (ω1, . . . , ωr, X1, . . . , Xs) defines a smooth function from M

to R, for any r smooth covector fields ω1, . . . , ωr and any s smooth vector fields X1, . . . , Xs.

Tensor field
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In a chart, tensor fields admit the natural expansion in terms of the coordinate basis

T = T µ1...µrν1...νs
∂

∂xµ1
⊗ · · · ⊗ ∂

∂xµr
⊗ dxν1 ⊗ · · · ⊗ dxνs , (3.61)

Note that T is a smooth tensor if the components T µ1...µrν1...νs in a coordinate basis are smooth
functions. Under a change of coordinate basis

T ′µ1...µrν1...νs ≡
∂x′µ1

∂xρ1
. . .

∂x′µr

∂xρr
∂xσ1

∂x′ν1
. . .

∂xσs

∂x′νs
T ρ1...ρrσ1...σs . (3.62)

From now on, we will often write simply vector, covector or tensor instead of vector field,
covector field or tensor field. It should be obvious from context whether or not we really
mean a tensor at a particular point or not.

Imprecision of language

Differential forms

An important set of tensors are differential forms, which can be defined on any manifold with-
out introducing any extra structure, and then differentiated and integrated. Let’s very briefly
introduce these important objects.

A differential form is a totally antisymmetric (0, p) tensor field, also called simply a p-form.

Differential form

By definition, functions are 0-forms, and covectors are 1-forms. More generally, if ω is a
p-form, we can write it in a coordinate basis as

ω = ωµ1...µpdx
µ1 ⊗ · · · ⊗ dxµp , ωµ1...µp = ω[µ1...µp] . (3.63)

Given two differential forms, we can use an antisymmetrisation of the tensor product to define a
new differential form.

Given ω a p-form and η a q-form, the wedge product ω ∧ η is a (p + q)-form defined in
components by

(ω ∧ η)µ1...µp+q =
(p+ q)!

p!q!
ω[µ1...µpηµp+1...µp+q ] . (3.64)

This obeys
ω ∧ η = (−1)pqη ∧ ω . (3.65)

Wedge product

A basis for p-forms is provided by the wedge products of the basis 1-forms; thus

ω =
1

p!
ωµ1...µpdx

µ1 ∧ · · · ∧ dxµp . (3.66)
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This is just the explicit antisymmetrisation of equation (3.63), note for instance that

dxµ ∧ dxν ≡ dxµ ⊗ dxν − dxν ⊗ dxµ . (3.67)

We can also differentiate a p-form to get a (p+ 1)-form. This extends the notion of the gradient
of a function, i.e. a 0-form, which we saw produced a covector i.e. a 1-form.

The exterior derivative d takes p-forms to (p + 1)-forms, and is nilpotent : d2 = 0. For ω a
p-form, dω is the (p+ 1)-form with components

(dω)µ1...µp+1 = (p+ 1)∂[µ1ωµ2...µp+1] . (3.68)

Exterior derivative

The simplest example is indeed the gradient of a function, (df)µ = ∂µf . The most important
physical example is electromagnetism. We can view the electromagnetic gauge potential as a 1-
form, A = Aµdx

µ. Then the field strength is a 2-form, F = dA, with components Fµν = 2∂[µAν].
Because d squares to zero, two of Maxwell’s equations follow as an identity, dF = 0. To define
the other two Maxwell equations however we do need to introduce extra structure, in the form
of a metric on the manifold. As it happens (though we will not have much else to say about
differential forms in this course), this is what we are going to do next.

Verify explicitly from the above definitions that d(dω) = 0, for ω a p-form, and that ω∧η =

(−1)pqη ∧ ω for ω a p-form and η a q-form.

Exercise 3.3 (Fun with forms)
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Stripping away the precision, what are the key points to take away? On a manifold, we do
not in general have access to coordinates xµ which cover the whole space (unlike in Rn or
Minkowski spacetime). We have to use multiple sets of overlapping coordinate charts. So,
coordinates are “local”. Changes of coordinates xµ 7→ x′µ(x) give maps from Rn to Rn. In
particular, we can differentiate x′ with respect to xµ.

A function on the manifold boils down to a map f(x) from Rn to R in terms of local
coordinates x. This too can be differentiated: the natural derivative operators correspond
to vectors on the curved manifold. At a particular point with coordinates x, a general vector
can be expanded as X = Xµ∂µ and X(f) = Xµ∂µf gives a directional derivative of the
function. A change of coordinates requires Xµ 7→ X ′µ = ∂x′µ

∂xν X
ν . Alongside functions and

vectors, we have covectors. A particularly important covector is the gradient df = ∂µfdx
µ,

and the one-forms dxµ give a basis for covectors dual to the coordinate basis ∂µ of vectors.
A general one-form is expanded ω = ωµdx

µ, such that given a covector ω and vector X at
the point x, ωµ(x)Xµ(x) is a number. A change of coordinates requires ωµ 7→ ω′µ = ∂xν

∂x′µων .
Building on vectors and covectors, there is a notion of tensors, characterised by a set of
components Tµ1...µrν1...νs transforming under changes of coordinates in the obvious way.

All of this is formalised by thinking of there being at each point p of the manifold a tangent
space TpM , an n-dimensional vector space in which we place all vectors defined at p; the
dual vector space is the cotangent space T ∗pM and is home to the covectors defined at p.
Vector fields associate to each point p a vector in TpM , and in a coordinate chart correspond
to what we have intermittently being referring to just as the vector Xµ(x). (More properly,
we can lump together all tangent spaces on M into a “tangent bundle”, and then general
vector fields should be viewed as coming from this bundle.)

A summary
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4 Metrics

4.1 The metric tensor

The raison d’être of a metric is to allow us to measure the norms of tangent vectors. So a metric
is a tensor that takes two vectors and delivers a real number. The natural definition is as follows:

A metric tensor g at p ∈M is a symmetric (0, 2) tensor which is non-degenerate. That is,

• g(X,Y ) = g(Y,X) for all X,Y ∈ TpM ,

• g(X,Y ) = 0 for all Y ∈ TpM if and only if X = 0.

Metric

The metric tensor is symmetric, and therefore an orthonormal choice of basis for TpM exists
in which the metric tensor is represented in components by a diagonal matrix with all diagonal
entries equal to ±1 (as it is non-degenerate).

A metric has signature (t, s) if with respect to an orthonormal basis it has t negative and s
positive eigenvalues. By Sylvester’s law of inertia, this is basis independent.

Signature

For an n-dimensional manifold, a Riemannian metric has signature (0, n) while a Lorentzian
metric has signature (1, n− 1).

Riemannian and Lorentzian signature

A Riemannian/Lorentzian manifold (M, g) is an n-dimensional manifold with a metric tensor
field of Riemannian/Lorentzian signature. (A Lorentzian manifold is also called pseudo-
Riemannian.)

Riemannian and Lorentzian manifold

From now on, we will just say “metric” when we mean a “metric tensor field” on a manifold.

The overall sign of a metric is a matter of convention. The “East Coast” convention is that
Lorentzian signature is “mostly plus”. The “West Coast” convention is that Lorentzian signa-
ture is “mostly minus”, i.e. the four-dimensional Minkowski metric is ηµν = diag (+1,−1,−1,−1).
In these notes, we are using the mostly plus convention, which is obviously correct.

Signature conventions
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Properly speaking, we should write the metric as a tensor in a coordinate basis as

g = gµνdx
µ ⊗ dxν . (4.1)

However, in physics it is conventional to write the metric as a “line element”, namely:

ds2 = gµνdx
µdxν . (4.2)

This is not a mathematically precise expression, but it captures the intuition that a metric allows
us to measure the length of curves through the manifold, as we will discuss in section 4.2.

Using this notation, let’s write down some examples of metrics:

• The Euclidean metric on Rn is:

ds2 = (dx1)2 + · · ·+ (dxn)2 . (4.3)

This is valid everywhere on the manifold, and is obviously of Riemannian signature. The
coordinate basis of vector fields e(µ) = ∂/∂xµ is an orthonormal basis.

• The Minkowski metric on Rn is:

ds2 = −(dx0)2 + (dx1)2 + · · ·+ (dxn−1)2 . (4.4)

This is valid everywhere on the manifold, and is obviously of Lorentzian signature. The
coordinate basis of vector fields e(µ) = ∂/∂xµ is an orthonormal basis.

• The round metric on a sphere S2 in a chart with coordinates (θ, φ) is:

ds2 = dθ2 + sin2 θdφ2 . (4.5)

This is not invertible at θ = 0, but this is excluded from our coordinate chart by definition.
This is the metric in the coordinate basis, which admits (in this chart) the following basis
of vector fields:

e(θ) = ∂θ , e(φ) = ∂φ . (4.6)

This is not an orthonormal basis: gθθ ≡ g(e(θ), e(θ)) = 1, gφφ ≡ g(e(φ), e(φ)) = sin2 θ,
though the basis vectors are orthogonal gθφ ≡ g(e(θ), e(φ)) = 0. An orthonormal basis,
which is not a coordinate basis, is provided by

ê(θ) = ∂θ , ê(φ) =
1

sin θ
∂φ . (4.7)

(Note this is well-defined in this coordinate chart as θ ∈ (0, π).) In this basis, g(ê(θ), ê(θ)) =

1, g(ê(φ), ê(φ)) = 1. As expected, this has Riemannian signature.

On a Riemannian/Lorentzian manifold, we can always choose an orthonormal basis ê(µ) at a
point p such that the metric at p is equal to the Euclidean/Minkowski metric, g(ê(µ), ê(ν)) = ηµν ,
, g(ê(θ), ê(φ)) = 0. As is shown by the sphere example above, this will not in general be possible
at all points on the manifold simultaneously.
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4.2 Curves and geodesics

With a metric in hand, we can begin to investigate the structure of worldlines in a curved
manifold. We can say that a non-zero tangent vector X ∈ TpM is timelike, null or spacelike
if g(X,X) < 0, g(X,X) = 0 or g(X,X) > 0 respectively. It is very important to realise that
because the metric now varies over the manifold, the nature of what is timelike, null and spacelike
can vary from point to point. Put differently, the causal structure of a general Lorentzian manifold
is local.

If γ : I →M is a smooth curve, then we say that it is timelike, null or spacelike if its tangent
vector is everywhere timelike, null or spacelike. The proper distance along a spacelike curve γ(λ)

with tangent vector X is given by

s =

∫
I
dλ
√
g(X,X)|γ(λ) , (4.8)

while the proper time along a timelike curve is given by

τ =

∫
I
dλ
√
−g(X,X)|γ(λ) . (4.9)

In coordinates, the proper time τ can be related to the parameter λ via

dτ2 = −gµνdxµdxν ⇒
(
dτ

dλ

)2

= −gµν
dxµ

dλ

dxν

dλ
. (4.10)

In special relativity, we saw that straight paths in Minkowski spacetime maximised the proper
time of any timelike paths between two points. We can find the analogy of a “straight” path,
i.e. a path of maximum (or in principle minimum) proper time, by finding the Euler-Lagrange
equations which extremise the functional:

τ [γ] =

∫ 1

0
dλL(x(λ), ẋ(λ)) , L(x(λ), ẋ(λ)) =

√
−gµν(x(λ))ẋµẋν . (4.11)

describing the proper time on timelike curves between γ(0) = p and γ(1) = q, for p, q some
points in M . Here ẋµ ≡ dx

dλ . We cannot yet use proper time to parametrise these curves because
the value of τ at q is different for each path, and this does not lend itself to a valid extremisation
problem starting with the integral in (4.11). Varying with respect to x, we have the usual
equations

d

dλ

∂L

∂ẋµ
− ∂L

∂xµ
= 0 , (4.12)

implying
d

dλ

(
− 1

L
gµν ẋ

ν

)
+

1

2L
∂µgνρẋ

ν ẋρ = 0 . (4.13)

Now, from (4.10) we see that we have dτ = Ldλ or d
dλ = L d

dτ . At this point it is valid to view
our curve as being directly parametrised by proper time. The equation (4.13) becomes

d

dτ

(
gµν

dxν

dτ

)
− 1

2
∂µgνρ

dxν

dτ

dxρ

dτ
= 0 , (4.14)
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or after writing d
dτ gµν = ∂ρgµν

dxρ

dτ ,

d2xµ

dτ2
+ Γνρ

µdx
ν

dτ

dxρ

dτ
= 0 , (4.15)

where a certain mysterious combination of metric derivatives has appeared:

Γνρ
µ =

1

2
gµλ (∂νgρλ + ∂ρgνλ − ∂λgνρ) . (4.16)

These are not the components of a tensor! Note that they are symmetric in the lower indices,
Γνρ

µ = Γρν
µ. These are known as the Christoffel symbols, and they are going to become very

important in section 5, where we will discover that they are the components of the Levi-Civita
connection.

The equation (4.15) describes the curves on which massive particles travel in Lorentzian
manifolds. It is known as the geodesic equation, and we will discuss it in more generality in the
next section. In the special case of Minkowski space, we can take gµν = ηµν everywhere, so that
Γνρ

µ = 0, and we rediscover the equation d2xµ

dτ2
= 0 for a free particle.

Our basic manifold comes with local coordinates, xµ, in terms of which we choose to describe
functions, vectors, covectors and tensors. We introduce some extra structure by focusing on
manifolds which are equipped with a metric. A metric is a special tensor that allows us to
compute norms of vectors. In a chart, we denote the components of the metric as gµν(x),
and can treat it as a symmetric invertible matrix. The norm of a vector X is gµνXµXν .
Spacetime will be described by a manifold with a metric of Lorentzian signature: if we
choose an orthonormal basis for tangent vectors, the diagonal form of the metric will be
equal to the Minkowski metric, with one −1 and three +1s on the diagonal. This means
that we can talk of vectors, and curves via their tangent vectors, as being null, timelike and
spacelike, and define lightcones at each point.

We write the metric as ds2 = gµνdx
µdxν , and can integrate this infinitesimal line element

to compute the lengths of curves in the manifold. Geodesics are the special class of curves
which extremise the proper time (or distance) between two points, and the equation for a
geodesic was:

d2xµ

dτ2
+ Γνρ

µdx
ν

dτ

dxρ

dτ
= 0 , (4.17)

where the Christoffel symbols Γνρ
µ were:

Γνρ
µ =

1

2
gµλ (∂νgρλ + ∂ρgνλ − ∂λgνρ) . (4.18)

These are a) not components of a tensor, and b) very important!

A summary
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5 Covariant derivatives

By introducing coordinate charts, and maps between coordinate charts, we found a way to trans-
late the geometry of a curved manifold into a description based on coordinates, and functions,
defined on Rn. This allowed us to start doing calculus on manifolds. We have seen for instance
that the partial derivatives of a function defined a covector field. Under a change of coordinates,

(df)′µ =
∂f

∂x′µ
=
∂xν

∂x′µ
∂f

∂xν
=
∂xν

∂x′µ
(df)ν , (5.1)

which confirms that the gradient transforms as a covector should.
However, if we try to take partial derivatives of vectors, covectors and higher rank tensors,

we run into trouble. Consider the partial derivative of a vector. Under a change of coordinates,

∂V ′µ

∂x′ν
=
∂xρ

∂x′ν
∂

∂xρ

(
∂x′µ

∂xσ
V σ

)
=
∂xρ

∂x′ν
∂x′µ

∂xσ
∂V σ

∂xρ
+
∂xρ

∂x′ν
∂2x′µ

∂xσ∂xρ
V σ . (5.2)

The first term here is the usual tensorial transformation rule, but the presence of the second
term means that the partial derivative of a vector does not transform like a tensor.

Show as well that the partial derivative of a covector, ∂µων , does not transform as a tensor
would under a charge of coordinates xµ 7→ x′µ(x). Viewing the covector as a 1-form, show
that exterior derivative, (dω)µν = 2∂[µων] does transform as a tensor.

Exercise 5.1 (Problems with partial derivatives)

Another conceptual issue is that vectors and tensors really live in different vector spaces at
different points on the manifold. So how do we compare tensors at two (infinitesimally separated)
points? To resolve this and the problem of defining well-behaved derivatives, we introduce some
differential geometric technology.

5.1 Covariant derivatives

Differentiation of tensors on a manifold can be defined using a covariant derivative or connection,
which as the name suggests is a derivative operator which transforms covariantly, i.e. like a tensor,
and which can be used to connect and hence compare tensor at different points in the manifold.

Let’s start by thinking about functions f and vector fields Y . We know that the partial
derivative of a function is a covector, but the partial derivative of a vector is a disaster. The
goal then is to find a derivative operator, which we denote by ∇, which in coordinates replaces
the partial derivative. This will be our covariant derivative.

How should this derivative act? Given that the gradient df of a function f is a well-defined
covector, we suppose that acting on functions, we do not need to make any modifications, i.e.
we define the covariant derivative of a function f by

∇f ≡ df . (5.3)

There is nothing more to be said here; this is part of our definition. Now we turn to vectors. What
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we want is ∇Y to be a (1, 1) tensor (based on the fact that the partial derivative has one lower
index, or if you like by noting our definition on functions took a (0, 0) tensor to (0, 1) tensor).
Schematically, in a coordinate chart we will have ∇ = ∂ + Γ, where Γ denotes a non-tensorial
quantity (the connection components) which makes ∇ into a covariant operator. We would then
further like the covariant derivative to have the same properties as a partial derivative:

• linearity acting on sums Y + Z, ∇(Y + Z) = ∇(Y ) +∇(Z) ,

• the Leibniz rule when acting on products of Y with functions, ∇(fY ) = (∇f)Y + f∇Y .

Now, if ∇Y is a (1, 1) tensor then by acting on any covector field ω and vector field X we get a
function on the manifold, ∇Y (ω,X). Alternatively, we can view a (1, 1) tensor as allowing us to
define a map which takes a vector field and gives back another vector field, by “leaving out” the
covector ω from the argument. Therefore given the (1, 1) tensor we define a vector field called
∇XY by

∇XY ≡ ∇Y (·, X) , (5.4)

i.e. it is defined such that acting on an arbitrary covector ω, we have ∇XY (ω) = ∇Y (ω,X).
We call ∇XY the “covariant derivative of Y with respect to X”, and it must obey the linearity
property ∇fX+gZY = f∇XY + g∇ZY if ∇Y is indeed a tensor.

In effect, we are defining here two closely related geometric objects. The first, and most
natural to motivate, is the covariant derivative ∇Y which is a recipe for constructing a tensor
in a derivative-like fashion, given one vector field. The second is what we call the connection,
and is how we normally define ∇ itself. This is obtained by looking at ∇ as a way to take two
vector fields, X and Y , and produce another vector field, ∇XY , which can be interpreted as the
covariant derivative of one with respect to the other. This second map does not define a tensor,
because it is not linear under Y 7→ fY , owing to the Leibniz rule. Let’s now collect the formal
definitions, in which it is more natural to first define the connection.

A connection is a map ∇ sending every pair of smooth vector fields X,Y to the smooth
vector field ∇XY , such that for arbitrary vector fields X,Y, Z and functions f, g, we have:

1. linearity conditions:

∇fX+gY Z = f∇XZ + g∇Y Z , ∇X(Y + Z) = ∇XY +∇XZ (5.5)

2. the Leibniz property:
∇X(fY ) = (∇Xf)Y + f∇XY , (5.6)

3. and the definition on functions
∇Xf = X(f) . (5.7)

Connection

52



The covariant derivative of a vector field Y is the (1, 1) tensor ∇Y defined by

∇Y : (ω,X) 7→ (∇XY )(ω) (5.8)

for arbitrary vector field X and covector ω.

Covariant derivative

We can extend our covariant derivative to act on covectors and then arbitrary tensors using
the Leibniz property. For instance, given a covector η then ∇η is a (0, 2) tensor defined by

(∇η)(X,Y ) ≡ (∇Xη)(Y ) = ∇X(η(Y ))− η(∇X(Y )) = X((η(Y ))− η(∇X(Y )) . (5.9)

Let’s begin to demystify the somewhat abstract definition above. Suppose in some chart we
introduce a set of vector fields {e(µ)} which are linearly independent and nowhere vanishing, i.e.
which gave a basis for the tangent space at each point. We define the action of the connection
on the basis vector fields:

∇µe(ν) ≡ ∇e(µ)e(ν) = Γµν
ρeρ . (5.10)

Note this is the definition of some collection of (non-tensorial) objects Γµν
ρ. Then for two vector

fields X = Xµe(µ) and Y = Y µe(µ) we find using the Leibniz property

∇XY = ∇Xµe(µ)(Y
νe(ν))

= Xµ
(
∇e(µ)(Y

ν)e(ν) + Y ν∇e(µ)e(ν)

)
= Xµ

(
e(µ)(Y

ν)e(ν) + Y νΓµν
ρe(ρ)

)
= Xµ

(
e(µ)(Y

ν) + Γµρ
νY ρ

)
e(ν)

(5.11)

hence
(∇XY )µ = Xν

(
e(ν)(Y

µ) + Γνρ
µY ρ

)
. (5.12)

If you understand that eµ(Y ν) means the action of the basis vector e(µ) on the components Y µ,
which are themselves functions on the manifold, then you have grasped the essentials of dealing
with arbitrary bases.

Show that under a change of basis, e′(µ) = (A−1)νµe(ν) we have

Γ′νρ
µ = Aµκ(A−1)λν(A−1)σρΓλσ

κ +Aµκ(A−1)σνe(σ)((A
−1)κρ) . (5.13)

This is very much not the transformation of a tensor!

Exercise 5.2 (Transformation of a connection)

Let’s now specialise to a coordinate basis, e(µ) = ∂/∂xµ. We view the covariant derivative as
a derivative operator ∇µ such that on functions we have

∇µf = ∂µf , (5.14)
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on vectors we have,
(∇µX)ν = ∂µX

ν + Γµρ
νXρ . (5.15)

By slight abuse of notation we will usually write ∇µXν in place of (∇µX)ν .
The transformation rule of the connection components Γµν

ρ under a change of coordinate
basis is:

Γ′νρ
µ =

(
∂x′µ

∂xκ

)(
∂xλ

∂x′ν

)(
∂xσ

∂x′ρ

)
Γλσ

κ −
(
∂xσ

∂x′ρ

)(
∂xκ

∂x′ν

)(
∂2x′µ

∂xσ∂xκ

)
. (5.16)

1. Show explicitly that ∇µV ν transforms as a tensor under a change of coordinates.

2. Show using the Leibniz rule on ∇µ(ωνX
ν) that the covariant derivative on covectors

is
∇µων = ∂µων − Γµν

ρωρ . (5.17)

Hence extrapolate to a general tensor:

∇µT ν1...νrρ1...ρs =∂µT
ν1...νr

ρ1...ρs

+ Γµσ
ν1T σ...νrρ1...ρs + . . .+ Γµσ

νrT ν1...σρ1...ρs

− Γµρ1
σT ν1...νrσ...ρs − . . .− Γµρs

σT ν1...νrρ1...σ .

(5.18)

Exercise 5.3 (Covariant derivatives in a coordinate basis)

Unlike partial derivatives, the action of covariant derivatives does not commute: ∇µ∇ν 6=
∇ν∇µ. However, the commutator of two covariant derivatives acting on a tensor will again be a
tensor, and will in fact lead to quantities of geometric interest.

The simplest example is to consider a function f . A short calculation shows that

∇µ∇νf −∇ν∇µf = −2Γ[µν]
ρ∇ρf . (5.19)

This antisymmetrisation of the connection coefficients defines a tensor, known as the torsion
tensor of the connection.

In a coordinate basis, the components of the torsion tensor associated to a connection are:

Tµν
ρ ≡ 2Γ[µν]

ρ . (5.20)

More generally, we define the torsion T such that for arbitrary vector fields X,Y , T (X,Y )

is the vector field given by:

T (X,Y ) = ∇XY −∇YX − [X,Y ] . (5.21)

Then the torsion defines a (1, 2) tensor such that for η a covector and X,Y vectors,
T (η,X, Y ) ≡ T (X,Y )(η).

Torsion
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A connection is said to be torsion-free if its associated torsion tensor vanishes.

Torsion-free connection

We have defined connections, and written down how they transform, but not said anything
about how to construct them in practice. We are interested in manifolds with metric. In this case,
the existence of the metric implies that there is a preferred connection. This is the Levi-Civita
connection.

On a manifold M with metric g, there exists a unique torsion-free connection ∇ such that
the metric is covariantly constant, ∇g = 0.

Levi-Civita connection

In general, a connection which annihilates the metric, ∇µgνρ = 0, is said to be metric-
compatible, or just metric (as in, a metric connection obeys ∇g = 0).

We will demonstrate the construction of the Levi-Civita connection in a coordinate basis.
Construction of the Levi-Civita connection: Firstly, suppose that there is a torsion-free

compatible connection with connection components Γµν
ρ. As it is metric compatible, we have:

0 = ∇µgνρ = ∂µgνρ − Γµν
σgσρ − Γµρ

σgσν , (5.22)

0 = ∇νgρµ = ∂νgρµ − Γνρ
σgσµ − Γνµ

σgσρ , (5.23)

0 = ∇ρgµν = ∂ρgµν − Γρµ
σgσν − Γρν

σgσµ , (5.24)

Taking the combination (5.22) + (5.23) - (5.24) and using Γµν
ρ = Γνµ

ρ (as it is torsion-free), we
find

0 = ∂µgνρ + ∂νgρµ − ∂ρgµν − 2Γµν
σgσρ , (5.25)

hence
Γµν

ρ =
1

2
gρσ (∂µgνσ + ∂νgµσ − ∂σgµν) . (5.26)

This defines the components of the Levi-Civita connection, and shows that it is uniquely deter-
mined in terms of the metric.

To be sure that this is indeed a valid connection, check that (5.26) transforms under coor-
dinate transformations as in (5.16).

Exercise 5.4 (Transformation of the Levi-Civita connection)

The connection components (5.26) are the very same as the Christoffel symbols (4.16) that
we found in the equation determining the paths of extremal proper time. Let’s now show how
having a connection allows one an alternative definition of such paths, which go by the general
name of geodesics.
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5.2 Parallel transport and geodesics again

We said earlier some vague words about a connection allowing us to compare the value of tensors
at different points on the manifold. The idea that makes this work in practice is known as parallel
transport.

What we want to do is to consider taking a vector or tensor at a point p, and transport it
along some curve starting at p to another point q. This is trivial to do in flat space: we just keep
the components of the tensor fixed, i.e. they obey ∂µTµ1...µrν1...νs = 0. To generalise this to an
arbitrary manifold with connection, we will replace the partial derivative with a covariant one.

Given a curve γ with tangent vector X, the parallel transport of a tensor T along γ is defined
by the solution to the equation ∇XT = 0.

Parallel transport

A tensor is therefore parallel transported along a path if it is covariantly constant along a
path. In coordinates, if the curve is xµ(λ), the tangent vector is then Xµ = dxµ

dλ , and we define
the directional covariant derivative

D

dλ
≡ dxµ

dλ
∇µ , (5.27)

we have
D

dλ
Tµ1...µrν1...νs =

dxµ

dλ
∇µTµ1...µrν1...νs = 0 . (5.28)

This is a first-order ODE with as usual a unique local solution once we specify the initial value
of the tensor components at some point on the curve.

A hugely important caveat is that parallel transport is path dependent : if we parallel transport
a tensor from p to q by two separate paths, we need not obtain the same result at q. In fact the
result depends on the curvature of the manifold, as we will shortly see.

Parallel transport is connection dependent. If we use a metric-compatible connection, the
metric is always parallel transported with respect to it. Similarly, the norm g(X,Y ) of two
vectors is preserved if we parallel transport X and Y between two points.

The condition for curves to extremise the proper time was found to be (4.15), which we
repeat:

d2xµ

dτ2
+ Γνρ

µdx
ν

dτ

dxρ

dτ
= 0 , (5.29)

where the connection appearing is the Levi-Civita one. This is equivalent to:

D

dτ

dxµ

dτ
= 0 , (5.30)

i.e. that the tangent vector to the curve is parallel transported along it, using the Levi-Civita
connection. This is an example of a geodesic.
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An affinely parametrised geodesic is a curve along which its own tangent vector is parallel
transported (with respect to a particular connection ∇). Equivalently, given a vector field
X, an affinely parametrised geodesic is an integral curve of X such that ∇XX = 0.

Geodesic

By affinely parametrised we mean that the geodesic equation is of the form ∇XX = 0 or

D

dλ

dxµ

dλ
= 0 , (5.31)

while for a non-affine parameter we would have ∇XX ∝ X. This follows by considering choosing
some other parameter α(λ). A short calculation gives the geodesic equation for the tangent
vector dxµ

dα ,

D

dα

dxµ

dα
=

d

dα

(
dλ

dα

dxµ

dλ

)
+ Γνρ

αdx
ν

dλ

dxρ

dλ

(
dλ

dα

)2

=

(
dλ

dα

)2(d2xµ

dλ2
+ Γνρ

αdx
ν

dλ

dxρ

dλ

)
+
dxµ

dλ

d

dα

dλ

dα

=

(
dλ

dα

)2 D

dλ

dxµ

dλ
− dxµ

dα

(
d2α

dλ2

)(
dα

dλ

)−2

(5.32)

having used d
dα

dλ
dα = dλ

dα
d
dλ

(
dα
dλ

)−1. Hence one has

D

dα

dxµ

dα
= f(α)

dxµ

dα
(5.33)

with f(α) = −
(
d2α
dλ2

) (
dα
dλ

)−2. There is then a two-parameter freedom of affine parameter, with
α = aλ+ b also affine, for a, b constant.

For timelike curves parametrised using proper time τ , the normalisation g(X,X) = −1 fixes
a = 1. In this case, we can write the geodesic equation equivalently in terms of the four-velocity
Uµ = dxµ

dτ or the four-momentum pµ = mUµ as

Uν∇νUµ = 0 = pν∇νpµ . (5.34)

For null curves, we have the full two parameter ambiguity. It is convenient to choose the
normalisation of the affine parameter on a null geodesic such that the momentum four-vector is
pµ = dxµ

dλ (note there is of course no rest mass in this case). Then for instance an observer with
four-velocity Uµ will measure the (intrinsic) energy of the massless particle to be E = −pµUµ.

In summary, we have uncovered a very important result. Affinely parameterised geodesics
obey the equation:

d2xµ

dλ2
+ Γνρ

µdx
ν

dλ

dxρ

dλ
= 0 , (5.35)

where Γµν
ρ are the components of a particular connection. A further special class of geodesics

are those which extremise the length functionals

S =

∫
dλ
√
|gµν ẋµẋν | , (5.36)
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which are the geodesics obeying (5.35) for the particular choice of the Levi-Civita connection.

Free particles move on geodesics of the Levi-Civita connection: null geodesics for massless
particles and timelike geodesics for massive ones.

Free particles in general relativity

The equation (5.35) can also be derived as the Euler-Lagrange equation following from the
action

S′ =

∫
dλ

1

2
gµν ẋ

µẋν . (5.37)

For a given metric, varying S′ is perhaps the most direct way to obtain the components of the
Levi-Civita connection.

5.3 Local inertial frames

We’re now going to connect our discussion of the mathematical description of Lorentzian man-
ifolds back to the physical ideas embodied in the Einstein Equivalence Principle. This claimed
that we can find local inertial frames, in which physics behaved exactly as you would expect it
to in a genuine inertial frame in Minkowski spacetime. This means that we should be able to
construct local coordinates on our manifold in which the metric becomes the Minkowski metric,
and the Christoffel symbols vanish.

The coordinates that we want are known as Riemann normal coordinates. To construct these,
we first choose an orthonormal basis for the tangent space at a particular point p ∈ M . With
this basis, we can define geodesics whose tangent vectors at p are the elements of this basis.
We can then define coordinates in the neighbourhood of p according to their parameter distance
along these geodesics.

Given a point p ∈ M , the exponential map from TpM to M is defined as the map which
sends Xp ∈ TpM to the point unit affine parameter distance along the geodesic through p
with tangent Xp at p.

Exponential map

This map is locally one-to-one and onto, in a small enough neighbourhood around p. The
existence and (local) uniqueness of the exponential map is guaranteed by the usual ODE argu-
ment: we are solving the geodesic equation for a curve xµ(λ), with initial conditions xµ(0) = xµp ,
dxµ

dλ (λ = 0) = Xµ
p .

We now construct the desired coordinates.

Given p ∈ M and a basis {e(µ)} for TpM , then we define normal coordinates in a neigh-
bourhood of p by saying the coordinates of q near p are given by the components of the
tangent vector Xµ ∈ TpM which maps to q under the exponential map from TpM to the
neighbourhood of p.

Riemann normal coordinates
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To recapitulate: given Xµe(µ) ∈ TpM , we construct the geodesic through p whose tangent
vector is Xµe(µ). At unit affine parameter distance along this geodesic, we come to the point q.
Then we say the coordinates of q ∈ M in this coordinate system are defined to be xµ(q) = Xµ.
Note that xµ(p) = 0 by definition.

From the definition of the exponential map, it follows if X is mapped a unit affine parameter
distance along the geodesic through p with tangent X, then tX gets mapped to the point on
the same geodesic which is at affine parameter distance t. To see this, consider the curve xµ(λ)

such that xµ(λ = 1) is the point q. Rescale the parameter λ by t to obtain a curve xµ(tλ) such
that at λ = 1 it corresponds to the point at affine parameter distance t along the original curve.
Then at λ = 0, d

dλx
µ(tλ)|λ=0 = tXµ.

Therefore in normal coordinates, the geodesic itself is parameterised simply as xµ(λ) = λXµ.
Inserting this into (5.35), we have

0 =
d2x

dλ2
+ Γνρ

µ(x(λ))
dxν

dλ

dxρ

dλ
= Γνρ

µ(x(λ))XνXρ . (5.38)

Evaluating at λ = 0 we find Γνρ
µ(p)XνXρ = 0 which is true for arbitrary Xµ and from which

we can conclude that
Γ(µν)

ρ(p) = 0 . (5.39)

For a torsion-free connection, we can conclude that

Γµν
ρ(p) = 0 , (5.40)

so in normal coordinates at p, the components of a torsion-free connection vanish at p. Given
this, we also know from the metric compatibility condition ∇µgνρ = 0 evaluated at p that the
first derivatives of the metric are zero at p:

∂µgνρ(p) = 0 . (5.41)

We also should check that the basis {e(µ)} coincides with the coordinate basis ∂/∂Xµ. We note
that the integral curve of the vector field ∂/∂Xµ through p (i.e. the curve whose tangent vector
at each point is ∂/∂Xµ) is given byXµ(λ) = (0, . . . , 0, λ, 0, . . . , 0) and coincides with the geodesic
through p with tangent vector e(µ) at p. Therefore we can identify e(µ) = ∂/∂Xµ.

This discussion is valid for any basis {e(µ)} at p. Therefore we can choose an orthonormal
basis, so that the metric at p becomes the Minkowski metric: g(e(µ), e(ν)) = ηµν . This provides
us with a mathematical definition of a local inertial frame.

On a Lorentzian manifold, a local inertial frame is a choice of normal coordinates at any
point p, such that

gµν(p) = ηµν , ∂µgνρ(p) = 0 . (5.42)

Local inertial frame
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To differentiate tensors, we use not partial derivatives but covariant derivatives, defined by

∇µf = ∂µf , ∇µV ν = ∂µV
ν + Γµρ

νV ρ , (5.43)

on functions and vectors, and extended to arbitrary tensors using the Leibniz rule. The
connection components Γµν

ρ are not the components of a tensor, but transform in a par-
ticular way so as to cancel out the non-tensorial part of the transformation of the partial
derivative term. A covariant derivative, or a connection, provides an extra structure on a
manifold. In particular, on a manifold with a metric, there is a unique covariant derivative
annihilating the metric, ∇µgνρ = 0, which is torsion-free meaning Γ[µν]

ρ = 0. This unique
covariant derivative is known as the Levi-Civita connection.

A covariant derivative gives a way to parallel transport tensors along curves; if a curve xµ(λ)

has tangent vector Xµ = dxµ

dλ starting with a tensor T at some point on the curve, we parallel
transport it along the curve by solving the requirement of covariant constancy ∇XT = 0.
Parallel transport between two points depends on the precise choice of path between the
points (and also on the connection used).

A special class of curves are geodesics, defined by the condition that the tangent vector
X to the curve is itself parallel transported along the curve ∇XX = 0. A special class
of geodesics are the geodesics of the Levi-Civita connection, which extremise the proper
distance (or time) between two points. The components of the Levi-Civita connection are
exactly the Christoffel symbols we found in the previous section by finding the condition for
this extremisation. In general relativity, free particles move on this class of geodesics.

Geodesics can be used to locally map the structure of the tangent space at a point p to a
set of special coordinates in a neighbourhood of p. These are normal coordinates, and are
such that at p the metric evaluates to the Minkowski metric, and its first derivatives vanish.
This realises the idea of a local inertial frame: physical laws evaluated at p will agree with
those of special relativity.

A summary
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6 Curvature

6.1 Riemann curvature tensor

We are now going to combine two ideas that were mentioned in the last section: covariant deriva-
tives do not commute, and parallel transport is path dependent. These lead to the appearance
of the Riemann curvature tensor, which is a local measure of the curvature of a manifold.

Riemann tensor from curvature

We previously calculated the commutator [∇µ,∇ν ]f = −Tµνρ∇ρf , where f was a function,
finding the torsion tensor Tµνρ = 2Γ[µν]

ρ of the connection used in the covariant derivative. Now
let’s repeat this calculation on tensors. We have:

[∇µ,∇ν ]V ρ = RρσµνV
σ − Tµνσ∇σV ρ , (6.1)

where
Rρσµν = ∂µΓνσ

ρ − ∂νΓµσ
ρ + Γµλ

ρΓνσ
λ − Γνλ

ρΓµσ
λ . (6.2)

The left-hand side of (6.1) is tensorial, and so is the term involving the torsion tensor on the
right-hand side. This means that the combination Rρσµν must be the components of a tensor.
This can indeed be checked, and defines the Riemann curvature tensor.

1. Verify (6.1) and (6.2).

2. Hence or similarly show that

[∇µ,∇ν ]Vρ = −RλρµνVλ − Tµνλ∇λVρ , (6.3)

and

[∇µ,∇ν ]V ρ1...ρr
σ1...σs =− Tµνσ∇σV ρ1...ρr

σ1...σs

+Rρ1λµνV
λ...ρr

σ1...σs + · · ·+RρrλµνV
ρ1...λ

σ1...σs

−Rλσ1µνV ρ1...ρr
λ...σs − · · · −RλσsµνV ρ1...ρr

σ1...λ .

(6.4)

Exercise 6.1 (Riemann tensor)

For completeness, let’s give the more abstract definition of the Riemann tensor:

The Riemann curvature tensor of a connection ∇ is defined as a map R acting on three
vector fields X,Y, Z to define another vector field given by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z . (6.5)

Riemann tensor

The Riemann curvature tensor of the Levi-Civita connection is a function of the second
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derivatives of the metric. Clearly if our manifold is equipped with the Minkowski metric, the
Riemann curvature tensor vanishes everywhere. In general:

• If a coordinate system exists in which the components of the metric are constant, then the
Riemann tensor (of the Levi-Civita connection) vanishes.

• If the Riemann tensor vanishes, then we can find a coordinate system in which the metric
components are constant.

An outline of the proof of these two statements is found in Carroll.

Parallel transport and curvature

Let’s now work out the effect of parallel transporting a vector from one point to another along
two separate paths. We will carry out parallel transport according to the picture shown in figure
14. Here X and Y are two commuting and linearly independent vector fields. We choose our
coordinates to be (s, t, . . . ) with X = ∂/∂s and Y = ∂/∂t.

We start at p ∈ M which we take to have coordinates (0, 0, . . . , 0). Then we will consider
parallel transport along:

• the curve joining p to the point q = (δs, 0, . . . , 0) with tangent X, then

• the curve joining q to the point r = (δs, δt, . . . , 0) with tangent Y ,

and compare it to parallel transport along:

• the curve joining p to the point u = (0, δt, . . . , 0) with tangent Y , then

• the curve joining u to the point r = (δs, δt, . . . , 0) with tangent X.

Here δs, δt are small.

X

p = (0, 0, . . . , 0) q = (δs, 0, . . . 0)

Y

u = (0, δt, . . . 0)

X

r = (δs, δt, . . . 0)

Y

Figure 14: Parallel transport.

We will work in normal coordinates at p, and use indices µ, ν, . . . to refer to this chart. Then
we view s and t as parameters along the curves with tangent X and Y respectively.

Consider a vector Zp ∈ TpM . We will compute the parallel transport of Zp along pqr to
obtain a vector Zr ∈ TrM , and compare this to the parallel transport of Zp along pur, which
gives a vector Z ′r ∈ TrM . We will assume we are using a torsion-free connection.

We start by computing Zr, in two steps.
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• First we parallel transport Zp along the curve pq with tangent X = ∂
∂s . The parallel

transport equation ∇XZ = 0 is:

dZµ

ds
= −Γνρ

µZνXρ ⇒ d2Zµ

ds2
= −∂σ(Γνρ

µZνXρ)Xσ . (6.6)

We use a Taylor expansion to write down

Zµq = Zµp +

(
dZµ

ds

)
p

δs+
1

2

(
d2Zµ

ds2

)
p

δs2 + . . .

= Zµp −
1

2
(∂σ(Γνρ

µ)ZνXρXσ)p δs
2 ,

(6.7)

using the result (Γµν
ρ)p = 0 in normal coordinates for a torsion-free connection.

• Next we consider the result of parallel transporting Zq along qr. We have similarly

Zµr = Zµq +

(
dZµ

dt

)
q

δt+
1

2

(
d2Zµ

dt2

)
q

δt2 + . . .

= Zµq − (Γνρ
µZνY ρ)qδt−

1

2
(∂σ(Γνρ

µZνY ρ)Y σ)q δt
2 .

(6.8)

We then Taylor expand all the terms at q in δs, and throw away all terms of order δ3. For
instance, (Γνρ

µZνY ρ)qδt = (Γνρ
µZνY ρ)pδt+ (Xσ∂σ(Γνρ

µZνY ρ))pδsδt. This leads to:

Zµr = Zµp −
[

1

2
(∂σΓνρ

µ)Zν
(
XρXσδs2 + Y ρY σδt2 + 2Y ρXσδtδs

)]
p

+O(δ3) . (6.9)

We can immediately calculate Z ′r by swapping X and Y and s and t.

(Z ′r)
µ = Zµp −

[
1

2
(∂σΓνρ

µ)Zν
(
XρXσδs2 + Y ρY σδt2 + 2XρY σδtδs

)]
p

+O(δ3) . (6.10)

As a result,

∆Zµr ≡ Z ′µr − Zµr = [∂σΓνρ
µZν(Y ρXσ −XρY σ)]p δsδt+O(δ3)

= [(∂ρΓσν
µ − ∂σΓρν

µ)ZνXρY σ]p δsδt+O(δ3)
(6.11)

Remembering we are using normal coordinates, we can identify here the components of the
Riemann tensor:

∆Zµr = [RµνρσZ
νXρY σ]p δsδt+O(δ3)

= [RµνρσZ
νXρY σ]r δsδt+O(δ3)

(6.12)

using the Taylor expansion to O(δ) to convert the tensorial result at p into one at r. This gives
the tensorial result:

(RµνρσZ
νXρY σ)r = lim

δ→0

∆Zµr
δsδt

. (6.13)
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Geodesic deviation and curvature

In flat space, geodesics are straight lines. In particular, this means that geodesics that are
initially parallel will always remain so. This is the parallel postulate of Euclidean geometry.

In curved space, geodesics may cross, and there is no well-defined notion of what “parallel”
should mean. However, we can study what happens to geodesics that are initially nearby.

Let γs(t) denote a one-parameter family of geodesics with affine parameter t, i.e. for each
s γs(t) is a geodesic. This collection of curves defines a two-dimensional surface parametrised
by both s and t. In a chart, we have coordinates xµ(s, t), and can write the tangent vector T
tangent to the geodesics as well as the deviation vectors S as:

Tµ =
∂xµ

∂t
, Sµ =

∂xµ

∂s
. (6.14)

Note that xµ(s+δs, t) = xµ(s, t)+δsSµ(s, t)+O(δs2); hence δsSµ is the infinitesimal displacement
from one geodesic to a neighbouring one. We define the “relative velocity” of geodesics by:

V µ = (∇TS)µ = T ν∇νSµ , (6.15)

and the “relative acceleration” by:

Aµ = (∇TV )µ = T ν∇νV µ . (6.16)

We can pick our chart such that s and t themselves are our coordinates, hence T = ∂/∂t,
S = ∂/∂s and these commute, [S, T ] = 0. This means that

Sν∇νT = T ν∇νS . (6.17)

We assume we are using a torsion-free connection. Then, we can compute the quantity Aµ.
Using (6.17), we write V µ = T ν∇νSµ = Sν∇νTµ such that

(∇TV )µ = T ν∇ν(Sρ∇ρTµ)

= T ν∇νSρ∇ρTµ + T νSρ([∇ν ,∇ρ] +∇ρ∇ν)Tµ

= Sν∇νT ρ∇ρTµ + T νSρ∇ρ∇νTµ +RµσνρT
νT σSρ ,

(6.18)

but because T ν∇νTµ = 0, the first term here is

Sν∇νT ρ∇ρTµ = ∇ν(SνT ρ∇ρTµ)−∇νSνT ρ∇ρTµ − SνT ρ∇ν∇ρTµ = −SνT ρ∇ν∇ρTµ (6.19)

which cancels with the second term. Hence we find the geodesic deviation equation:

Aµ ≡ ∇T∇TSµ ≡
D2

dt2
Sµ = RµνρσT

νT ρSσ . (6.20)

Thus, the Riemann curvature tensor measures how nearby geodesics which are initially close begin
to move apart or together. Later on, we will use this equation to describe how the Riemann
curvature tensor due to a gravitational wave affects observers at nearby points.
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6.2 Properties of the Riemann curvature tensor

The definition of the Riemann tensors implies that it is antisymmetric in its final two indices:

Rµνρσ = −Rµνσρ (6.21)

The Riemann tensor of a torsion-free connection obeys:

Rµ[νρσ] = 0 . (6.22)

This follows automatically from antisymmetrising over the indices in (6.2). Note that

Rµ[νρσ] =
1

3
(Rµνρσ +Rµρσν +Rµσνρ) (6.23)

by antisymmetry in the final two indices.
The Riemann tensor of a torsion-free connection also obeys the Bianchi identity:

∇[µR
λ
|σ|νρ] = 0 . (6.24)

(The bars indicate that the index σ is not to be antisymmetrised.) We can prove this using normal
coordinates. At a point p, in normal coordinates we have, remembering that Γµν

ρ(p) = 0,

∇[µR
λ
|σ|νρ] = ∂[µR

λ
|σ|νρ] = 2∂[µ∂νΓρ]σ

λ = 0 , (6.25)

as partial derivatives commute. This means that we have ∇[µR
λ
|σ|νρ] = 0 in normal coordinates

at p. This is a tensorial equation, so it actually holds in any coordinates, and the point p was
arbitrary, so in fact it is true everywhere.

For the Levi-Civita connection, the Riemann tensor has further symmetries. Let us define
first

Rµνρσ = gµλR
λ
νρσ . (6.26)

Then we have:
Rµνρσ = Rρσµν (6.27)

which implies
Rµνρσ = −Rνµρσ . (6.28)

To prove (6.27), we use Riemann normal coordinates at p. In these coordinates,

Rµνρσ = 2gµλ∂[ρΓσ]ν
λ =

1

2
(∂ν∂ρgµσ + ∂µ∂σgνρ − ∂ν∂σgµρ) , (6.29)

and (6.27) holds by inspection. Now we use the same argument as before, this is a tensorial
equation, so if it holds in one basis it holds in any, and the point p used was arbitrary, so (6.27)
is true everywhere.
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The Riemann tensor of a connection has components

Rρσµν = ∂µΓνσ
ρ − ∂νΓµσ

ρ + Γµλ
ρΓνσ

λ − Γνλ
ρΓµσ

λ . (6.30)

It obeys:
Rρσµν = −Rρσνµ (by definition) , (6.31)

Rρ[µνσ] = 0 (if torsion-free) , (6.32)

∇[µR
λ
|σ|νρ] = 0 (if torsion-free) , (6.33)

Rµνρσ = Rρσµν (if Levi-Civita) , (6.34)

Rµνρσ = −Rνµρσ (if Levi-Civita) . (6.35)

The Riemann tensor and its symmetries

Finally, let’s count the number of independent components of the Riemann tensor of the
Levi-Civita connection, on an n-dimensional manifold. We can view it as a tensor R[µν][ρσ] which
is symmetric in the antisymmetric pairs of indices [µν] and [ρσ]. Before taking into account
other constraints, this gives

1

2

(
1

2
n(n− 1)

)(
1

2
n(n− 1) + 1

)
=

1

8
(n4 − 2n3 + 3n2 − 2n) (6.36)

components. Next, consider the constraint Rµ[νρσ] = 0. This implies automatically that
R[µνρσ] = 0. Alternatively, we can require R[µνρσ] = 0, Rµνρσ = Rρσµν and Rµνρσ = −Rµνσρ,
which then implies Rµ[νρσ] = 0. This is easier to work with. We decompose the Riemann tensor
into a part which is totally antisymmetric and a part which is not: Rµνρσ = R[µνρσ] + Xµνρσ

(where Xµνρσ = Rµνρσ − R[µνρσ] by definition). The totally antisymmetric part automatically
obeys the constraints we have already counted, which therefore apply only to Xµνρσ. We then
need to count only the vanishing of this totally antisymmetric part. This gives

(
n
4

)
more con-

straints (an antisymmetric tensor with p n-dimensional indices has
(
n
p

)
independent components).

Subtracting these, we find a total of
1

12
n2(n2 − 1) (6.37)

components.
For n = 4, there are 20 components of the Riemann tensor. For comparison, for n = 3 there

are 6, for n = 2 only 1, and n = 1 zero.

6.3 Ricci tensor, Ricci scalar and Einstein tensor

Other important tensors can be found by taking contractions of the Riemann tensor.

The components of the Ricci tensor, Rµν , are defined by:

Rµν = Rρµρν . (6.38)

Ricci tensor
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The Ricci scalar is obtained as the trace of the Ricci tensor:

R = gµνRµν = Rµµ = Rµνµν . (6.39)

Ricci scalar

For the Levi-Civita connection, the Ricci tensor is automatically symmetric, Rµν = Rνµ.
Take the Bianchi identity ∇[µR

λ
|σ|νρ] and contract λ and ρ and then with gνσ. The result is

the contracted Bianchi identity :

∇νRµν −
1

2
∇µR = 0 . (6.40)

The Einstein tensor is
Gµν = Rµν −

1

2
Rgµν . (6.41)

It obeys ∇νGµν = 0.

Einstein tensor
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7 General Relativity

“Spacetime tells matter how to move; matter tells spacetime how to curve.”

General Relativity (summarised by John Wheeler)

There isn’t a better one sentence summary of a physical theory than that.
Indeed, it’s almost a shame to have to convert this into equations. To start doing so, let’s

go back to the beginning (i.e. the 1660s). The Newtonian gravitational potential, Φ, obeys the
equation

∇2Φ = 4πGρ , (7.1)

where ρ is the density of matter. A test particle subsequently experiences an acceleration due to
gravity given by

~̈x = −~∇Φ . (7.2)

We need to explain how to describe the coupling of matter to gravity in general relativity. We
have already postulated that free particles on a manifold obey the geodesic equation. We need
to extend this discussion to describe the dynamics of all possible types of matter, and then to
explain the laws determining the spacetime metric itself. We also need to explain exactly in what
sense this generalises (7.1).

7.1 Matter

Special relativity

Let’s start by reviewing the types of physics we can describe in special relativistic settings.

• Individual particles. Massive free particles with four-momentum pµ = mUµ = mdxµ

dτ

obeyed dpµ

dτ = 0, subject to pµpµ = −m2, while massless free-particles had null four-
momenta, pµpµ = 0.

• Fields. Fields obey particular equations of motion. For instance, a scalar field φ(x) obeys
the Klein-Gordon equation:

∂µ∂
µφ = m2φ . (7.3)

The electromagnetic fields Fµν in vacuum obey Maxwell’s equations:

∂νFµν = 0 , 3∂[µFνρ] = 0 . (7.4)

• Fluids. We can also describe collections of particles as fluids. Then instead of using
their individual four-momenta, we use macroscopic quantities such as density, pressure,
viscosity, to describe the behaviour of the system as a whole. We can characterise a
fluid as having some overall 4-velocity, Uµ. Its properties are further characterised by an
energy-momentum tensor, Tµν . This encodes the flux of 4-momentum pµ across surfaces of
constant xν . For example, T 00 gives the flux of energy across surfaces of constant time, and
so gives the energy density ρ. The components T 0i = T i0 encode momentum density. The
purely spatial components T ij encode the flow of the ith component of momentum in the

68



plane orthogonal to the j directions. The diagonal components T ii (no sum) then give the
force exerted per unit area in the i direction, which is just the pressure in the i direction.
The off-diagonal components T ij (i 6= j) then describe stresses due to for example viscosity.
The energy momentum-tensor is conserved:

∂µT
µν = 0 . (7.5)

This in fact encodes the usual equations of fluid mechanics, in the non-relativistic limit.

• Perfect fluids. An idealised example of fluid is the case of a perfect fluid, which is
completely specified by its (rest frame) energy density ρ and (rest frame) isotropic (same
in all directions) pressure p. Thus in the rest frame we have Tµν = diag (ρ, p, p, p). This
can be made Lorentz covariant by writing it as:

Tµν = (ρ+ p)UµUν + pηµν , (7.6)

where Uµ is the four-velocity of the fluid. A perfect fluid is further characterised by an
equation of state relating the pressure and energy density, p = p(ρ). The three examples
which will be relevant later on for cosmology are:

– Dust (matter): p = 0. This describes a collection of particles at rest with respect
to each other, characterised entirely by their common four-velocity Uµ and by the
energy density, ρ, which for n particles of the same mass m is given by ρ = mn. This
can be viewed as a model for galaxies in the universe.

– Radiation: p = 1
3ρ. This describes, for instance, a fluid of massless particles. This

is relevant for modelling the very early universe, which was dominated by radiation
before atoms began to form.

– Vacuum energy: p = −ρ. In this case, Tµν = −ρηµν , and this describes the
energy-momentum tensor due to the intrinsic energy of the vacuum of the universe.
This is believed to be relevant to the universe in the far future, and is related to the
cosmological constant.

In fact, we can obtain an energy-momentum tensor for any physical system. For theories de-
scribed by a Lagrangian, the energy-momentum tensor can be obtained as the conserved quantity
associated to spacetime translations (thought it may need to be “improved” by adding an iden-
tically conserved divergence to obtain a symmetric tensor). For example, in electromagnetism,

Tµν =
1

4π

(
Fρ

µF ρν − 1

4
FρσF

ρσηµν
)
. (7.7)

Minimal coupling

We have seen that in any Lorentzian manifold, we can choose to go to normal coordinates at a
point p, where the metric becomes the Minkowski metric, and its first derivatives vanish. This
defines a local inertial frame, in which the laws of physics should take their special relativistic
form. This suggests a procedure known as minimal coupling in order to extrapolate the known
special relativistic laws to equations that hold in general on an arbitrary spacetime manifold.
The idea is to reverse what happens in going to normal coordinates.
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The laws of physics in a Lorentzian manifold are obtained by taking the known equations
valid in Minkowski spacetime, writing them in manifestly Lorentz covariant form, and mak-
ing the substitutions:

ηµν → gµν , ∂µ → ∇µ , (7.8)

where ∇µ is the Levi-Civita connection.

Minimal coupling

This procedure works! However it is not unambiguous. For instance, ordinary partial deriva-
tives commute: ∂µ∂ν = ∂ν∂µ, but covariant derivatives do not: ∇µ∇ν = ∇ν∇µ+ terms involving
the Riemann curvature. In going to Minkowski spacetime itself, the curvature is of course zero.
Note though that the Riemann curvature does not vanish in normal coordinates at a point. Ulti-
mately, the correct physical equations have to be determined by either mathematical consistency
or by matching with experiment. However, minimal coupling works for all the cases we are
interested in in this course.

Let’s run through the sorts of physical quantities we used in special relativity: particles, fields
and fluids. Free particles now move on geodesics of the curved manifold, and can be described
by (timelike or null) vector fields Uµ which obey

Uν∇νUµ = 0 . (7.9)

The scalar field equation (7.3) becomes

gµν∇µ∇νΦ = m2Φ , (7.10)

and electromagnetism in a curved background obeys the equations:

gρµ∇ρFµν = 0 , 3∇[µFνρ] = 0 . (7.11)

The energy-momentum tensor of a perfect fluid is:

Tµν = (ρ+ p)UµUν + pgµν , (7.12)

where now Uµ is a four-velocity vector field. The conservation equation of an energy-momentum
tensor becomes:

∇µTµν = 0 . (7.13)

7.2 Gravity

The General Theory of Relativity

For the coupling to gravity, we will assume that we can always describe matter by an energy-
momentum tensor obeying (7.13). The equation (7.1) for the Newtonian potential had on its
right-hand side the matter density ρ, which in the relativistic setting is encoded by T 00. This
motivates us to find an equation relating the properties of the curved manifold to the energy-
momentum tensor. We are looking for some symmetric two-index tensor involving the metric or
its derivatives, which we can equate to (some constant times) Tµν . Out of respect for Einstein’s
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hard work in getting the wrong answer first and not giving up, it is usual at this point to guess
Rµν = κTµν . However, this doesn’t work because it requires ∇νRµν = 0. By the contracted
Bianchi identity this then implies that ∇µR = 0, in turn implying ∇µT = 0 (where T = Tµµ),
so both the Ricci scalar and trace of the energy-momentum tensor have to be constant, which is
far too restrictive.

Given that whatever tensor we use has to vanish when contracted with a covariant derivative,
by compatibility with (7.13), it is clear that the contracted Bianchi identity tells us that we should
be using the Einstein tensor

Gµν = Rµν −
1

2
Rgµν , (7.14)

which automatically obeys ∇νGµν = 0. This suggests Gµν = κTµν . This is mathematically
self-consistent. The constant κ has to be fixed by matching with the Newtonian limit - we will
do this shortly. The result is κ = 8πG.

We are now able to summarise the theory of General Relativity:

1. Spacetime is a four-dimensional Lorentzian manifold with a metric, (M, g), equipped
with the Levi-Civita connection.

2. Free particles follow timelike or null geodesics.

3. The field equations governing the geometry are the Einstein equations:

Gµν = 8πGTµν . (7.15)

General Relativity

This little box is one of the crowning achievements of 20th century physics, scratch that, all of
physics.

The cosmological constant

There is one more thing. What we were looking for was a symmetric tensor, G̃µν , such that
∇νG̃µν = 0, which was a function of the metric and its first and second derivatives. For a four-
dimensional Lorentzian theory, the unique answer (up to rescaling) is that G̃µν = Gµν + Λgµν ,
where Λ is a constant. This is known as Lovelock’s theorem. So we could also have:

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (7.16)

The constant Λ is the cosmological constant. If Λ is sufficiently large, this causes deviations from
the Newtonian theory in the non-relativistic weak field limit. For this reason, it was supposed
(modulo some blundering about by Einstein) that we should have Λ = 0. However, since the
mid-1990s, observations have indicated that there is a very small positive cosmological constant
present in our universe, which is, however, only relevant on cosmological scales. Explaining the
value of the cosmological constant is a major outstanding problem. We will see some cosmo-
logical consequences of the cosmological constant later on. Notice as well that we could take
the cosmological constant term over to the right-hand side of (7.16), in which case it can be
described as a perfect fluid with −p = ρ = Λ/(8πG).
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7.3 The Newtonian limit

The general idea

We are going to take a particular limit of general relativity in order to show how it recovers
standard Newtonian theory.

We will take the Newtonian limit, assuming:

• The weak field limit, namely that the metric is close to the Minkowski metric, gµν(x) ≈
ηµν + hµν(x), where the components hµν are small (note the metric components are
actually dimensionless in our conventions).

• Velocities are non-relativistic, so for a test particle on a curve xµ(τ) = (t(τ), xi(τ)),∣∣∣dxidτ ∣∣∣ << ∣∣ dtdτ ∣∣.
• The metric is static, i.e. time-independent, ∂0hµν ≈ 0.

Newtonian limit

Note that we can be a lot more precise about what we mean by small, however this will not
be necessary for our purposes.

It is surprisingly easy to linearise the Levi-Civita connection, Riemann tensor and Ricci
tensor. We work to first order in hµν . This means the metric and inverse metric are:

gµν ≈ ηµν + hµν , gµν ≈ ηµν − hµν . (7.17)

We can think of this as splitting the metric into a “background” Minkowski metric ηµν and a small
fluctuation hµν . We will use the flat background metric to raise and lower indices in expressions
below. We will also define the trace

h ≡ ηµνhµν . (7.18)

The Levi-Civita connection has components

Γµν
ρ ≈ 1

2
ηρλ (∂µhνλ + ∂νhµλ − ∂λhµν) . (7.19)

In the Riemann tensor, we can neglect the terms quadratic in the connection components, so
that

Rρσµν ≈ ∂µΓνσ
ρ − ∂νΓµσ

ρ

=
1

2
ηρλ (∂µ∂σhλν + ∂ν∂λhµσ − ∂µ∂λhσν − ∂ν∂σhλµ) .

(7.20)

Hence the Ricci tensor:

Rµν ≈ ∂ρ∂(µhν)ρ −
1

2
∂ρ∂

ρhµν −
1

2
∂µ∂νh , (7.21)

and Ricci scalar
R ≈ ∂µ∂νhµν − ∂ρ∂ρh . (7.22)
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The linearised Einstein equation is then:

∂ρ∂(µhν)ρ −
1

2
∂ρ∂

ρhµν −
1

2
∂µ∂νh−

1

2
ηµν(∂ρ∂σhρσ − ∂ρ∂ρh) = κTµν , (7.23)

where we assume Tµν is of the same order as hµν , and write κ for the constant of proportionality
which we will now determine from matching to the Newtonian theory.

The geodesic equation in the Newtonian limit

The geodesic equation is:

0 =
d2xµ

dτ2
+ Γρσ

µdx
ρ

dτ

dxσ

dτ
≈ d2xµ

dτ2
+ Γ00

µ

(
dt

dτ

)2

, (7.24)

neglecting the spatial velocities. As Γ00
µ = −1

2η
µν∂νh00, we have under our assumptions:

d2t

dτ2
= 0⇒ dt

dτ
constant , (7.25)

d2xi

dτ2
=

1

2
∂ih00

(
dt

dτ

)2

⇒ d2xi

dt2
=

1

2
∂ih00 . (7.26)

This has the same form as the Newtonian expression (7.2), if we identify h00 = −2Φ (if you
like, this is the definition of the Newtonian gravitational potential in terms of a component of a
metric that is close to the Minkowski metric).

The Einstein equation in the Newtonian limit

Now consider the Einstein equation, Gµν = κTµν . The trace of this equation gives R = −κT ,
where T = Tµµ. Let’s assume as well that our matter source is some massive body or bodies,
which we can model as dust, with Tµν = ρUµUν . Let’s work in the rest frame of this “fluid”, with
U0 = 1+O(h), U i = 0. Then T00 = ρ and all other components are zero. Then we have R = κρ,
or from (7.22),

∂k∂lhkl − ∂k∂kh = κρ . (7.27)

We substitute this into the 00 component of the linearised Einstein equation:

− 1

2
∂k∂

kh00 +
1

2
κρ = κρ⇒ ∂k∂

kh00 = −κρ⇒ ∂k∂
kΦ =

κ

2
ρ . (7.28)

To match with the equation (7.1) obeyed in Newtonian theory, we need κ = 8πG as previously
stated.

It is possible to go on and check that the remaining components of the linearised Einstein
equation are solved by hij = −2δijΦ, h0i = 0. This can also be more rigourously derived as
the solution at this order by a more technical analysis keeping track of the orders of all tensor
components, exploiting the symmetries of the linearised theories (which we will need to do when
we analyse gravitational wave solutions later on) and using Green’s functions. Note that then
the metric in this weak field Newtonian limit takes the form:

ds2 = − (1 + 2Φ(~x)) dt2 + (1− 2Φ(~x)) d~x2 , (7.29)
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which was the very first curved metric we wrote down when analysing gravitational time dilation
in section 2.3!

This should hopefully convince you that the Einstein’s theory of gravity supersedes and
contains Newton’s.

We will return to the linearised theory in section 11, in order to study gravitational waves.
Our next goal will be to explore full non-linear solutions of the Einstein equation.
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8 Symmetries

As is frequently the case in physics, finding complete general solutions of the Einstein equations
is difficult. We will focus on solutions which are tractable because they have a high degree of
symmetry. First, we need to explain what we mean by a symmetry of a spacetime with metric.

8.1 Diffeomorphisms and isometries

We need a minimal amount of mathematical definitions to get started.

A diffeomorphism is a map φ : M →M which is smooth, one-to-one, onto and has a smooth
inverse. (Smooth here means that ϕ ◦ φ ◦ ϕ′−1 is smooth for all charts ϕ, ϕ′ of M .)

Diffeomorphism

We can view a diffeomorphism as a change of coordinates. Let xµ denote the coordinates of
a chart (U,ϕ) in a neighbourhood of p ∈ M . Under the diffeomorphism, p 7→ φ(p) ∈ M . If yµ

denotes the coordinates of a chart (U ′, ϕ′) in the neighbourhood of φ(p), then we can view the
composition ϕ′ ◦φ as defining a new chart in the neighbourhood of p, with the coordinates yµ(x).

If Tµ1...µrν1...νs are the components of some tensor T in the original chart, then the components
of the tensor in the new chart with coordinates y are denoted T ′µ1...µrν1...νs and these are related
by:

T ′µ1...µrν1...νs(y(x)) =

(
∂yµ1

∂xρ1

)
. . .

(
∂yµr

∂xρr

)(
∂xσ1

∂yν1

)
. . .

(
∂xσs

∂yνs

)
T ρ1...ρrσ1...σs(x) . (8.1)

A diffeomorphism φ is a symmetry of a tensor if T ′µ1...µrν1...νs = Tµ1...µrν1...νs everywhere. We
are particularly interested in symmetries of the metric, which are important enough to warrant
their own name.

An isometry is a symmetry transformation of the metric, i.e. a diffeomorphism such that
g′µν = gµν everywhere (i.e. in all coordinate charts).

Isometry

In coordinates, the condition that a diffeomorphism be an isometry is that:(
∂yρ

∂xµ

)(
∂yσ

∂xν

)
gρσ(y(x)) = gµν(x) . (8.2)

8.2 Killing vectors

An example of a diffeomorphism is the following. For each vector field X on our manifold M ,
we can construct the integral curve of X through any point p. Let φt be the map which sends
p ∈M to the point parameter distance t along this integral curve. This is a diffeomorphism.

Suppose then we have a vector field K generating a diffeomorphism in this manner. Let ε be
infinitesimal so that arbitrarily close to xµ the diffeomorphism is defined by yµ = xµ+εKµ+O(ε2).
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If we require (8.2), we have:(
δρµ + ε

∂Kρ

∂xµ

)(
δσν + ε

∂Kσ

∂xν

)(
gρσ(x) + εKλ∂λgρσ(x)

)
= gµν(x) . (8.3)

Expanding to order ε, we find the condition for Kµ to generate an isometry of the metric: it has
to be a Killing vector.

A Killing vector is a solution of the Killing equation:

Kρ∂ρgµν + ∂µK
ρgρν + ∂νK

ρgρµ = 0 , (8.4)

or in terms of a torsion-free metric-compatible connection,

∇µKν +∇νKµ = 0 . (8.5)

This is known as the Killing equation, and solutions Kµ are known as Killing vector fields.
Each Killing vector field, if it exists, describes an isometry of a metric.

Killing vector

If the metric is independent of some coordinate z, then K = ∂
∂z is automatically a Killing

vector, as follows from the Killing equation in the form (8.4). Conversely, if we do have a Killing
vector, then we can always choose coordinates such that the Killing vector has the form K = ∂

∂z

with the metric independent of z.
For each affinely parametrised geodesic, with tangent vectorXµ, thenKµX

µ is constant along
the geodesic. This provides constants of motion for test particles. To prove this, we differentiate:

d

dλ
(KµX

µ) ≡ ∇X(KµX
µ) = XνXµ∇νKµ +KµX

ν∇νXµ = 0 . (8.6)

The second term is zero because this is condition for Xµ to be a geodesic. The first term
is zero because we automatically symmetrise and get the Killing equation: XνXµ∇νKµ =

XνXµ∇(νKµ) = 0.
Given the energy-momentum tensor, Tµν , and a Killing vector Kµ, then Jµ = TµνK

ν is
conserved: ∇µJµ = 0. Thus in the presence of Killing vectors we can define a conserved current.
If Kµ is a timelike Killing vector, this leads to a definition of a conserved energy, for instance.

Killing vectors of flat space

In Minkowski spacetime, the Killing equation is:

∂µKν + ∂νKµ = 0 . (8.7)

Differentiating again, we have

0 = ∂µ∂ρKν + ∂ν∂ρKµ = −2∂µ∂νKρ , (8.8)
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so any solution is at most linear in the coordinates: Kµ = aµ + ωµνx
ν , with aµ, ωµν constant.

Inserting this ansatz, we are required to have ωµν = −ωνµ.
The constant Killing vectors, Kµ = aµ, correspond to spacetime translations. There are

n of these (4 when n = 4). The linear Killing vectors, Kµ = ωµνx
ν , correspond to Lorentz

transformations. There are 1
2n(n − 1) of these (6 when n = 4). In general, if an n-dimensional

manifold has 1
2n(n + 1) Killing vectors then it is said to be maximally symmetric. This is the

case here.

Killing vectors of S2

The metric on S2 is:
ds2 = (dθ)2 + sin2 θ(dφ)2 . (8.9)

It is intuitively clear that the sphere should be invariant under the group SO(3) of rotations in
R3. We expect therefore that there are three Killing vectors, corresponding to rotations about
each axis. From our result for the Killing vectors of Minkowski space, we realise that these can
be taken to be, in three-dimensional Cartesian coordinates:

(K(i))j = −εijkxk , (8.10)

so

K(1) = y∂z − z∂y ,

K(2) = z∂x − x∂z ,

K(3) = x∂y − y∂x .

(8.11)

In spherical coordinates we find:

K(1) = − sinφ∂θ − cot θ cosφ∂φ ,

K(2) = cosφ∂θ − cot θ sinφ∂φ ,

K(3) = ∂φ .

(8.12)

These are the Killing vector fields of S2. As this is a 2-dimensional manifold, and there are three
Killing vectors, it is also maximally symmetric.

1. Verify that (8.12) are indeed Killing vectors of the sphere.

2. Show that the K(i) obey:
[K(i),K(j)] = −εijkK(k) (8.13)

under the commutator of vector fields. What is this algebra?

Exercise 8.1 (Killing vector fields of S2)
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9 Schwarzschild

“As you can see, the war is friendly with me, allowing me, in spite of fierce gunfire at the
quite terrestrial distance, to take this walk in your country of ideas.”

Schwarzschild to Einstein (December 1915)

Finding solutions to the Einstein equations is not simple. As usual in physics, it is useful to
consider situations with high amounts of symmetry. The Schwarzschild solution is the unique
spherically symmetric solution to the vacuum Einstein equations (i.e. in the absence of matter,
Tµν = 0). In fact, even as a vacuum solution it is immediately physically relevant, as it describes
the spacetime in the region outside of a spherically symmetric object. Some spherically symmetric
sources of gravitational fields include stars and planets. Therefore the Schwarzschild solution can
be used to model the motion of planets in orbit around the Sun, and improves on the Newtonian
predictions.

A spacetime is said to be spherically symmetric if its isometry group contains an SO(3)

subgroup, whose orbits are 2-spheres. (The orbit of a point p is the set of all points obtained
by acting on p with elements of the isometry group.)

Spherically symmetric

The unique spherically symmetric solution of the vacuum Einstein equation is the Schwarzschild
metric.

Birkhoff’s theorem

9.1 The Schwarzschild metric

The metric

We will not go through the derivation of the Schwarzschild solution from scratch. The solution
in Schwarzschild coordinates is as follows.

The Schwarzschild metric is

ds2 = −
(

1− 2GM

r

)
dt2 +

dr2

1− 2GM
r

+ r2(dθ2 + sin2 θdφ2) , (9.1)

where t ∈ (−∞,∞), (θ, φ) are the usual coordinates on a sphere, and as r → −r is equivalent
to M → −M we can assume r ≥ 0. The parameter M will be interpreted as a mass below,
hence we take M ≥ 0.

The Schwarzschild solution

It should be clear from the metric (9.1) that surfaces of constant t and r are spheres of area
4πr2. In this sense r is like a “radial” coordinate (but the form of the metric shows that the
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proper distance between r0 and r1, with r1 > r0, is not simply r1 − r0, as it would be if r
itself was measuring the distance from some origin). As well as being spherically symmetric, the
Schwarzschild spacetime is also invariant under t→ t+ c, thus it is time-independent. Thus, in
addition to the three Killing vectors associated to spherical symmetry, we have a timelike Killing
vector T ≡ ∂/∂t.

Now, we know that in practice a coordinate chart may only cover some portion of the manifold
it is describing. In the Schwarzschild metric, we have the usual issue regarding needing multiple
charts to cover the sphere. But more interestingly, there appear to be singularities at r =

2GM and at r = 0. This suggests that either (t, r) are not good coordinates everywhere in
Schwarzschild spacetime, or that there is something intrinsically wrong with the latter. We will
explore this in great detail later on.

The Schwarzschild radius of a body of mass M is given by rs = 2GM . Work this out for
the Sun. (You will need to reinsert some factor of c.) How does it compare to the actual
radius of the Sun?

Exercise 9.1 (The Schwarzschild radius)

Asymptotics

Another immediate observation is that whenM = 0, we recover Minkowski spacetime in spherical
coordinates. For M 6= 0, the Schwarzschild metric resembles Minkowski spacetime as r → ∞,
more precisely for r >> GM . As a result, we say that the Schwarzschild metric is asymptotically
flat.

In this asymptotic region, the metric (9.1) can be written

ds2 ≈ −
(

1− 2GM

r

)
dt2 +

(
1 +

2GM

r

)
dr2 + r2(dθ2 + sin2 θdφ2) , (9.2)

up to terms of order (GM/r)2. Let us define a new coordinate R by

r = R

√
1 +

2GM

R
. (9.3)

The inverse transformation is R =
√
r2 + (GM)2 − GM (assuming R ≥ 0). For r >> GM we

have R ≈ r, so also R >> GM . Then

2GM

r
=

2GM

R

1√
1 + 2GM

R

≈ 2GM

R
+O((GM/R)2) , (9.4)

dr =
dR√

1 + 2GM
R

(
1 +

GM

R

)
≈ dR+O((GM/R)2) . (9.5)

So to leading order the asymptotic metric can be written

ds2 ≈ −
(

1− 2GM

R

)
dt2 +

(
1 +

2GM

R

)(
dR2 +R2(dθ2 + sin2 θdφ2)

)
, (9.6)
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which is the metric describing a weak gravitational field, of the type we encountered in the
Newtonian limit of general relativity. The Newtonian gravitational potential is:

Φ = −GM
R

, (9.7)

from which we see that this describes the gravitational field produced by a spherically symmetric
source of mass M . For this reason, we will from now on assume M > 0.

Suppose that our communicative friends, Alice and Bob, have now made their way to
Schwarzschild spacetime. Alice is at rest at r = rA, and Bob is at rest at r = rB. Al-
ice sends signals at intervals ∆τA to Bob, who receives them at intervals ∆τB. Show that

∆τB =

(
1− 2GM

rB

)1/2(
1− 2GM

rA

)−1/2

∆τA , (9.8)

and hence that if Alice positions herself at rA = 2GM that ∆τB → ∞: Bob will see Alice
as being frozen at the Schwarzschild radius (equivalently, there is an infinite red shift).

Exercise 9.2 (Gravitational redshift)

9.2 Geodesics in Schwarzschild

Particles (representing Alice, Bob, planets, rocketships and suchlike) move on geodesics. To find
the geodesics of the Schwarzschild spacetime, it is convenient to start from the action

S =
1

2

∫
dλ gµν ẋ

µẋν =
1

2

∫
dλ
(
−f(r)ṫ2 + f(r)−1ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
, (9.9)

where
f(r) ≡ 1− 2GM

r
. (9.10)

The equations of motion for t, r, θ, φ then correspond to the geodesic equations, from which one
can also read off the components of the Levi-Civita connection. For t and φ we have

d

dλ

(
f(r)ṫ

)
= 0 , (9.11)

d

dλ

(
r2 sin2 θφ̇

)
= 0 . (9.12)

These can be integrated immediately giving

f(r)ṫ = E , r2 sin2 θφ̇ = L , (9.13)

where E and L are constants. These constants of motion reflect the fact that the Schwarzschild
metric, and hence the action (9.9), is independent of t and φ. We saw previously that for any
Killing vector Kµ that Kµ

dxµ

dλ is constant on a geodesic xµ(λ). Hence here E follows from the
presence of the timelike Killing vector Tµ = (1, 0, 0, 0), i.e T = ∂/∂t, and L from the Killing
vector Kµ

φ = (0, 0, 0, 1) i.e. Kφ = ∂/∂φ. For a timelike geodesic, we interpret E as the total

80



energy per unit rest mass of the massive particle, and L as the magnitude of angular momentum
per unit rest mass. This is based on interpreting E and L for a geodesic in the asymptotic region
where f(r) ≈ 1. Then for instance E = dt

dτ is the time component of the usual four-velocity.
For a null geodesic, corresponding to a massless particle, we have the freedom to rescale

the affine parameter λ → aλ, which means that the values of E and L are not directly physi-
cally meaningful. However, the ratio E/L is invariant under this rescaling, and can be used to
characterise null geodesics as we will see below.

There should be two other conserved quantities, corresponding to the remaining two rota-
tional Killing vectors. Let’s first write down the θ component of the geodesic equation:

d

dλ
(r2θ̇)− r2 sin θ cos θφ̇2 = 0 , (9.14)

or
d

dλ
(r2θ̇)− L2

r2

cos θ

sin3 θ
= 0 , (9.15)

We can solve this by supposing we pick coordinates such that θ = π
2 at λ = 0. Then an

immediate solution is given by θ(λ) = π
2 . This is guaranteed to be unique by the usual ODE

theory. This means we can always pick our coordinates (θ, φ) such that the geodesic is confined
to the equatorial plane of the S2 at θ = π

2 .
We can now interpret this result in terms of the conserved quantities associated to the other

Killing vectors. Together the three rotational Killing vectors should lead to conservation of
angular momentum. A vector can be specified in terms of its magnitude and its direction. To
specify the direction, we need to fix two numbers (as it is given by a three-component unit
vector). We can interpret then these two numbers as the remaining conserved quantities, which
we have chosen to specify by fixing our geodesic motion to θ = π

2 . (This reasoning in terms of
spatial vectors relies on intuition about conventional angular momentum in flat space, and so
strictly speaking we should only really interpret it in this way in the asymptotic region where
the Schwarzschild becomes flat.)

Rather than write down the r component of the geodesic equation, it is more convenient
to use the condition gµν

dxµ

dλ
dxν

dλ = −σ, where σ = 1 for timelike geodesics and σ = 0 for null
geodesics. On setting θ = π

2 this gives:

1

2
ṙ2 + V (r) =

1

2
E2 , (9.16)

where

V (r) =
1

2
f(r)

(
σ +

L2

r2

)
=

1

2

(
σ − 2GMσ

r
+
L2

r2
− 2GML2

r3

)
. (9.17)

The equation (9.16) describes effective one-dimensional particle motion in a potential V (r) given
by (9.17). Terms involving 1/r and 1/r2 occur in Newtonian dynamics of a particle moving in a
gravitational field. The 1/r3 term does not. This provides a relativistic correction to Newtonian
gravity.
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Null geodesics

The geodesic equations for a null geodesic are:

r2φ̇ = L ,

(
1− 2GM

r

)
ṫ = E ,

1

2
ṙ2 + V (r) =

1

2
E2 , (9.18)

where

V (r) =
L2

2r2
− GML2

r3
. (9.19)

Null geodesics in Schwarzschild

Let’s consider the form of the potential (9.19). For r → ∞, V → 0, while for r → 0,
V → −∞. We also see that V (r = 2GM) = 0. There is a turning point when V ′(r) = 0. This
happens at r = 3GM . We get the picture in figure 15).

V (r)

r

L2

54G2M2

3GM2GM

Figure 15: Effective potential, null geodesic

We can analyse the radial behaviour of geodesics using our intuition from Newtonian mechan-
ics. A massless particle incident from r =∞ with E2/2 less than the maximum of the potential,
Vmax = L2/(54G2M2), will hit the potential barrier when E2/2 = V (r) and bounce back to
infinity. A massless particle incident with energy greater than the maximum of the potential will
continue all the way to r = 0. At r = 3GM , where V ′(r) = 0, we can have circular orbits with
ṙ = 0. These will be unstable.

Define
b ≡

∣∣∣∣LE
∣∣∣∣ . (9.20)

This quantity is called the impact parameter. We can combine the geodesic equations for φ̇ and
ṙ as follows:

dφ

dr
=

dφ
dλ
dr
dλ

= −
L
r2√

E2 − 2V (r)
= −L

E

1

r2
√

1− b2

r2
+ 2GMb2

r3

, (9.21)

assuming for definiteness that ṙ < 0, i.e. the geodesic is ingoing (we will get the same result for
an outgoing geodesic). For large r, we have

dφ ≈ −L
E

dr

r2

1√
1− b2

r2

. (9.22)
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The substitution u = 1/r allows us to solve

dφ ≈ L

E

du√
1− b2u2

⇒ φ− α ≈ L

E

1

b
sin−1(bu) , (9.23)

where α is a constant of integration, so that (assuming L/E positive which we can arrange by
sending φ to −φ if we have to)

r sin(φ− α) = b . (9.24)

What does this describe? In Cartesian coordinates in the plane defined by θ = π
2 in which the

geodesic motion occurs,
b = y cosα− x sinα , (9.25)

which describes a straight line with slope tanα displaced a distance b from the origin, as demon-
strated in figure 16:

y

x

b

α α

x = b/ sinα

Figure 16: Asymptotic null geodesic

We can therefore characterise null geodesics incident from or returning to infinity in terms of
the value of b, which describes how far the geodesic is from a line of constant φ = α (the dashed
line in figure 16).

The condition that the null geodesic has energy allowing it to pass over the potential barrier
is

1

2
E2 >

L2

54G2M2
⇔ b <

√
27GM . (9.26)

So if b <
√

27GM , the null geodesic reaches the Schwarzschild radius, while if b >
√

27GM it
reflects off the barrier and returns to infinity, except that it may now be a distance b from a
different line of constant φ. This has the physical interpretation that light rays are bent in the
gravitational field due to a spherically symmetric body.

Consider a light ray then with b >
√

27GM , which is incident from infinity with impact
factor b, and then returns to infinity (see figure 17). By how much is it deflected? Let r0 denote
the turning point of the geodesic, i.e. the point at which V (r) = 1

2E
2, so the largest real value

r0 solving
1

2r2
0

− GM

r3
0

=
1

2b2
. (9.27)
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Figure 17: Light bending by the Sun

We have:

∆φ ≡
∫
dφ = −

∫ r0

∞

bdr

r2
√

1− b2

r2
+ 2GMb2

r3

+

∫ ∞
r0

bdr

r2
√

1− b2

r2
+ 2GMb2

r3

= 2

∫ u0

0

du√
1− u2 + 2GM

b u3
,

(9.28)

after letting u = b/r, so u0 = b/r0. For the Sun, GM/b is of order 10−6 for an impact parameter
approximately equal to the solar radius. We can therefore evaluate ∆φ assuming GM/b is small.
The naive method of expanding (9.28) in this quantity is problematic owing to the fact that the
combination in the square root vanishes at u = u0, so the term 2GMu3/b cannot be taken to
be smaller than the 1− u2 term. Furthermore we must take into account that the limit u0 also
depends on the GM/b. For small GM/b, we have u0 = 1 +GM/b. However, one way to proceed
is to factorise the square root and then Taylor expand, as follows:

1√
1− u2 + 2GM

b u3
=

1√
1− 2GM

b u

1√
1

1− 2GM
b

u
− u2

≈
1 + GM

b u√
1 + 2GM

b u− u2
. (9.29)

This leaves a straightforward integral which can be computed in terms of elementary functions,
giving:

∆φ ≈ π +
4GM

b
. (9.30)

Verify that you obtain the result (9.30).

Exercise 9.3 (Light deflection)

This prediction of General Relativity was famously verified by a team led by Eddington
during a solar eclipse in 1919, observing the deviation of stars from their known positions when
the Sun was positioned between them and the Earth.
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Figure 18: The rather delirious reporting by the New York Times, November 10th, 1919, of
Eddington’s observations.

Timelike geodesics

The geodesic equations for a timelike geodesic are:

r2φ̇ = L ,

(
1− 2GM

r

)
ṫ = E ,

1

2
ṙ2 + V (r) =

1

2
E2 , (9.31)

where

V (r) =
1

2

(
1− 2GM

r
+
L2

r2
− 2GML2

r3

)
(9.32)

Timelike geodesics in Schwarzschild

The potential (9.32) goes to 1/2 as r → ∞ and to −∞ as r → 0. At r = 2GM it vanishes.
There will be a turning point (and hence a circular orbit) where V ′(r) = 0, namely at

r± =
L2 ±

√
L4 − 12L2G2M2

2GM
. (9.33)

This means that for L2 < 12G2M2 there are no turning points, for L2 = 12G2M2 there is exactly
one turning point, and for L2 > 12G2M2 there is an unstable circular orbit at r− and a stable
circular orbit at r+. We can again graph the potential (figure 19):

For large L2, we have

r± =
L2

2GM

(
1±

√
1− 12G2M2

L2

)
≈ L2

2GM

(
1± 1∓ 6G2M2

L2

)
⇒ r+ →

L2

GM
, r− → 3GM .

(9.34)
Therefore the stable orbits obey 3GM < r− < 6GM < r+.

When L2 = 12GM , the circular orbits coincide at r = 6GM . This is known as the innermost
stable circular orbit (ISCO).

An immediate application of timelike geodesics is to describe the motion of planets in orbit
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Figure 19: Effective potentials, timelike geodesic, with GM = 1.

around the Sun. We can combine the equations for φ̇ and ṙ to produce(
dr

dφ

)2

=
r4

L2

(
E2 − 1 +

2GM

r
− L2

r2
+

2GML2

r3

)
. (9.35)

Let z = L2

GMr . Then, letting z
′ ≡ dz

dφ , the equation (9.35) becomes

(z′)2 =
L2(E2 − 1)

(GM)2
+ 2z − z2 +

2(GM)2

L2
z3 . (9.36)

Differentiating this we obtain a second-order ODE:

z′′ = 1− z +
3(GM)2

L2
z2 . (9.37)

We will solve this perturbatively in α ≡ 3(GM/L)2. Let z = z0 +z1, where z0 is the zeroth order
solution to

z′′0 = 1− z0 , (9.38)

and z1 is the first order solution to
z′′1 = −z1 + αz2

0 . (9.39)

We solve (9.38) by
z0(φ) = 1 + e cosφ . (9.40)

This describes a standard Newtonian elliptical orbit.

The equation for an ellipse centred at the origin (x, y) = (0, 0) is x2/a2 + y2/b2 = 1. The

eccentricity of the ellipse is e =
√

1− b2

a2
. The focal points of the ellipse are at (0,±ea). In

polar coordinates centred at the focus (0, ea), we have x = r cosφ+ ea and y = r sinφ, and
the equation for the ellipse can be written as r(1 + e cosφ) = a(1− e2).

Ellipses
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We now substitute the result for z0 into the equation (9.39). This gives

z′′1 = −z1 + α

(
1 +

1

2
e2 + 2e cosφ+

1

2
e2 cos 2φ

)
, (9.41)

and you can check that this is solved by:

z1(φ) = α

(
1 +

1

2
e2 + eφ sinφ− 1

6
e2 cos 2φ

)
. (9.42)

Our full solution, to the order we are working at, is then

L2

GM
= r (1 + e cosφ+ αeφ sinφ) + rα

(
1 +

1

2
e2 − 1

6
e2 cos 2φ

)
≈ r (1 + e cos ([1− α]φ)) + rα

(
1 +

1

2
e2 − 1

6
e2 cos 2φ

)
.

(9.43)

The crucial result is that this is no longer 2π-periodic in φ, and so does not define a closed ellipse.
Rather, the orientation of the ellipse precesses with each orbit.

Now, the perihelion of the orbit is defined as the position of closest approach to the Sun.
This occurs whenever

e cos ([1− α]φ)− αe2 1

6
cos 2φ (9.44)

is largest, which to O(α) is at:

φ =
2πn

1− α
≈ 2πn(1 + α) . (9.45)

Hence the angular precession of the perihelion is

∆φ = 2πα =
6π(GM)2

L2
. (9.46)

Now, the zeroth order solution, which described an ellipse, was

L2

GM
≈ r(1 + e cosφ) , (9.47)

which implies that L2 ≈ GM(1 − e2)a, where a can be taken to be the semi-major axis of the
ellipse. Therefore, we have

∆φ =
6πGM

(1− e2)a
. (9.48)

Clearly, a will be smallest, and hence ∆φ largest, for the planet Mercury. The numbers work
out in this case such that ∆φ is 43 arcseconds a century (an arcsecond is 1/60 of a degree). The
observed precession is in fact 5601 arcseconds a century. However, Newtonian effects related to
the motion of the planet Earth, and the gravitational effects of the other planets on Mercury,
account for 5557 arcseconds a century. The prediction of general relativity exactly accounts for
the rest!
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9.3 The Schwarzschild black hole

Coordinate and curvature singularities

The Schwarzschild metric (9.1) in Schwarzschild coordinates,

ds2 = −
(

1− 2GM

r

)
dt2 +

dr2

1− 2GM
r

+ r2(dθ2 + sin2 θdφ2) , (9.49)

appears to suffer from singularities at r = 2GM and r = 0. We must investigate whether these are
intrinsic properties of the geometry, or mere artefacts of the choice of coordinates. Therefore we
seek coordinate independent quantities that may contain information about what is happening as
r varies. Singularities in the metric would be expected to potentially show up in the curvature of
the geometry, as measured by the Riemann curvature tensor. A natural coordinate independent
quantity constructed from the Riemann curvature tensor is the Ricci scalar, R. However, the
Schwarzschild metric is a vacuum solution of the Einstein equations, so both the Ricci tensor
and scalar vanish, Rµν = 0, R = 0. The simplest non-zero “curvature invariant” that can be
constructed is the Kretschmann scalar, K ≡ RµνρσRµνρσ. For Schwarzschild, one finds

K =
48G2M2

r6
. (9.50)

This is perfectly well-behaved at r = 2GM but blows up as r → 0. This suggests that the metric
singularity at r = 2GM is only an apparent singularity, and will not appear in other coordinate
choices, whereas the singularity at r = 0 is an unavoidable part of the spacetime. The former is
called a coordinate singularity. The latter is called a curvature singularity.

To understand how to extend our charts to past r = 2GM , and to understand to what extent
we should be concerned about the presence of a singularity in spacetime itself, we need to find
new coordinates.

Eddington-Finkelstein coordinates

The starting point is to consider radial null geodesics, obeying(
1− 2GM

r

)
dt2 =

dr2

1− 2GM
r

, (9.51)

and hence
dt

dr
= ±

(
1− 2GM

r

)−1

, (9.52)

where the plus sign corresponds to outgoing geodesics (with dr/dλ > 0) and the minus sign to
ingoing geodesics (with dr/dλ < 0).

A solution to the equation (9.52) is provided by

t∓ r∗ = constant , (9.53)

where
r∗ = r + 2GM ln

∣∣∣ r

2GM
− 1
∣∣∣ , (9.54)

is known as the tortoise coordinate, such that dr∗ = dr/(1− 2GM/r).
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The Schwarzschild metric in coordinates (t, r∗, θ, φ) is

ds2 = −
(

1− 2GM

r(r∗)

)
(dt2 − dr2

∗) + r2(r∗)(dθ
2 + sin2 θdφ2) , (9.55)

where t ∈ (−∞,∞), r∗ ∈ (−∞,∞) and r(r∗) is defined by (9.54).

The Schwarzschild solution (tortoise coordinate)

We next define the Eddington-Finkelstein coordinates which are adapted to these ingoing or
outgoing null geodesics:

v = t+ r∗ , u = t− r∗ , (9.56)

in the sense that v = constant defines ingoing radial null geodesics and u = constant defines
outgoing radial null geodesics.

We now have the freedom to choose any two of (t, r, u, v) as coordinates.

The Schwarzschild metric in coordinates (v, r, θ, φ) is

ds2 = −
(

1− 2GM

r

)
dv2 + 2dvdr + r2(dθ2 + sin2 θdφ2) , (9.57)

where v ∈ (−∞,∞), r ∈ (0,∞).

The Schwarzschild solution (ingoing Eddington-Finkelstein coordinates)

Although the component gvv of the metric in these coordinates vanishes at r = 2GM , the
whole metric and its inverse are well-defined at this point. This shows that the apparent sin-
gularity at this point was indeed a coordinate singularity. In ingoing Eddington-Finkelstein
coordinates, there is no coordinate singularity, and we can extend the Schwarzschild solution
past the point r = 2GM .

In the region r < 2GM , we could equally well transform to coordinates (t′, r) defined by
t′ = v − r∗(r), using (9.54), such that the Schwarzschild metric takes the same form as in the
region r > 2GM , namely

ds2 = −
(

1− 2GM

r

)
(dt′)2 +

dr2

1− 2GM
r

+ r2(dθ2 + sin2 θdφ2) . (9.58)

However, now 1 − 2GM
r < 0. This means that in these coordinates, r is the timelike direction

and t′ a spacelike direction!
In Eddington-Finklestein coordinates, ingoing radial null geodesics are described by

v = constant , (9.59)

and outgoing ones by

v − 2r∗ = constant⇒ v = constant + 2r + 4GM ln
∣∣∣ r

2GM
− 1
∣∣∣ . (9.60)

For r > 2GM , these outgoing null geodesics tend towards the expected straight lines given by
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t = constant + r for r →∞. Conversely, as r → 2GM (from above), v → −∞.
For r < 2GM , the situation changes substantially. As r → 0, the geodesics reach the point

v = constant. As r → 2GM , they tend again to v → −∞.
This means that for r > 2GM the outgoing geodesics reach infinity. However for r < 2GM ,

the “outgoing” geodesics reach the singularity at r = 0. We draw this situation in figure 21.
As r is the timelike direction in the region r < 2GM , this singularity in fact lies in the future

for any observer. We can see this by considering the future “lightcones” delineated by the curves
of the ingoing and outgoing null geodesics. As we approach and pass beyond r = 2GM these
become more and more tilted towards the singularity at r = 0.

u = const

v = const

u = const

r = 2GM

r = 0

v

Figure 20: Radial null geodesics in ingoing EF coordinates.

The extension of the Schwarzschild spacetime beyond the r = 2GM coordinate singularity of
the original metric reveals that an infalling observer will experience nothing unusual at r = 2GM .
However, as we have seen at the start of this section, to an observer at r > 2GM they will
appear never to reach r = 2GM , owing to the infinite time delay (or redshift) of signals sent
from r = 2GM to infinity. Furthermore, no signals sent from r < 2GM will ever make it past
r = 2GM , and once the infalling observer has reached the r < 2GM region they will inexorably
hit the singularity in finite proper time: shortly before which they will be ripped apart by
infinitely strong tidal forces as the curvature blows up. Alas, poor Alice (or Bob).

So, despite the fact the infalling observer sees nothing unusual at r = 2GM , this still marks
an important feature of the spacetime. The region with r < 2GM is a black hole: a region from
which no signals can reach infinity. The surface r = 2GM is called an event horizon. This surface
prevents observers remaining at r > 2GM from gaining any information about what happens
inside the black hole. The existence of an event horizon is a global property of spacetime, i.e.
one needs to know the complete causal evolution of the geometry to know if there is indeed such
a horizon.

Note that everything we have said so far is absolutely true in classical physics. The interplay
between black holes and quantum physics leads to a more subtle situation. In particular, quantum
mechanics implies that black holes are not absolutely black but in fact radiate. It is an open
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question to understand exactly how, or indeed more dramatically if, information about matter
that has fallen into the black hole is contained in black hole radiation. As one approaches the
curvature singularity, the strength of the gravitational field blows up, and it should be expected
that “quantum gravity” effects will become imporant and hopefully rid us of this meddlesome
infinity. It is another open question as to whether quantum gravity further implies that the
structure of a black hole is in fact modified at the horizon itself, as has been argued from various
viewpoints.

In short, black holes are very interesting and a sure sign that we do not completely understand
gravity. Unfortunately, going into more details is beyond the scope of this course. As a result,
we will now dive back into some further changes of coordinates.

We could have chosen to use u instead of v.

The Schwarzschild metric in coordinates (u, r, θ, φ) is

ds2 = −
(

1− 2GM

r

)
du2 − 2dudr + r2(dθ2 + sin2 θdφ2) , (9.61)

where u ∈ (−∞,∞), r ∈ (0,∞).

The Schwarzschild solution (outgoing Eddington-Finkelstein coordinates)

This gives a different extension of Schwarzschild. One way to see this is to realise that now
outgoing radial null geodesics with u = constant extend from r = 0 out past r = 2GM and to
infinity, whereas in the coordinates (t, v) and metric (9.61), the outgoing radial null geodesics
could never pass from the r < 2GM to r > 2GM region. Furthermore, ingoing null geodesics that
start from r > 2GM never reach r < 2GM . Thus in all respects, this extension of Schwarzschild
is the opposite of the one previously considered. We could say that it describes a white hole,
rather than a black hole.

The extension using the ingoing Eddington-Finkelstein coordinates (v, r) in fact follows radial
null geodesics into the future, whereas the outgoing Eddington-Finkelstein coordinates (u, r) in
fact follows outgoing radial geodesics into the past.

Kruskal-Szekeres coordinates

To understand the complete structure of the Schwarzschild spacetime, we consider first using
both u and v as coordinates instead of t and r.

The Schwarzschild metric in coordinates (u, v, θ, φ) is

ds2 = −
(

1− 2GM

r(u, v)

)
dudv + r2(u, v)(dθ2 + sin2 θdφ2) , (9.62)

where u, v ∈ (−∞,∞), and r(u, v) is defined by 1
2(v − u) = r∗(r), using (9.54).

The Schwarzschild solution (ingoing & outgoing Eddington-Finkelstein coordinates)

In these coordinates, the point r = 2GM is now at v = −∞ or u = +∞, where the metric
degenerates. To bring this point in to a finite coordinate value, and to remove the coordinate
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Figure 21: Radial null geodesics in outgoing EF coordinates.

singularity, we define Kruskal-Szekeres coordinates

U = −e−
u

4GM , V = e
v

4GM , (9.63)

such that U < 0 and V > 0. Note that

UV = −e
r∗

2GM = −e
r

2GM

( r

2GM
− 1
)
, (9.64)

V

U
= −e

t
2GM . (9.65)

The Schwarzschild metric in coordinates (U, V, θ, φ) is

ds2 = −32(GM)3

r(U, V )
e−

r(U,V )
2GM dUdV + r2(U, V )(dθ2 + sin2 θdφ2) , (9.66)

where r(U, V ) is defined implicitly by equation (9.64).

The Schwarzschild solution (Kruskal-Szekeres coordinates)

Given this form of the metric, we extend the coordinate ranges of (U, V ) to also include U ≥ 0

and V ≥ 0, defining the function r(U, V ) appearing in the metric by (9.64) for arbitrary values of
U and V . The metric (9.66) then describes the maximal extension of the original Schwarzschild
spacetime geometery.

The coordinate singularity at r = 2GM appears at UV = 0, from (9.64), thus either at U = 0

or V = 0. Meanwhile the genuine curvature singularity at r = 0 appears at UV = 1, which has
two branches (U, V either both positive or both negative).

The maximally extended Schwarzschild spacetime is illustrated in figure 22. This is known
as the Kruskal diagram of Schwarzschild. We see that the spacetime divides into four regions:

• Region I: U < 0, V > 0. This is the region covered by the original Schwarzschild coordi-
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nates.

• Region II: U > 0, V > 0. This is the black hole region discovered by going to ingoing
Eddington-Finkelstein coordinates (which cover regions I and II).

• Region III: U < 0, V < 0. This is the white hole region discovered by going to outgoing
Eddington-Finkelstein coordinates (which cover regions I and III).

• Region IV: U > 0, V < 0. This a new region, which is again asymptotically flat, which
appears here for the first time. It cannot be reached from the original region I.

r
=

2G
M
, t

=
+
∞

V

r
=

2G
M
, t =
−∞

U

r = 0

r = 0

I

II

IV

III

r = const r = const

t = const

t = const

Figure 22: Kruskal diagram of Schwarzschild. Dashed lines are lines of constant r; thin lines are
lines of constant t.

Technically, the coordinates U and V are the lightcone version of the Kruskal-Szekeres coor-
dinates, and we could define T and R such that

U = T −R , V = T +R . (9.67)

In this case, T would appear as the vertical axis on the diagram 22, and R as the horizontal.
Observe that constant V corresponds to ingoing radial null geodesics and constant U to outgoing
null geodesics.

Black holes and stellar collapse

The solution depicted in figure 22 is sometimes known as the eternal black hole. It can be viewed
as an idealised solution of the vacuum Einstein equations in that it describes an entire “universe”
with no matter and with an already intricate causal structure involving the white hole in the far
past and the black hole in the far future. We do not expect this full solution to be physically
relevant.
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VU

r = 0

r = 0 I

II

Figure 23: Kruskal diagram of a collapsing star.

Astrophysical black holes are the result of
stellar collapse. When stars use up their avail-
able fuel, they begin to collapse under the
gravitational attraction of their constituent
matter. This gravitational attraction can be
balanced by pressure.

We depict the modification to the Kruskal
diagram corresponding to stellar collapse in
figure 23. The dashed line corresponds to the
surface of the star, and the yellow region to
the star interior. This region is described by
some different solution to the Einstein equations: Birkhoff’s theorem guarantees that the exterior
region is still Schwarzschild.
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10 Cosmology

We now turn to solutions of the Einstein equations that describe the whole universe. Again, we
will appeal to symmetry on physically reasonably grounds to help us. The basic idea we will use
is the modern version of the Copernican principle, namely, that not only is the position of planet
Earth not special, nowhere is special. This means that we observe space to be isotropic (looks
the same in all directions) and to be homogeneous (to have the same metric everywhere).

A manifold with metric (M, g) is isotropic at the point p ∈M if given (unit vectors) X,Y ∈
TpM there is an isometry φ such that φ(p) = p and for which the vector X is pushed forward
into Y , i.e. φ?(X) = Y , where φ?(X)(f) = X(f ◦ φ).

Viewed as a change of coordinates, this means given coordinates xµ around p, we can find
an isometry φ : xµ 7→ yµ(x) such that Xµ 7→ (∂yµ/∂xν)Xν = Y µ.

Isotropic

A manifold with metric (M, g) is homogeneous if for all points p, q ∈ M , there exists an
isometry φ such that φ(p) = q.

Homogeneous

A manifold which is isotropic at all points p is homogeneous; conversely a manifold which is
homogeneous and isotropic at one point is isotropic at all points. In general though there need
not be a connection between the two properties.

The spacetime manifold that describes our universe is assumed to be isotropic and homoge-
neous in the spatial directions only: observations reveal that the universe certainly is not the
same in both the past and future directions, for instance, as it is expanding. However, the space-
times that are fully isotropic and homogeneous are of great interest and importance in cosmology
and theoretical physics more generally. Therefore we will first describe these.

10.1 Maximally symmetric spaces

A manifold that is both homogeneous and isotropic everywhere is maximally symmetric. This
means that it has the same number of isometries as flat space, Rn, with the usual Euclidean
metric. The isometries of the latter are n translations and 1

2n(n− 1) rotations. Intuitively, ho-
mogeneity corresponds to invariance under translations, while isotropy corresponds to invariance
under rotations.

The Riemann curvature tensor of a maximally symmetric space is:

Rµνρσ = κ(gµρgνσ − gµσgνρ) , κ ≡ R

n(n− 1)
, (10.1)

where κ (and hence the Ricci scalar) is constant. Therefore they are also examples of a space of
constant curvature.
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Euclidean maximally symmetric spaces: flat space, spheres and hyperbolic space

The basic examples of such spaces, with Euclidean metric, for κ = 0, κ < 0 and κ > 0, are:

1. (κ = 0) flat space Rn with the flat metric.

2. (κ > 0) the sphere Sn of radius L > 0, defined by the equation

(x1)2 + . . . (xn+1)2 = L2 , (10.2)

in Rn+1. The curvature is given in terms of κ = 1
L2 .

3. (κ < 0) the hyperbolic space Hn, defined by the equation

− (x0)2 + (x1)2 + . . . (xn)2 = −L2 , (10.3)

in Rn+1 with the Minkowski metric. This gives a double-sheeted hyperboloid, and we take
Hn to correspond to one of the sheets. The curvature is given in terms of κ = − 1

L2 .

For cosmological applications, we will need to know the n = 3 examples. For the three-sphere
S3, define coordinates on the surface (10.2) by

x1 = L sinχ sin θ cosφ ,

x2 = L sinχ sin θ sinφ ,

x3 = L sinχ cos θ ,

x4 = L cosχ ,

(10.4)

where χ ∈ (0, π), θ ∈ (0, π), φ ∈ (0, 2π). The flat metric evaluated on these coordinates gives
the metric on the three-sphere:

ds2 = L2
(
dχ2 + sin2 χ(dθ2 + sin2 θdφ2)

)
. (10.5)

(As for the two-sphere, these coordinates do not cover the whole manifold, but one can easily
introduce additional charts.)

For the hyperbolic space H3, define coordinates on the surface (10.3) by

x0 = L coshχ ,

x1 = L sinhχ sin θ cosφ ,

x2 = L sinhχ sin θ sinφ ,

x3 = L sinhχ cos θ ,

(10.6)

where χ ∈ (0,∞), θ ∈ (0, π), φ ∈ (0, 2π). The flat metric evaluated on these coordinates gives
the metric on the hyperbolic space:

ds2 = L2
(
dχ2 + sinh2 χ(dθ2 + sin2 θdφ2)

)
. (10.7)

(Again, these coordinates do not cover the whole manifold, but one can easily introduce additional
charts.)
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Lorentzian maximally symmetric spacetimes: Minkowski spacetime, de Sitter and
anti-de Sitter

First, let’s consider the Einstein equation for a maximally symmetric spacetime (in four dimen-
sions). The Einstein tensor, from contracting (10.1), is Gµν = −3κgµν . Therefore such a space
solves the Einstein equation with cosmological constant and vanishing energy-momentum tensor,
Gµν + Λgµν = 0, with Λ = 3κ. We conclude that such spacetimes are vacuum solutions of the
Einstein equations, with a non-zero cosmological constant.

Depending now on the sign of Λ, we have the following basic examples (here we specialise to
four-dimensional spacetimes, on grounds of immediate physical applicability, but these can all
be defined in general dimensions).

1. (Λ = 0) flat spacetime Rn with the flat Minkowski metric

2. (Λ < 0) anti-de Sitter (adS) spacetime4, defined by the equation

− (x0)2 − (x5)2 + (x1)2 + (x2)2 + (x3)2 = −L2 , (10.8)

in (a fictitious) R5 with indefinite signature (2, 3). This is invariant under SO(2, 3)

“Lorentz” transformations of the higher dimensional space. This gives the required 1
25(5−

1) = 10 isometries of a four-dimensional maximally symmetric spacetime. Define coordi-
nates on this curve (10.8) by

x0 = L sin t cosh ρ ,

x5 = L cos t cosh ρ ,

x1 = L sinh ρ cos θ ,

x2 = L sinh ρ sin θ cosφ ,

x3 = L sinh ρ sin θ sinφ ,

(10.9)

with ρ ∈ (0,∞), (θ, φ) the usual two-sphere coordinates, and naively a periodic time
coordinate, t ∈ [0, 2π]. This gives however a time independent metric:

ds2 = L2
(
− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2

2

)
. (10.10)

It therefore makes sense to extend the range of the timelike direction to t ∈ (−∞,∞).
This avoids encountering the causal difficulty of closed timelike curves. The cosmological
constant is Λ = − 3

L2 .

3. (Λ > 0) de Sitter (dS) spacetime, defined by the equation

− (x0)2 + (x1)2 + · · ·+ (x4)2 = L2 , (10.11)

in (a fictitious) R5 with the Minkowski metric. This is invariant under SO(1, 4) Lorentz
transformations of the higher dimensional space. This gives the required 1

25(5 − 1) = 10

isometries of a four-dimensional maximally symmetric spacetime. Define coordinates on
4The spacetime that launched 17,000 papers (since 1997, when many readers of these notes presumably did

not exist).
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the curve (10.11) by

x0 = L sinh t
L ,

x1 = L cosh t
L sinχ sin θ cosφ ,

x2 = L cosh t
L sinχ sin θ sinφ ,

x3 = L cosh t
L sinχ cos θ ,

x4 = L cosh t
L cosχ ,

(10.12)

where t ∈ (−∞,∞), and (χ, θ, φ) are S3 coordinates. The metric of de Sitter spacetime is
then:

ds2 = −dt2 + L2 cosh2 t
L(dχ2 + sin2 χdΩ2) . (10.13)

Note that the part of the metric multiplied by cosh2 t
L is the S3 metric (10.5). The

cosmological constant is Λ = 3
L2 .

10.2 Penrose diagrams

The causal structure of spacetimes can be analysed using Penrose diagrams. The idea here is to
find coordinate transformations which map a given metric to an overall scale factor times some
simpler metric with the same causal structure – i.e. the same light cones – as the original one.
We can express this by writing the simpler (but unphysical) metric as ḡµν = Ω2gµν , where gµν
is the original metric we are analysing, and Ω2 > 0 is the scale or conformal factor. Positivity of
Ω2 implies that curves that are timelike, spacelike or null in one metric remain so in the other.

For the dS metric, (10.13), define a new time coordinate η by

cosh t
L =

1

cos η
, (10.14)

with η ∈ (−π
2 ,

π
2 ). Then the metric becomes

ds2 =
L2

cos2 η

(
−dη2 + dχ2 + sin2 χdΩ2

)
. (10.15)

Using Ω2 = L−2 cos2 η we find the unphysical metric

ds̄2 = −dη2 + dχ2 + sin2 χdΩ2 . (10.16)

In fact, this metric is also a (non-vacuum) solution to the Einstein equations, and with the
coordinate range of η extended to η ∈ (−∞,∞) is known as the Einstein static universe. We
have found that de Sitter spacetime is conformal to the patch of the Einstein static universe with
η ∈ (−π

2 ,
π
2 ).

We can depict this patch as a two-dimensional diagram, with axes η and χ, and each point
representing a two-sphere of radius sin2 χ. Lines at forty five degrees represent null paths (at
constant θ and φ).

So, what can we infer about the causal structure of de Sitter? Let’s send in Alice and Bob,
as shown in figure 25. Suppose Alice sits (without loss of generality) at χ = 0, so that her
worldline is a straight vertical line on the Penrose diagram. Meanwhile Bob follows a similar
vertical worldline at a different value of χ.
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χ = 0

η = +π
2

η = −π
2 χ = π

Figure 24: Penrose diagram of de Sitter

χ = 0

η = +π
2

η = −π
2 χ = π

p

q

A B

Figure 25: Horizons in de Sitter: the black line is the cosmological horizon of the observer A,
and the vertical gray line is the particle horizon at p.

At the point p, Alice can only have received signals from her past lightcone at p, with
boundary defined by η = ηp − χ. We define the particle horizon at p as the boundary of the
region containing points from a which a signal can be sent to reach p. It is the distance beyond
which Alice cannot “see” at p. Note that any signals sent by Bob at sufficiently early times will
lie beyond the particle horizon at p; at p Alice has no information about the existence, thoughts,
doubts, prayers, hopes, fears or other attributes of Bob.

Furthermore, by the time Alice reaches future infinity at η = +π
2 , she can only have received

signals from events that occurred within the region bounded by the cosmological horizon (the
black line at 45 degrees in figure 25, running from (η, χ) = (−π

2 , π) to (η, χ) = (+π
2 , 0) ).

Alice will receive no signal from events beyond this horizon no matter how long she waits. In
particular, any signals sent by Bob from beyond the point q, when his worldline intersects Alice’s
cosmological horizon, will never reach Alice; and indeed a signal from q will take infinitely long
to reach Alice.

Now let’s turn to anti-de Sitter spacetime. This time we make the following coordinate
transformation:

cosh ρ =
1

cosχ
, (10.17)

such that the AdS metric (10.10) becomes

ds2 =
L2

cos2 χ

(
−dt2 + dχ2 + sin2 χdΩ2

)
. (10.18)

Defining Ω2 = L−2 cos2 χ we see that the AdS metric is also conformal to a patch of the Einstein
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static universe, but now with 0 < χ < π
2 and −∞ < t <∞.

χ = 0

t

χ = π
2

Figure 26: Penrose diagram of anti-de Sitter

The Penrose diagram is illustrated, somewhat minimally, in figure 26. Notice that spatial
infinity, at χ = π

2 , is a timelike surface.

10.3 FLRW solutions

Spacetimes that describe realistic models of the universe can be found by assuming that only
spatial hypersurfaces are homogeneous and isotropic. A spatial hypersurface is defined by the
requirement that any vector tangent to it is spacelike. The spacetimes we are interested in can
be viewed as a foliation R×M3, where the time direction is labelled by R and for each value of
time we have a spatial three-dimensional manifold M3, which is maximally symmetric.

We can choose coordinates such that the metric is

ds2 = −dt2 + a2(t)γij(x)dxidxj . (10.19)

These are known as comoving coordinates. An observer is comoving if their four-velocity never
has a component tangent to the spatially homogeneous slices; that is, their four-velocity must
be (proportional to) the unit normal to these surfaces. In the comoving coordinates used in the
metric (10.19), this unit normal is just u = ∂/∂t. The worldline of a comoving observer is thus
specified by t = τ , xi = constant. Note that it is only comoving observers which see the spatial
hypersurfaces as being isotropic. Observers whose worldlines involve non-constant xi pick out a
preferred direction in the spatial hypersurface by virtue of their non-zero velocity within it.

The spatial metric γij being a three-dimensional homogeneous and isotropic metric is thus a
metric of constant curvature, and can always be (locally) put into the form of either the metric
on the three-sphere, hyperbolic space, or flat space. Explicitly,

ds2 = −dt2 + a2(t)dσ2
k , dσ2

k ≡
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2) , (10.20)

where k = 1 corresponds to the three-sphere S3, k = 0 to flat space, and k = −1 to the hyperbolic
space H3. To see this, define a new coordinate χ such that

dχ =
dr√

1− kr2
⇒ r =


sinχ k = 1 ,

χ k = 0 ,

sinhχ k = −1 .

(10.21)
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Then the spatial part of the metric (10.20) is seen to correspond to the metrics (10.5) and (10.7)
for k = ±1, and to the three-dimensional flat metric in spherical coordinates for k = 0, with the
overall scale set by the function a(t). This function is therefore known as the scale factor.

The metric (10.20) is called the FLRW universe, after Friedmann, Lemaitre5, Robertson and
Walker.

Calculate the Christoffel symbols and hence Ricci tensor and Ricci scalar of the FLRW
metric (10.20).

Exercise 10.1 (FLRW curvature)

We want the FLRWmetric to solve the Einstein equations for some realistic energy-momentum
tensor. The Einstein tensor Gµν = Rµν − 1

2Rgµν follows from the Ricci tensor,

R00 = −3ä

a
, R0i = 0 , Rij = (aä+ 2ȧ2 + 2k)γij , (10.22)

and Ricci scalar

R = 6

(
ä

a
+

(
ȧ

a

)2

+
k

a2

)
, (10.23)

where a dot denotes the derivative with respect to t. Hence

G00 = 3

((
ȧ

a

)2

+
k

a2

)
, G0i = 0 , Gij = −(2aä+ ȧ2 + k)γij . (10.24)

A natural candidate for the energy-momentum tensor sourcing the FLRW universe is that of a
perfect fluid, with

Tµν = (ρ+ p)UµUν + pgµν , (10.25)

and with the fluid at rest in co-moving coordinates, Uµ = (1, 0, 0, 0).
This immediately gives the Friedmann equations for the time evolution of the FLRW universe.

The Einstein equations for an FLRW metric sourced by a comoving perfect fluid are:(
ȧ

a

)2

=
8πG

3
ρ− k

a2
, (10.26)

ä

a
= −4πG

3
(ρ+ 3p) . (10.27)

Friedmann equations

In practice, we only really need (10.26), as it is sufficient to determine a once we also take into
account conservation of the energy-momentum tensor, ∇νTµν = 0, implying

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 , (10.28)

5Belgian physicist and Catholic priest.
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or
d

dt
(a3ρ) = −p d

dt
(a3) . (10.29)

The three main examples of a perfect fluid that are relevant cosmologically are matter, radiation,
and vacuum energy. Each of these has an equation of state

p = wρ , w =


0 matter ,
1
3 radiation ,

−1 vacuum energy .

(10.30)

Equation (10.28) becomes ρ̇/ρ = −3(1 + w)ȧ/a, hence

ρ(t) = ρ0

(
a

a0

)−3(1+w)

, (10.31)

where the subscript 0 refers to the quantity at the present time.
As the universe expands, a(t) grows and we see that the energy density of the different

example fluids behaves in different ways. For matter, ρm ∼ a−3 (a scaling by the increased
volume). For radiation, ρr ∼ a−4 (a scaling by the increased volume plus an extra redshift
effect). For vacuum energy, ρΛ ∼ a0. Hence, in the far future ρΛ (if present) will dominate over
matter and radiation.

The ratio of ȧ to a plays an important role in cosmology. It measure the rate of change of
the scale factor.

We define the Hubble parameter to be

H =
ȧ

a
. (10.32)

The value of H at the present, H0, is known as Hubble’s constant.

Hubble parameter

Consider two comoving particles (representing individual galaxies). At time t, their proper
distance is d = a(t)R, where R denotes their distance measured using the spatial metric γij . The
rate of change of proper distance is ḋ = ȧR = ȧaR/a = Hd. Thus the relative velocity of the
two galaxies is proportional to their distance, with the proportionality “constant” the Hubble
parameter. This is Hubble’s law.

Another useful quantity involves the density. We define the density parameter to be

Ω =
8πG

3H2
ρ ≡ ρ

ρcrit
. (10.33)

We can rewrite the Friedmann equation (10.26) as

Ω− 1 =
k

H2a2
, (10.34)

so that the sign of k, and hence the precise nature of the FLRW metric, is determined by the
value of Ω and hence of ρcrit = 3H2

8πG . Specifically:
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• if ρ < ρcrit then Ω < 1 and k = −1. In this case, we say the universe is open (the spatial
hypersurfaces are hyperbolic).

• if ρ = ρcrit then Ω = 1 and k = 0. In this case, we say the universe is flat (the spatial
hypersurfaces are flat).

• if ρ > ρcrit then Ω > 1 and k = +1. In this case, we say the universe is closed (the spatial
hypersurfaces are spheres).

Current measurements suggest that the current value of Ω is approximately 1.
Let’s consider a universe which is dominated by one of matter, radiation or vacuum energy.

The Friedmann equation is: (
ȧ

a

)2

=
8πG

3
ρ0

(
a

a0

)−3(1+w)

− k

a2
. (10.35)

Λ-dominated universes (Λ > 0)

Let’s start in a universe containing only a (positive) cosmological constant. If the universe keeps
expanding, this will correspond to the far future of our universe. Then w = −1 and we have

ȧ2 = C2

(
a2 − k

C2

)
, C2 ≡ 8πGρ0

3
. (10.36)

Let’s solve this for a closed universe, k = 1. After integrating we have

a(t) =
A

2

(
eCt +

1

C2A2
e−Ct

)
, (10.37)

where A is a constant of integration. Shifting t→ t− C−1 ln(AC) we can write this as

a(t) =
1

C
cosh(Ct) . (10.38)

The FLRW metric is thus
ds2 = −dt2 +

1

C2
cosh2(Ct)dσ2

k=1 , (10.39)

where dσ2
k=1 is the metric on the sphere S3. This is the metric of de Sitter spacetime, with

L = 1/C.
In fact, for k = 0 and k = −1, the FLRW solution also turns out to correspond to de Sitter,

in coordinates giving what are known as the “flat slicing” and “open slicing”.

Consider the definition of the de Sitter spacetime as the hyperboloid (10.11). Define the
following parametrisation:

x0 = L sinh
t̂

L
+
r2

2L
e
t̂
L , x4 = L cosh

t̂

L
− r2

2L
e
t̂
L , xi = e

t̂
L x̂i , (10.40)

where r2 ≡ δij x̂ix̂j , i, j = 1, 2, 3.

Exercise 10.2 (Flat slicing of de Sitter)
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1. Show that these coordinates indeed obey the defining equation (10.11).

2. Show that they give the metric for de Sitter spacetime as

ds2 = −dt̂2 + e2 t̂
L δijdx̂

idx̂j . (10.41)

This is called the flat slicing, because surfaces of constant t̂ are flat.

3. Show that the flat FLRW solution for a universe dominated by a positive cosmological
constant corresponds to the flat slicing of de Sitter.

4. The coordinates (10.40) are only defined for x0 + x4 ≥ 0. By equating (10.40) to
the original coordinates used, (10.12), (using spherical polar coordinates for the x̂i),
show that on the Penrose diagram, this corresponds to the left upper triangular region
η ≥ χ− π

2 .

Consider the definition of the de Sitter spacetime as the hyperboloid (10.11). Define the
following parametrisation, with (here ξ ∈ (0,∞)):

x0 = L sinh
t̃

L
cosh ξ , x4 = L cosh

t̃

L
,

x1 = L sinh
t̃

L
sinh ξ sin θ cosφ ,

x2 = L sinh
t̃

L
sinh ξ sin θ sinφ ,

x3 = L sinh
t̃

L
sinh ξ cos θ .

(10.42)

1. Show that these coordinates indeed obey the defining equation (10.11).

2. Show that they give the metric for de Sitter spacetime as

ds2 = −dt̃2 + L2 sinh2 t̃

L

(
dξ2 + sinh2 ξΩ2

2

)
. (10.43)

This is called the open slicing, because surfaces of constant t̃ are the hyperbolic space
H3, as in (10.7).

3. Show that the open FLRW solution for a universe dominated by a positive cosmological
constant corresponds to the open slicing of de Sitter.

4. By equating (10.42) to the original coordinates used, (10.12), show that on the Penrose
diagram, this corresponds to the left upper triangular region η ≥ χ.

Exercise 10.3 (Open slicing of de Sitter)
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Flat matter or radiation dominated universes

Now let’s consider flat universes, k = 0 (which should be a good approximation to our universe
at the present time). For w > −1, we have

ȧ = Ca
3
2

(1+w)

0 a−
1
2

(1+3w) , (10.44)

hence
daa

1
2

+ 3w
2 = Ca

3
2

(1+w)

0 dt (10.45)

so

a(t) = a0

(
C

3

2
(1 + w)(t− t0) + 1

) 2
3(1+w)

. (10.46)

Let’s run the evolution of this scale factor backwards into the past. When t = t0−
(
C 3

2(1 + w)
)−1,

we find that a = 0. Using

ρ(t) = ρ0

(
a

a0

)−3(1+w)

= ρ0

(
C

3

2
(1 + w)(t− t0) + 1

)−2

, (10.47)

we also see that the energy density blows up at this time. So the size of the universe shrinks to
zero, a → 0 and the energy density (which is by definition a scalar function and so invariant in
all coordinates) is singular, ρ → ∞. It is convenient to shift the origin of our time coordinate
such that this corresponds to t = 0. Then the singularity we have found in our solution is known
as the big bang, and corresponds to the beginning of the universe (as the solution is singular at
the time of the big bang, we cannot extend our cosmology further into the past “before” this
moment). It has been proven in cosmological singularity theorems that any universe which is
approximately homogeneous and isotropic must have such a singularity in its past (assuming
reasonable conditions on the energy-momentum tensor).

Conformal time and general universes

In order to solve the Friedmann equation for a closed or open radiation or matter dominated
universe, and to investigate the general causal structure of FLRW universes, we introduce the
conformal time.

The conformal time η in an FLRW universe is defined by

η =

∫ t dt′

a(t′)
, (10.48)

and so obeys

dη =
dt

a
. (10.49)

It is convenient to take η = 0 to correspond to the big bang singularity at a = 0.

Conformal time
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In terms of conformal time, the Friedmann equation becomes(
da

dη

)2

=
8πGρ0

3
a

3(1+w)
0 a1−3w − ka2 . (10.50)

This is straightforward to integrate for all the cases we are interested in. Once a(η) is known
then t as a function of η can be found by solving dt/dη = a. It is simple to do this yourself.

Consider the Friedmann equation (10.50) in terms of conformal time for a universe domi-
nated by matter, w = 0. Letting C2 = 8πGρ0

3 a3
0 and taking t = η = 0 to correspond to the

big bang, with a(η = 0) = 0, show that we have:

Closed (k = 1) a(η) = 1
2C

2(1− cos η) t = 1
2C

2(η − sin η)

Open (k = −1) a(η) = 1
2C

2(cosh η − 1) t = 1
2C

2(sinh η − η)

Flat (k = 0) a(η) = 1
4C

2η2 t = 1
12C

2η3 .

(10.51)

Sketch the evolution of a with η in all cases, and observe whether the universe expands
indefinitely, or eventually shrinks back to zero size in a “big crunch”.

Exercise 10.4 (Matter dominated FLRW universes)

Consider the Friedmann equation (10.50) in terms of conformal time for a universe domi-
nated by radiation, w = 1/3. Letting C2 = 8πGρ0

3 a4
0 and taking t = η = 0 to correspond to

the big bang, with a(η = 0) = 0, show that we have:

Closed (k = 1) a(η) = C sin η t = C(1− cos η)

Open (k = −1) a(η) = C sinh η t = C(cosh η − 1)

Flat (k = 0) a(η) = Cη t = 1
2Cη

2 .

(10.52)

Sketch the evolution of a with η in all cases, and observe whether the universe expands
indefinitely, or eventually shrinks back to zero size in a “big crunch”.

Exercise 10.5 (Radiation dominated FLRW universes)

The FLRW metric in terms of conformal time is:

ds2 = a2(η)(−dη2 + dσ2
k) . (10.53)

Thus the FLRW metric is conformal to the metric −dη2 +dσ2
k and we can use this simpler metric

to explore the causal structure of the universe. For instance, in an expanding universe with a
positive cosmological constant, the scale factor goes like a(t) ∼ eCt for large t, when we can
neglect matter and radiation. As a result η ∼ 1− e−Ct for large t and hence for t→∞, η → η∞,
where η∞ is some constant value. In such a universe, the causal structure can be sketched as in
27.

This sort of picture is not a full Penrose diagram, as the spatial directions have not been
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η

η = η∞(t =∞)

Cosmological horizon

Big Bang (η = 0)

Figure 27: Sketch of causal structure for universe dominated by Λ > 0 at late times.

(fully) compactified, only the time direction. However, knowing that the universe either ends
or starts at a finite value of conformal time allows us to draw interesting physical conclusions,
such as the existence of a cosmological horizon for observers at late times in an expanding Λ > 0

dominated universe (as shown in figure 27).

The horizon problem and inflation

We can also consider the particle horizons that are present owing to the fact that only a finite
amount of time, conformal or otherwise, has passed since the Big Bang. As past light cones
terminate at the Big Bang, the region of space that we can have received signals from at the
present time is limited by such a horizon. This leads to a puzzle, because the universe that we
observe is spatially homogeneous and isotropic. In particular, we observe a cosmic microwave
background (CMB) consisting of photons which stopped interacting with matter (in the form of
protons and electrons) at the time of recombination, of order 105 years after the Big Bang. This
background radiation is visible and remarkably uniform (at a temperature of 2.7K with very
small deviations) across the whole sky. But the photons that we observe coming from different
parts of the sky cannot have been in causal contact at the moment when they decoupled from
matter and became part of the background radiation. This situation is drawn in figure 28.

η

Recombinationp1 p2

Particle horizon of p2Particle horizon of p1

p0

Big Bang (η = 0)

Figure 28: Particle horizons and the CMB. We observe (at p0) photons emitted from p1 and p2,
whose particle horizons are completely causally disconnected (no point can send a signal to both
p1 and p2. Despite this, the photons constituting the CMB are incredibly closely correlated.

The most widely accepted solution to this problem (and a number of related cosmological
issues) is inflation, which posits that there was a period of rapidly accelerating expansion (ä > 0)
in the very early universe. This period of rapid expansion allows p1 and p2 to have initially been
in causal contact before being inflated apart, and accounts for the homogeneity and isotropy of
the observed universe.

The inflationary period corresponds to a period of evolution of the universe which is not
determined by the Friedmann equations. To see how this should work, assume that during
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inflation the scale factor increases exponentially:

a(t) ∼ āeHt , (10.54)

where H and ā are constant. The conformal time is then given by

η − η̄ = − 1

Hā
e−Ht , (10.55)

where η̄ is again a constant. We can now have negative values of conformal time: η → −∞
corresponds to t→ −∞. The scale factor in terms of conformal time is

a(η) = − 1

H(η − η̄)
. (10.56)

The Big Bang singularity when a→ 0 occurs for η → −∞. This scale factor seems to blow up for
η → η̄, however this corresponds to allowing inflation to continue indefinitely into the future, as
η → η̄ corresponds to t→ +∞. Instead we assume that inflation ends (i.e. our assumption that
the scale factor takes the form (10.54) ceases to hold) at some point when η ≈ 0 < η̄, at which
point we segue into standard cosmological evolution determined by the Friedmann equations.
The effect is to modify the figure 28 to figure 29, in which we see that the past lightcones of the
points p1 and p2 now do intersect (the shaded region in 29).

η

Recombinationp1 p2

p0

η = −∞

η = 0

Figure 29: Particle horizons with inflationary period added.

Simple models of inflation can be obtained by introducing matter in the form of a scalar field,
whose dynamics drive the accelerated expansion of the universe during the inflationary phase.
To say more is beyond the scope of this course.

Cosmological redshifts

Finally, the metric (10.53) allows us to explore null geodesics. Consider the light emitted by some
particular galaxy, or Bob, reaching an observer. Suppose a first photon is emitted at conformal
time ηe and observed at conformal time η0. Then a second photon is emitted at ηe + ∆η

and observed at η0 + ∆η. As before, when we thought about gravitational time dilation in a
time independent geometry, the paths of the two photons are identical and so the time between
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emission and observation is the same. However, the proper time at the emitter is ∆τe = a(ηe)∆η,
assuming that ∆η is small enough that a(η) does not change appreciably between the emissions.
The proper time observed is similarly ∆τo = a(ηo)∆η. Consequently,

∆τo
∆τe

=
a(ηo)

a(ηe)
, (10.57)

which is greater than 1 for an expanding universe. In terms of wavelengths, λ = c∆τ , and
abbreviating a(ηo) ≡ ao, a(ηe) ≡ ae, we have

λo
λe

=
ao
ae

> 1 , (10.58)

so the light received has longer wavelength, hence is redshifted. In cosmology, the redshift z is
defined by

z =
λo − λe
λe

. (10.59)

If we know z, then the scale factor at emission is related to the scale factor at observation by:

ae = ao
1

1 + z
. (10.60)

The redshift is often quoted as a proxy for distance.
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11 Gravitational waves

11.1 Linearising

Let’s write down again the expressions for the linearisation of general relativity about a flat
Minkowski background.

• The metric:
gµν ≈ ηµν + hµν , gµν ≈ ηµν − hµν . (11.1)

• The Levi-Civita connection:

Γµν
ρ ≈ 1

2
ηρλ (∂µhνλ + ∂νhµλ − ∂λhµν) . (11.2)

• The Riemann tensor:

Rρσµν ≈
1

2
ηρλ (∂µ∂σhλν + ∂ν∂λhµσ − ∂µ∂λhσν − ∂ν∂σhλµ) . (11.3)

• The Ricci tensor:
Rµν ≈ ∂ρ∂(µhν)ρ −

1

2
∂ρ∂

ρhµν −
1

2
∂µ∂νh . (11.4)

• The Ricci scalar:
R ≈ ∂µ∂νhµν − ∂ρ∂ρh . (11.5)

• The linearised Einstein equation:

∂ρ∂(µhν)ρ −
1

2
∂ρ∂

ρhµν −
1

2
∂µ∂νh−

1

2
ηµν(∂ρ∂σhρσ − ∂ρ∂ρh) = 8πGTµν . (11.6)

Linearised general relativity

Recall that under diffeomorphisms, viewed as coordinate transformations xµ 7→ yµ(x), the trans-
formation of the metric was given by:

∂yµ

∂xρ
∂yν

∂xσ
g̃µν(y(x)) = gρσ(x) . (11.7)

This provided a gauge symmetry, or redundancy of description, of general relativity. This carries
over into the linearised theory. We consider diffeomorphisms which preserve the splitting of the
metric into the background Minkowski metric and a perturbation. A general diffeomorphism
will not, of course. We can consider those one-parameter families of diffeomorphisms which are
infinitesimally close to the identity diffeomorphism, which will certainly preserve this form of
the metric to the order we are working at. Consider therefore an infinitesimal diffeomorphism,
yµ = xµ − ξµ (we could replace ξµ → εξµ with ε a small parameter if we wanted, but instead let
us take ξµ to be of the same order as hµν). Letting g̃µν = ηµν + h̃µν , we find from (11.7) that

h̃µν = hµν + ∂µξν + ∂νξµ . (11.8)
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This transformation
hµν → hµν + δξhµν , δξhµν ≡ ∂µξν + ∂νξµ (11.9)

is the gauge symmetry of linearised general relativity. Two perturbations hµν differing by such a
transformation are to be considered physically equivalent.

This gauge symmetry is analogous to the gauge transformation Aµ → Aµ + ∂µλ of the
electromagnetic potential, extended in this case to a symmetric “gauge” field, hµν . In that case,
the field strength Fµν = 2∂[µAν] was gauge invariant.

Check that δξRµνρσ = 0.

Exercise 11.1 (Gauge invariance of the Riemann tensor)

A very useful combination of the metric perturbation and its trace is:

h̄µν = hµν −
1

2
hηµν . (11.10)

For instance, the Einstein equation (11.6) becomes:

− 1

2
∂ρ∂ρh̄µν + ∂ρ∂(µh̄ν)ρ −

1

2
ηµν∂

ρ∂σh̄ρσ = 8πGTµν , (11.11)

when written in terms of h̄µν .
Under the gauge symmetry, we have:

δξh̄µν = ∂µξν + ∂νξµ − ∂ρξρηµν . (11.12)

Now, gauge symmetry implies a redundancy in our description of the physics. It is therefore
often convenient to make a “choice of gauge” in which we impose some condition on our fields
that “fixes” the gauge. For instance, in electromagnetism, we may choose to impose the Lorenz
gauge condition, ∂µAµ = 0. The analogy of this condition in general relativity is known as the
de Donder or harmonic gauge condition:

∂ν h̄µν = 0 . (11.13)

How is the gauge actually fixed? We have

δξ(∂
ν h̄µν) = ∂ν∂νξµ . (11.14)

Therefore if we are given any arbitrary h̄µν , we can make a gauge transformation with parameter
ξµ such that ∂ν∂νξµ = −∂ν h̄µν . Then the gauge transformed h̄µν will obey (11.13).

After gauge fixing, we hope to not have any further gauge redundancy left in our description
of the physics. This is not yet true in the present case: the gauge condition (11.13) is preserved
by gauge transformations ξµ with ∂ν∂νξµ = 0. We will use this later on.

In de Donder gauge, the Einstein equation becomes simply:

∂ρ∂ρh̄µν = −16πGTµν . (11.15)
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This means that each component of the perturbation h̄µν obeys the wave equation in four-
dimensional spacetime, sourced by the energy-momentum tensor. The solutions of this can be
written down using Green’s function methods (see below).

11.2 Gravitational waves in vacuum

The solutions to ∂ρ∂ρh̄µν = 0 are:

h̄µν(x) = Re(Hµνe
ik·x) , k · x ≡ kµxµ , (11.16)

where Hµν is a constant symmetric complex tensor and kµ is a null vector, kµkµ = 0. Thus
this solution describes waves propagating at the speed of light in the background Minkowski
spacetime. The gauge condition (11.13) requires

kνHµν = 0 . (11.17)

The residual gauge freedom given by transformations with parameter ξµ obeying ∂ν∂νξµ = 0 can
be described by writing these explicitly as ξµ(x) = Re(Xµe

ik·x). Under such a transformation,

Hµν → Hµν + i(kµXν + kνXµ − ηµνkρXρ) . (11.18)

We can choose Xµ such that:
H0µ = 0 , Hµ

µ = 0 . (11.19)

Writing out the time and spatial components fully, this means that

H00 = 0 , H0i = 0 , H i
i = 0 , (11.20)

while we also have the constraints (11.17).

Show that this is indeed possible.

Exercise 11.2 (Gauge fixing)

For example, consider a gravitational wave propagating in the z-direction, with kµ = ω(1, 0, 0, 1).
This requires that Hµ0+Hµ3 = 0, and hence with this choice of gauge fixing that Hi3 = 0. There-
fore the polarisation matrix takes the form:

Hµν =


0 0 0 0

0 H+ H× 0

0 H× −H+ 0

0 0 0 0

 . (11.21)

The fact that Hµ
µ = 0 means that h̄µµ = 0 = hµµ. Hence in this gauge, hµν = h̄µν . We therefore

have for the particular solution with polarisation matrix (11.21):

h11 = |H+| cos(ω(t− z)− α+) = −h22 , h12 = |H×| cos(ω(t− z)− α×) = h21 , (11.22)
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having written H+ = |H+|eiα+ , H× = |H×|eiα× and used kρx
ρ = −ω(t − z). This particular

choice of gauge is known as transverse traceless gauge, with the corresponding perturbation
denoted by hTT

µν , obeying altogether:

∂νhTT
µν = 0 , hTT

00 = 0 , hTT
0i = 0 , ηµνhTT

µν = 0 . (11.23)

This gauge reveals the important physical property that a gravitational wave can have two
independent polarisations, corresponding to H+ and H×.

Effect of gravitational waves on test particles

We now want to understand properly the effect of a gravitational wave perturbation on test
particles. Suppose we consider a single particle whose position we describe using the coordinates
xµ corresponding to the transverse traceless gauge. The geodesic equation, to first order in the
perturbation, is

d2xµ

dτ2
+

1

2
ηµλ

(
−∂λhTT

νρ + 2∂νh
TT
ρλ

) dxν
dτ

dxρ

dτ
= 0 . (11.24)

Suppose this describes a freely falling particle which is initially at rest, with four-velocity Uµ(τ) =
dxµ

dτ = (1, 0, 0, 0) at τ = 0. Then we have

d2xµ

dτ2
(τ = 0) +

1

2
ηµλ

(
−∂λhTT

00 + 2∂0h
TT
0λ

)
= 0⇒ d2xµ

dτ2
(τ = 0) = 0 . (11.25)

It follows that the geodesic equation is solved by Uµ(τ) = Uµ(0) for all τ . Hence the particle
remains at rest in the presence of the metric perturbation.

What is happening here is that the coordinates we are using, which are those adapted to
transverse traceless gauge, are in fact coordinates adapted to freely falling particles. The coordi-
nate attached to a particular particle, or point, by definition “move with the wave” i.e. the value
of the coordinate at that point is by definition always a certain value. So we cannot see the effect
of the wave from considering a single particle. We should consider instead multiple particles.

The simplest coordinate invariant test of the presence of a gravitational wave is to measure the
proper distance between two freely falling particles. Suppose we put one at coordinate location
xi = (0, 0, 0) and the second at coordinate location xi = (L, 0, 0). Suppose a gravitational
wave propagates in the z direction, described in transverse traceless gauge with the components
hTT
µν (t− z). The proper distance between these two particles is

∆s =

∫ √
ds2 =

∫ √
gµνdxµdxν

=

∫ L

0
dx
√
gxx

=

∫ L

0
dx
√

1 + hTT
xx (t)

≈ L
(

1 +
1

2
hTT
xx (t)

)
.

(11.26)

This proper distance is certainly not constant: it varies in the presence of the gravitational wave.
We can write this variation as

δL

L
≈ 1

2
hTT
xx (t) . (11.27)
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This is in fact a gauge independent prediction of gravitational wave theory, and corresponds to
the measurements made in gravitational wave detectors. There the distance ∆s is measured by
bouncing light beams from mirrors at the ends of arms of length L (which works when the metric
perturbation varies on a timescale less than the time it takes to travel through the arm).

We can rederive the above result more generally by choosing to work in a different gauge,
i.e. with a different set of coordinates. Appropriate coordinates to use are an orthonormal
frame associated to one freely falling particle. This can be defined by defining a local inertial
frame at one point on the worldline of this particle, and then extending it along the geodesic
by parallel transport. In these coordinates, the position of the geodesic is at the origin in the
spatial coordinates, and at all points along the geodesic the metric is given by the flat Minkowski
metric, and its first derivatives vanish.

Let (t, xi) denote the coordinates used in transverse traceless gauge. Define new coordinates
by

t̂ = t , x̂i = xi +
1

2
δikhTT

kj (t)xj . (11.28)

Given that the positions xi are unchanged in the presence of the wave, work out the be-
haviour of test particles described by the new coordinates x̂i, and compare it to the results
below coming from solving the geodesic deviation equation.

Show that the metric in terms of these new coordinates is:

ds2 ≈ −dt̂2 + δijdx̂
idx̂j (11.29)

neglecting terms of second order in the perturbation, and assuming that the wavelength
λ ∼ 1/ω of the gravitational wave is much bigger than the coordinate distances involved so
as to also neglect terms involving |xi|/λ << 1.

Exercise 11.3 (Coordinates adapted to the freely falling observer)

Given another nearby freely falling particle, we can define a separation vector Sµ which will
obey the geodesic deviation equation, derived back in section 6 as equation (6.20), which we write
here as

∇U∇USµ ≡
D2

dτ2
Sµ = RµνρσU

νUρSσ . (11.30)

Here U (which was originally T when we derived this originally) is the tangent vector to the first
freely falling geodesic, and τ is the proper time along this geodesic. This equation expresses how
the separation Sµ between the two freely falling particles changes as we move along the geodesic
of the first particle. The right-hand side of this equation involves the Riemann curvature tensor.
We emphasise that in writing (11.30) we are now using new coordinates adapted to the geodesic
of the first particle, and not the original coordinates in which the metric perturbation was in
transverse traceless gauge hTT

µν . To first order, this change of coordinates is just a change of
gauge. The Riemann curvature tensor is gauge invariant to this order. Therefore when we
evaluate Rµνρσ we can use the expression we would get in the transverse traceless gauge, i.e. we
will use

Rµνρσ ≈
1

2
ηµλ

(
∂ρ∂νh

TT
λσ + ∂σ∂λh

TT
ρν − ∂ρ∂λhTT

νσ − ∂σ∂νhTT
λρ

)
. (11.31)
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The coordinates we are using mean that Uµ = (1, 0, 0, 0), hence we can use τ = t, and Γµν
ρ = 0

along the geodesic. Then the geodesic equation becomes

d2Sµ

dt2
= Rµ00νS

ν =
1

2
ηµρ∂0∂0h

TT
ρν S

ν (11.32)

For a gravitational wave propagating in the z-direction, we have

d2S0

dt2
= 0 =

d2S3

dt2
, (11.33)

and we can arrange by a choice of initial conditions that S0 (the displacement in the time
direction) vanishes for all time, and that S3 is constant. Picking coordinates such that S3 = 0,
and considering a ring of particles in xy plane at z = 0, the interesting equations are then:

d2S1

dt2
= −1

2
ω2
(
|H+| cos(ωt− α+)S1 + |H×| cos(ωt− α×)S2

)
,

d2S2

dt2
= −1

2
ω2
(
−|H+| cos(ωt− α+)S2 + |H×| cos(ωt− α×)S1

)
,

(11.34)

Because |H+| and |H×| are small, we can solve perturbatively. The zeroth order solution is that
S1(t) = S̄1, S2(t) = S̄2, with S̄1, S̄2 constants. To find the first order solution, we first substitute
the zero order solution into the right-hand side of the equations (11.34), and then solve to get

S1(t) ≈ S̄1 +
1

2

(
|H+| cos(ωt− α+)S̄1 + |H×| cos(ωt− α×)S̄2

)
,

S2(t) ≈ S̄2 +
1

2

(
−|H+| cos(ωt− α+)S̄2 + |H×| cos(ωt− α×)S̄1

)
.

(11.35)

These represent oscillations in the xy plane. In more detail, consider first the case of a “plus”
polarised wave only, H+ 6= 0, H× = 0. We have

S1(t) ≈ S̄1 +
1

2
cos(ωt− α+)|H+|S̄1 ,

S2(t) ≈ S̄2 − 1

2
cos(ωt− α+)|H+|S̄2 .

(11.36)

If we consider a collection of test particles arranged in a circle in the xy plane, the circle will first
expand in the x direction while contracting in the y direction, and vice versa. Snapshots of the
arrangement look like a series of ellipses oscillating about the x and y axes, i.e. in the directions
indicated by the + symbol. This is illustrated in figure 30.

y

x

cos(ωt− α+) = 0 cos(ωt− α+) = −1 cos(ωt− α+) = 0 cos(ωt− α+) = 1

Figure 30: Effect of a plus polarised gravitational wave on a ring of test particles. The particles
are coloured to illustrate the individual oscillations.
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Next, consider a “cross” polarised wave only, H× 6= 0, H+ = 0. We have

S1(t) ≈ S̄1 +
1

2
cos(ωt− α×)|H×|S̄2 ,

S2(t) ≈ S̄2 +
1

2
cos(ωt− α×)|H×|S̄1 .

(11.37)

If we consider a collection of test particles arranged in a circle in the xy plane, the circle will now
expand and contract about axes at 45 degrees to the x and y directions, i.e. in the directions
specified by the × symbol. This is illustrated in figure 31.

y

x

cos(ωt− α×) = 0 cos(ωt− α×) = −1 cos(ωt− α×) = 0 cos(ωt− α×) = 1

Figure 31: Effect of a cross polarised gravitational wave on a ring of test particles. The particles
are coloured to illustrate the individual oscillations.

11.3 Gravitational waves from a source, and their detection

Gravitational waves from a source

Now we return to the linearised Einstein equation in de Donder gauge, equation (11.15), and
work out the response to the energy-momentum tensor on the right-hand side. This can be
viewed as a standard wave equation in flat space, and the way to solve it is to introduce the
Green’s function G(x) obeying

∂ρ∂
ρG(x− y) = δ(4)(x− y) , (11.38)

such that
h̄µν(x) = −16πG

∫
d4y G(x− y)Tµν(y) (11.39)

is automatically a solution to ∂ρ∂ρh̄µν = −16πGTµν .
Deriving the form of the Green’s function should (hopefully) be familiar from earlier courses

on electrodynamics. We will use the retarded Green’s function,

G(x− y) = − 1

4π|~x− ~y|
δ(|~x− ~y| − (x0 − y0))θ(x0 − y0) , (11.40)

which describes the causal response to a source in the past. Observe we have split xµ = (x0, ~x),
yµ = (y0, ~y). Here θ(x0−y0) = 1 if x0−y0 > 0, and is zero otherwise. This gives us our solution
for the linearised gravitational field produced by the source with energy-momentum tensor Tµν :

h̄µν(t, ~x) = 4G

∫
d3y

1

|~x− ~y|
Tµν(tr, ~y) , (11.41)

where tr ≡ t− |~x− ~y| is the retarded time.
In principle we now take an interesting source, insert into this expression, and integrate.
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Let’s proceed further by making some reasonable assumptions. Suppose we are dealing with a
faraway source at a distance r ≡ |~x|. Further suppose this source is isolated, meaning that it
itself is concentrated in a region of space of size δr << r. See figure 32.

Source

r = |~x|

~x
δr

Figure 32: The isolated source (e.g. a spherical cow) is small because it is far away.

Then,

|~x− ~y|2 = r2 − 2~x · ~y + |~y|2 = r2

(
1− 2

~x · ~y
r2

+
|~y|2

r2

)
(11.42)

and inside the integral in (11.41) we assume that we only have contributions for |~y| . δr. Hence

|~x− ~y| = r (1 +O(δr/r)) (11.43)

We can further expand

Tµν(t− |~x− ~y|, ~y) ≈ Tµν(t− r, ~y) + ∂0TµνO(δr) . (11.44)

We further assume that the source is varying on a timescale δt, such that ∂0Tµν = Tµν/δt, and
that its motion is non-relativistic, so that δr/δt << 1. Then we can neglect the second term in
the above Taylor expansion. The result (11.41) for the metric perturbation then simplifies to:

h̄µν(t, ~x) ≈ 4G

r

∫
d3yTµν(tr, ~y) (11.45)

where now tr ≡ t− r. This is a simpler integral.
We will now proceed to further analyse the spatial components, h̄ij . The gauge choice

∂ν h̄µν = 0 means that
∂0h̄i0 = ∂j h̄ij , (11.46)

and
∂0h̄00 = ∂j h̄0j (11.47)

so that once we know h̄ij we can successively determine h̄i0 and h̄00.
We use the following quite surprising trick. Make use of the seemingly trivial identity δik =

∂kx
i to write (note we suppress the dependence on tr and here use xi as the label for our

integration variables rather than yi)∫
d3xT ij =

∫
d3x

(
∂k(T

ikxj)− ∂kT ikxj
)
. (11.48)

The first term is a total derivative, which we assume vanishes. In the second term, we can use
conservation of the energy-momentum tensor (in the background Minkowski spacetime, i.e. to
leading order in the perturbation), which implies ∂kT ik = −∂0T

i0. Hence,∫
d3xT ij =

∫
d3x∂0T

i0xj . (11.49)
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Taking the ∂0 outside the integral, and noting that we could equally well have swapped i and j
in the above calculation, we write:∫

d3xT ij = ∂0

∫
d3xT 0(ixj) . (11.50)

Next, we repeat the trick: writing∫
d3xT ij = ∂0

∫
d3x

(
1

2
∂k(T

0kxixj)− 1

2
∂kT

0kxixj
)

=
1

2
∂0

∫
d3x∂0T

00xixj

=
1

2
∂0∂0

∫
d3xT 00xixj .

(11.51)

The quantity being time differentiated here is called the quadrupole moment of the energy density,
and is usually denoted by

Iij(t) ≡
∫
d3xT00(t, ~x)xixj . (11.52)

Reverting to our earliest instincts and writing dots for time derivatives, we can succinctly write

h̄ij(t, ~x) ≈ 2G

r
Ïij(t− r) . (11.53)

Gravitational waves from a rotating binary system

We will now study the gravitational waves produced by a rotating binary system. In line with
our assumptions above, we will analyse the behaviour of this system using Newtonian physics.
This will produce predictions for the induced gravitational wave behaviour that is in line with
what has been observed at LIGO. In a more complete analysis, the Newtonian description we
will use below can be viewed as the starting point for a “post-Newtonian” expansion, in which
we go on to include relativistic effects.

Consider a binary system of two masses, m1 and m2, rotating with angular frequency Ω,
as shown in figure 33. We will analyse this as a standard Newtonian two-body system, using
the reminder provided below. The total separation of the two masses is R = R1 + R2, with
R1 = m2R/(m1 +m2), R2 = m1R/(m1 +m2), and the reduced mass is µ = m1m2/(m1 +m2).
The total energy is:

E =
1

2
m1v

2
1 +

1

2
m2v

2
2−

Gm1m2

R
=

1

2
Ω2(m1R

2
1 +m2R

2
2)−Gm1m2

R
=

1

2
µΩ2R2−GµM

R
, (11.54)

where M = m1 +m2, and v1 = ΩR1, v2 = ΩR2. We can treat this as a single particle of mass µ
in the gravitational field of another of mass M .
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Consider two masses m1 and m2 with position vectors ~x1 and ~x2 interacting through a
potential V = V (| ~x1− ~x2|). Define the centre of mass position, ~X = (m1~x1 +m2~x2)/(m1 +

m2) and the separation vector ~R = ~x1 − ~x2. The kinetic energy is

Ekin =
1

2
m1 ~̇x1

2 +
1

2
m2 ~̇x2

2 =
1

2
M ~̇X2 +

1

2
µ ~̇R2 , (11.55)

where the total mass M and reduced mass µ are

M = m1 +m2 , µ =
m1m2

m1 +m2
. (11.56)

In the centre of mass frame, the positions of the bodies are:

~x′1 =
m2

~R

m1 +m2
, ~x′2 =

−m1
~R

m1 +m2
. (11.57)

The conserved angular momentum, ~J = ~R×~p, is always orthogonal to ~R. Hence the motion
takes place in a plane. For V (R) = −Gm1m2/R = −GµM/R we can write the Lagrangian
in polar coordinates in this plane as:

L =
1

2
µṘ2 +

1

2
µR2θ̇2 +

GµM

R
. (11.58)

The conserved energy and angular momentum are:

E =
1

2
µṘ2 +

1

2
µR2θ̇2 − GµM

R
, J = µR2θ̇ . (11.59)

The effective potential is thus

V (R) =
J2

2µR2
− GµM

R
, (11.60)

and circular motion can occur at the minimum of this potential, V ′(R) = 0, namely when

GµM =
J2

µR
⇔ θ̇2 =

GM

R3
. (11.61)

The energy for the circular orbit is

E = −1

2

GµM

R
. (11.62)

Reminder of Newtonian two-body physics

For circular motion, the condition (11.61) becomes GµM/R2 = µΩ2R (identifying θ̇ ≡ Ω; also
recall that this amounts to balancing gravitational and centripetal force) giving Ω2 = GM/R3

(Kepler’s third law). This means that:

E = −1

2

GµM

R
= −1

2
(GM)2/3µΩ2/3 . (11.63)

As these masses orbit, they emit gravitational radiation. This means that they lose energy. We
assume that as they lose energy, the radial separation R decreases slowly in such a way that
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at any given moment the orbit can still be described as being circular, with the above formulae
holding. Then we can differentiate to relate the loss in energy to either the decrease in separation
or the change in angular frequency:

dE

dt
=

1

2

GµM

R2

dR

dt
= −1

3
(GM)2/3µΩ−1/3dΩ

dt
. (11.64)

Note that as the radius decreases, Ω increases.

x1

x2

m1

R1

m2

R2

Ωt

Figure 33: Rotating binary

Now we turn to the part of the calculation involving linearised GR. First, we write down the
requisite component of the energy-momentum tensor, corresponding just to the energy (or mass)
density of the two particles:

T 00(t, ~x) = δ(x3)
(
m1δ(x

1 −R1 cos Ωt)δ(x2 −R1 sin Ωt) +m2δ(x
1 +R2 cos Ωt)δ(x2 +R2 sin Ωt)

)
.

(11.65)
We need this in order to calculate the quadrupole moment:

Iij(t) =

∫
d3xxixjT

00(t, ~x)

=
1

2
µR2

1 + cos 2Ωt sin 2Ωt 0

sin 2Ωt 1− cos 2Ωt 0

0 0 0

 .

(11.66)

From this we can calculate the metric perturbation according to the result (11.53):

h̄ij(t, ~x) =
2G

r
Ïij(t− r) = −4Ω2µGR2

r

cos 2Ωtr sin 2Ωtr 0

sin 2Ωtr − cos 2Ωtr 0

0 0 0

 . (11.67)

We observe that δij h̄ij = 0, so in vacuum (far from the source) where we can work with transverse
traceless gauge, hij = h̄ij . The next thing we need to do is compute the energy carried away from
the source as the gravitational radiation. A detailed calculation in second order perturbation
theory (whose details we neglect for lack of time) allows us to express the energy loss of the
source in terms of the reduced quadrupole moment. The latter is defined by:

Qij ≡ Iij −
1

3
δijδ

klIkl . (11.68)
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The result for the energy carried away by gravitational waves involves the third time derivatives
of the reduced quadrupole moment, squared:

dEGW
dt

= −G
5

...
Qij

...
Q
ij
. (11.69)

Using (11.66) we find
dEGW
dt

= −32

5
Gµ2R4Ω6 . (11.70)

Equating this to the rate of change of the energy of the two-body system, equation (11.64), we
find the following formula for the change in Ω:

dΩ

dt
=

96

5
G5/3µM2/3Ω11/3 =

96

5
(GM)5/3Ω11/3 , (11.71)

where we define the chirp mass:

M≡ (µ3M2)1/5 =
(m1m2)3/5

(m1 +m2)1/5
. (11.72)

Given Ω and dΩ
dt , we have

M =
1

G

(
5

96
Ω−11/3dΩ

dt

)3/5

, (11.73)

so if we know the angular frequency and its rate of change we can calculateM.

Detection of gravitational waves

Indirect evidence for the production of gravitational waves was provided by precise measurements
of the slowly decaying period of the orbit of a binary pulsar, by Hulse and Taylor. A pulsar is a
neutron star emitting a beam of electromagnetic radiation in a particular direction, and a binary
pulsar consists of a pulsar in orbit around a second star. The rotation of the pulsar itself means
that we observe its emitted electromagnetic radiation as “pulses” at regular intervals. We can
use these pulses as a sort of clock to measure properties of the binary system. As the pair lose
energy due to gravitational radiation, their orbital frequency increases and hence the period of
the orbit decreases in accordance with the calculations made using general relativity.

As described at the beginning of these notes, direct detection of gravitational waves is now
possible using gravitational wave interferometers such as LIGO. Here the idea is to bounce two
light signals back and forwards between pairs of mirrors in orthogonal “arms” (of length about
4km). A gravitational wave propagating through the apparatus causes tiny shifts in the distance
that the light travels in the arms. This is observed when recombining the light signals and
looking for a phase shift relative to the original beams.

What is directly measured is the change δL/L, where L is the length of the arm used in the
interferometer. This is related to the metric fluctuation, δL/L ∼ 1

2hij , as follows from our earlier
results. For the case of a gravitational wave emitted by a rotating binary, we thus can expect to
see fluctuations of the form

δL

L
∼ 2µGΩ(t)2R2

r
cos(2Ω(t)t) , (11.74)

where we emphasise that the angular frequency changes with time. The sort of signal this
produces is shown in figure 35.
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Figure 34: Predicted gravitational wave signal (using numerical relativity data from https:
//www.gw-openscience.org/events/GW150914/).

Initially the orbiting pair are drawing closer to each other, during what is known as the
“inspiral phase”. We assume that as they do so their motion can still be well-approximated
using the Newtonian analysis we carried out above. In that case, we can use the Kepler law
Ω2(t) = GM/R(t)3, up until the bodies merge, at which point the maximum amplitude of
the strain is observed. (A more comprehensive analysis would replace the Newtonian analysis
by adding in the leading order relativistic effects, or more practically by solving the Einstein
equations for the binary system numerically.) We can then write

δL

L
∼ 2µMG2

rR
cos(2Ωt) (11.75)

The actual angular frequency of the observed gravitational wave is ΩGW = 2Ω. It is convenient
to instead work with the frequency fGW = ΩGW

2π = Ω
π . This can be crudely estimated from the

signal in figure 35 by for instance measuring the time distance ∆t between successive crossing
points of δL/L = 0, and setting fGW = 1/(2∆t); more sophisticated techniques based on analysis
of the waveform are available. Given the time dependence of this frequency, we can obtain the
chirp mass from

M =
1

G

(
5

96
π−8/3f

−11/3
GW ḟGW

)3/5

. (11.76)

This provides an estimate of the total mass in the system. If we define q ≡ m1/m2 to be the
mass ratio, then

M = (1 + q)6/5q−3/5M , µ = (1 + q)−4/5q2/5M . (11.77)

We can also obtain from (11.76) that

f
−8/3
GW (t) = (GM)5/3 256

5
π8/3(tc − t) , (11.78)

where the constant of integration tc corresponds to the point at which the binary pair merge. In
practice we observe a maximum value of the strain, at a maximum value of the frequency, after
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which the gravitational wave signal falls off (in the “ringdown” phase). Let fGW |max denote the
maximum value of the frequency. This corresponds to the minimal separation

R =

(
GM

(πfGW |max)2

)1/3

. (11.79)

If we know this value of R, and have an idea of the mass ratio q appearing in µM = (1 +

q)2/5q−1/5M2, then from the maximum amplitude of the strain and equation (11.75) we can
obtain r, the distance to the source.

0

Time

h ∼ δL
L

Inspiral Merger
Ringdown

Figure 35: Observed gravitational wave signal (blue) at the LIGO Hanford detector and numer-
ical relativity prediction (red) (using data from https://www.gw-openscience.org/events/
GW150914/).

Let’s review the numbers obtained for the original gravitational wave detection, known by
the glamorous name of GW150914. For simplicity, let’s first assume the masses of the binary
system are equal, m1 = m2 = m. The maximum frequency obtained is

fGW |max ∼ 150Hz , (11.80)

and the chirp mass was worked out to be about:

M∼ 30M� , (11.81)

where M� is the mass of the Sun. The orbital separation at peak amplitude is then

R =

(
G · 26/5 · 30M�

(150π)2

)1/3

≈ 350km . (11.82)

This is a very small distance. Each body involved in the merger has mass about 35 M� – which
is quite heavy – with a corresponding Schwarzschild radius of about 100 km. Ordinary stars
have radii of the order of hundreds of thousands or millions of kilometres. White dwarf stars
are smaller, but still have radii of the order of thousands of kilometres. We therefore expect the
merger to involve incredibly compact objects. The candidates are neutron stars or black holes.
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The former generally have a radius of about 10 km, but have a maximum possible mass of a few
M�. This leaves black holes as the only candidate. (It can be shown that for unequal masses,
with q > 1, the system becomes more compact, and the above conclusions hold. In order to
more accurately identify the value of q, we need to go beyond the Newtonian description of the
binary, and compare with relativistic predictions for the gravitational wave signal produced.)

The future evolution of gravitational wave detection promises to be very scientifically rich,
with new detectors planned in such exciting locations as space (LISA) and, potentially, Limburg6

(the Einstein telescope).

6The Dutch Limburg, that is: the proposal is a joint Belgian/Dutch/German initiative.
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12 Einstein-Hilbert action

This section is not examinable, but included for completeness.

The Einstein field equations can be derived from an action.

The Einstein-Hilbert action is:

SEH =
1

16πG

∫
d4x

√
−det gR . (12.1)

Einstein-Hilbert action

We will not be precise about the nature of integration on manifolds. The integral in the
action (12.1) can be considered to be an integral over the coordinates xµ in some chart. As our
only goal in this section is to derive the local field equations, this will suffice. Nevertheless, we
should be sure that under changes of coordinates this is a sensible definition. This is ensured by
the invariant measure, or volume form,

d4x
√
−det g , (12.2)

involving the square root of the absolute value of the determinant of the metric. Under a change
of coordinates,

√
−det(g′µν) =

√
−det

(
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ

)
=
√
−det g

∣∣∣∣det
∂x

∂x′

∣∣∣∣ ,
(12.3)

while
d4x′ =

∣∣∣∣det
∂x′

∂x

∣∣∣∣ d4x (12.4)

as usual, so that d4x′
√
−det g′ = d4x

√
−det g. This is compatible with what you already know:

for instance consider R3 in spherical coordinates, with x′i = (r, θ, φ) and xi = (x, y, z). The
metric in the former case has determinant r4 sin2 θ, and in the latter case has determinant one.
Hence the measures are (for a Riemannian metric, we do not need to take minus the determinant
as it is already positive):

d3x′
√

det g′ = dr dθ dφ r2 sin θ = dx dy dz = d3x
√

det g . (12.5)

Convinced of our righteousness, we can now vary the action (12.1) with respect to the metric.
We first of all need to show that:

δ det g = det g gµνδgµν . (12.6)

This follows from writing:

det(g + δg) = det
(
g(I + g−1δg)

)
= det g det(I + g−1δg) . (12.7)
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In general, if ε is a matrix whose components are small,

det(I + ε) = det


1 + ε11 ε12 . . .

ε21 1 + ε22

. . .

1 + εnn


= (1 + ε11)(1 + ε22) . . . (1 + εnn) +O(ε2)

= 1 +
∑
i

εii +O(ε2)

= 1 + trε+O(ε2) ,

(12.8)

so to first order in the variation we have

det(I + g−1δg) = 1 + tr g−1δg , (12.9)

and hence
det(g + δg)− det g = 1 + tr g−1δg (12.10)

and this gives the result (12.6). It also follows that

δ
√
−det g =

1

2
√
−det g

(−δ det g) =
−det g

2
√
−det g

gµνδgµν =
1

2

√
−det ggµνδgµν . (12.11)

Next, we need to vary the Ricci scalar. Let’s start with the Riemann tensor. The trick is to first
vary the Riemann tensor at some point p, using Riemann normal coordinates. As Γµν

ρ(p) = 0

in these coordinates, we have

δRρσµν = 2∂[µδΓν]σ
ρ = 2∇[µδΓν]σ

ρ , (12.12)

where we again use Riemann normal coordinates to be able to replace the partial derivatives with
covariant ones. We also use the fact that the difference of two connections is a tensor, which
means that δΓµνρ is a tensor. Now we argue that we have obtained a tensorial equation, which
must hold in all coordinates at p, and then must also hold for arbitrary p. So, the exact result
is δRρσµν = 2∇[µδΓν]σ

ρ. It follows that

δRµν = δRρµρν = 2∇[ρδΓν]µ
ρ , (12.13)

and that
δR = δgµνRµν + 2∇ρ

(
gµ[νδΓνµ

ρ]
)
≡ δgµνRµν + 2∇ρXρ , (12.14)

letting Xρ ≡ 2gµ[νδΓνµ
ρ]. We now vary the Einstein-Hilbert action, using (12.11) and (12.14):

δSEH =
1

16πG

∫
d4x

√
|g|
(
δgµν(Rµν −

1

2
gµνR) +∇µXµ

)
(12.15)

Note that we used gµρδgρν = −δgµρgρν . We see the Einstein tensor appearing. We just need to
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dispose of the term involving Xµ. This is possible because it is in fact a total derivative:√
−det g∇µXµ =

√
−det g(∂µX

µ + Γµν
µXν)

=
√
−det g(∂µX

µ +
1

2
gµρ(−∂ρgµν + ∂µgρν + ∂νgρµ)Xν)

=
√
−det g(∂µX

µ +
1

2
gνρ∂µgνρX

µ)

= ∂µ(
√
−det gXµ) .

(12.16)

(The rule for the derivative of a determinant follows the rule for the variation of one.)
Let’s also add matter. The matter action is

Smatter =

∫
d4x

√
−det gLmatter (12.17)

and a priori can be anything we want as long as Lmatter is a scalar. We now define the energy-
momentum tensor to be whatever we get when we vary this action with respect to the spacetime
metric:

Tµν ≡ −
2√
−det g

δSmatter

δgµν
. (12.18)

This is obviously symmetric, and remarkably turns out to obey the conservation law ∇νTµν = 0

automatically, as a consequence of invariance under diffeomorphisms. We will not show this here.
We can then vary, dropping total derivatives, to get

δ(SEH + Smatter) =
1

16πG

∫
d4x

√
−det gδgµν (Gµν − 8πGTµν) , (12.19)

and we clearly see the Einstein equation follows as the equation of motion for the metric.

Show that the cosmological constant can be incorporated by modifying the Einstein-Hilbert
action to:

SEH,Λ =
1

16πG

∫
d4x

√
−det g(R− 2Λ) . (12.20)

Exercise 12.1 (Action with cosmological constant)
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