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Course 224

Scholarship Questions

. Prove the Hamilton-Cayley Theorem.

. Let T" be a linear operator on a finite dimensional vector space. Show, without using the Hamilton-

Cayley Theorem, that there is a non-zero polynomial f such that f(7') = 0. Show that f(\) =0if A is
an eigenvalue of T.

State and prove the Spectral Theorem for a normal operator on a finite dimensional Hilbert Space.

State and prove the Primary Decomposition Theorem. Outline the application to the theory of an
ordinary homogeneous linear differential equation with constant coefficients.

. Prove that a system of homogeneous linear equations of rank r on an n-dimensional vector space has an

n — r-dimensional solution space.

Let M be a vector space with a scalar product which is non-degenerate on a finite-dimensional subspace
N. Prove that M = N & N’, where N’ is the orthogonal complement of N.

Prove Sylvester’s Theorem on the number of plus and minus signs in a quadratic form.
Let T be a linear operator on a complex vector space such that 72 = 1. Prove that T is diagonalisable.

Let M be a vector space of finite dimension n and basis u; ...u,. Prove that the coordinate functions
u'...u™ form a basis for the dual space M*. Prove that u’ ®uy; is a basis for the tensor product M*® M.
Define contraction of tensors and prove that it is well-defined independent of any choice of basis used in

the definition.

Let M be a finite dimensional vector space with a symmetric scalar product. Show that there is a basis
such that the scalar product has a diagonal matrix.

Let T be a linear operator on a vector space of finite dimension n such that 7% = 0, but T is non-zero.
Find the maximum rank 7" can have.

Let M be a Minkowski space. Show that the transition matrix between Lorentz bases in M is a Lorentz
matrix. Show that an isometry of M has a Lorentz matrix with respect to a Lorentz basis. Let u,w be
non-zero vectors in M with (u|u) < 0 and (u|w) = 0. Prove that (w|w) > 0.

Let wy ...u, be linearly independent vectors in a vector space M and let y; ...y, generate M. Prove
that n <r.

Let L and N be 4-dimensional vector subspaces of a 7-dimensional vector space. Prove that L N N
contains a non-zero vector.

Let A be a matrix with entries in a field. Prove that the dimension of the row space of A is the same as
the dimension of the column space.

Let T be a linear operator with Jordan form .J. Prove that T' can be represented by the transpose of J.
Prove the Schwarz inequality in a Hilbert space

Let P,Q, be self-adjoint operators in a Hilbert Space, satisfying commutation relation PQ — QP = a.
Prove the uncertainty relation,

e

(ap)aQ) >

If T is a linear operator on M, and M has an orthonormal basis of eigenvectors of T', prove that T is
normal.

Let A be a Hermitian matrix. Prove there is a unitary matrix such that PAP~! is diagonal.

Let G, A be real symmetric n by n matrices with G positive definite. Prove there is a matrix P such
that P!GP = I and P'AP is diagonal.
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Let S, T be commuting diagonalisable operators. Prove that they are simultaneously diagonalisable.

Let T be a diagonalisable operator on a finite dimensional vector space M. Let N be a vector subspace
of M which is invariant under 7. Prove that Ty is diagonalisable.

If a linear operator T' has matrix A, prove that rank T" = rank A.

Let T be an invertible linear operator on a vector space M of finite dimension n. Prove that powers of
T, (T"|r € Z) generate a subspace of Hom(M) of dimension at most n.

Let T be a linear operator on a finite dimensional vector space M. Show that there is a unique monic
polynomial q of minimal degree such that ¢(T) = 0. Show that T is diagonalisable if and only if ¢ is a
product of distinct linear factors.

IfT:L— Mand S: M — N are linear operators, prove that rank ST > rankS + rank7T — dimM. If
T : M — M is a linear operator, and rank T = rank T2, prove that the intersection of ker 7" and Im T
contains only the zero vector.

If T: M — N is a linear operator, prove that dim ker 7" + dim Im 7" = dim M
Show that the vectors z7 ...z, are linearly independent if and only if 1 A ... A x, is non-zero.

Show that the linearly independent vectors z; ...z, generate the same subspace as the vectors y; ...y,
if and only if 1 A ... Az, is a scalar multiple of y1 A ... Ay,

Show that the matrix equation Az = b is equivalent to x1¢1 + ... + x,¢, = b where the ¢; are the columns
of A. Use the wedge product to derive Cramer’s rule.

Show that there is a linear isomorphism x — Z from M to the dualspace of M* such that

(,f)={f2)
forallz € M and f € M*.
State briefly what a category is and give an example.
Prove that a nilpotent operator can be represented by a matrix whose entries are all zero or one.

Prove that the skew-symmetriser satisfies:
A[(AS) @T} - A[S@T}

AS®T) = (—1)*A(T @ S)

Let M be a finite dimensional real oriented vector space with non-degenerate symmetric scalar product.
Prove that the volume form

n

vol=u'A...Au

is independent of the choice of standard basis uq, ..., uy.

Find a matrix P such that PAP~! is a Jordan matrix, where

0 3 3
A=1 -1 8 6
2 -14 -10

Find a matrix P such that PAP~! is a Jordan matrix, where

-1 1 1
A= -5 21 17
6 —-26 -—-21
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Find a matrix P such that PAP~! is a Jordan matrix, where

Find a matrix P such that PAP~! is a Jordan matrix, where

-4 2 10
A= -4 3 7
-3 1 7

Find a matrix P such that PAP~! is a Jordan matrix, where

3 4 3
A= -1 0 -1
1 2 3

Find a matrix P such that PAP~! is a Jordan matrix, where

3 1 0 O

-4 -1 0 0

A= 7 1 2 1
-17 -6 -1 0

Show that the push-forward T, preserves tensor products, commutes with permutations and preserves

the wedge product
Show how to use the push-forward to establish det ST = det SdetT

Let f be the function defined on the space of non-singular n x n real matrices and given by

fA)=A""

Prove that f is differentiable and find its derivative.

Let f be the function defined on the space of non-singular n x n real matrices and given by

f(4)=A
Prove that f is differentiable and find its derivative.

Let f be a C? function of two independent variables. Prove that

0% f B 0% f
0xdy  Oydx
Show that the function
22 — 42

= 2 _
fla,y) =22y vy
if (z,y) # (0,0) and f(0,0) = 0 is not C? on any open set containing (0, 0).
Define the Hodge star operator and prove that
sul AL AU =8 s T AL AU

where s; = (u;|u;).

Let F be a real valued homogeneous differentiable function of n real variables.

eigenfunction of the operator

0

Prove that F' is an
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Prove the chain rule for functions on finite dimensional real or complex vector spaces.
State and prove the Implicit Function Theorem

Prove the pull-back commutes with differentials.

Prove the chain rule for maps of manifolds.

Define:

C*° manifold

C* compatible coordinates

tangent space at a point on a manifold
velocity vector of a parametrised path
differential of a function

partial derivative g J with respect to a coordinate system g

pull-back of a differential form under a map
push-forward of a tangent vector under a map

n-dimensional coordinate system



