Course 224

Scholarship Questions

- 1. Prove the Hamilton-Cayley Theorem.
- 2. Let T be a linear operator on a finite dimensional vector space. Show, without using the Hamilton-Cayley Theorem, that there is a non-zero polynomial f such that f(T) = 0. Show that $f(\lambda) = 0$ if λ is an eigenvalue of T.
- 3. State and prove the Spectral Theorem for a normal operator on a finite dimensional Hilbert Space.
- 4. State and prove the Primary Decomposition Theorem. Outline the application to the theory of an ordinary homogeneous linear differential equation with constant coefficients.
- 5. Prove that a system of homogeneous linear equations of rank r on an n-dimensional vector space has an n-r-dimensional solution space.
- 6. Let M be a vector space with a scalar product which is non-degenerate on a finite-dimensional subspace N. Prove that $M = N \oplus N'$, where N' is the orthogonal complement of N.
- 7. Prove Sylvester's Theorem on the number of plus and minus signs in a quadratic form.
- 8. Let T be a linear operator on a complex vector space such that $T^3 = 1$. Prove that T is diagonalisable.
- 9. Let M be a vector space of finite dimension n and basis $u_1 \dots u_n$. Prove that the coordinate functions $u^1 \dots u^n$ form a basis for the dual space M^* . Prove that $u^i \otimes u_j$ is a basis for the tensor product $M^* \otimes M$. Define contraction of tensors and prove that it is well-defined independent of any choice of basis used in the definition.
- 10. Let M be a finite dimensional vector space with a symmetric scalar product. Show that there is a basis such that the scalar product has a diagonal matrix.
- 11. Let T be a linear operator on a vector space of finite dimension n such that $T^4 = 0$, but T^3 is non-zero. Find the maximum rank T can have.
- 12. Let M be a Minkowski space. Show that the transition matrix between Lorentz bases in M is a Lorentz matrix. Show that an isometry of M has a Lorentz matrix with respect to a Lorentz basis. Let u, w be non-zero vectors in M with (u|u) < 0 and (u|w) = 0. Prove that (w|w) > 0.
- 13. Let $u_1
 ldots u_n$ be linearly independent vectors in a vector space M and let $y_1
 ldots y_r$ generate M. Prove that n
 ldots r.
- 14. Let L and N be 4-dimensional vector subspaces of a 7-dimensional vector space. Prove that $L \cap N$ contains a non-zero vector.
- 15. Let A be a matrix with entries in a field. Prove that the dimension of the row space of A is the same as the dimension of the column space.
- 16. Let T be a linear operator with Jordan form J. Prove that T can be represented by the transpose of J.
- 17. Prove the Schwarz inequality in a Hilbert space
- 18. Let P,Q, be self-adjoint operators in a Hilbert Space, satisfying commutation relation $PQ QP = \alpha$. Prove the uncertainty relation,

$$(\Delta P)(\Delta Q) \ge \frac{|\alpha|}{2}$$

- 19. If T is a linear operator on M, and M has an orthonormal basis of eigenvectors of T, prove that T is normal.
- 20. Let A be a Hermitian matrix. Prove there is a unitary matrix such that PAP^{-1} is diagonal.
- 21. Let G, A be real symmetric n by n matrices with G positive definite. Prove there is a matrix P such that $P^tGP = I$ and P^tAP is diagonal.

1

- 22. Let S, T be commuting diagonalisable operators. Prove that they are simultaneously diagonalisable.
- 23. Let T be a diagonalisable operator on a finite dimensional vector space M. Let N be a vector subspace of M which is invariant under T. Prove that T_N is diagonalisable.
- 24. If a linear operator T has matrix A, prove that rank $T = \operatorname{rank} A$.
- 25. Let T be an invertible linear operator on a vector space M of finite dimension n. Prove that powers of T, $(T^r|r \in Z)$ generate a subspace of Hom(M) of dimension at most n.
- 26. Let T be a linear operator on a finite dimensional vector space M. Show that there is a unique monic polynomial q of minimal degree such that q(T) = 0. Show that T is diagonalisable if and only if q is a product of distinct linear factors.
- 27. If $T: L \to M$ and $S: M \to N$ are linear operators, prove that rank $ST \ge \operatorname{rank} S + \operatorname{rank} T \operatorname{dim} M$. If $T: M \to M$ is a linear operator, and rank $T = \operatorname{rank} T^2$, prove that the intersection of ker T and Im T contains only the zero vector.
- 28. If $T: M \to N$ is a linear operator, prove that dim ker $T + \dim \operatorname{Im} T = \dim M$
- 29. Show that the vectors $x_1 ldots x_r$ are linearly independent if and only if $x_1 \wedge \ldots \wedge x_r$ is non-zero.
- 30. Show that the linearly independent vectors $x_1
 ldots x_r$ generate the same subspace as the vectors $y_1
 ldots y_r$ if and only if $x_1
 ldots
 ldots
 ldots x_r$ is a scalar multiple of $y_1
 ldots
 ldots y_r$
- 31. Show that the matrix equation Ax = b is equivalent to $x_1c_1 + ... + x_nc_n = b$ where the c_i are the columns of A. Use the wedge product to derive Cramer's rule.
- 32. Show that there is a linear isomorphism $x \mapsto \widetilde{x}$ from M to the dualspace of M^* such that

$$\langle \widetilde{x}, f \rangle = \langle f, x \rangle$$

for all $x \in M$ and $f \in M^*$.

- 33. State briefly what a category is and give an example.
- 34. Prove that a nilpotent operator can be represented by a matrix whose entries are all zero or one.
- 35. Prove that the skew-symmetriser satisfies:

$$A\Big[(AS)\otimes T\Big] = A\Big[S\otimes T\Big]$$

$$A(S \otimes T) = (-1)^{st} A(T \otimes S)$$

36. Let M be a finite dimensional real oriented vector space with non-degenerate symmetric scalar product. Prove that the volume form

$$vol = u^1 \wedge \ldots \wedge u^n$$

is independent of the choice of standard basis u_1, \ldots, u_n .

37. Find a matrix P such that PAP^{-1} is a Jordan matrix, where

$$A = \left(\begin{array}{ccc} 0 & 3 & 3\\ -1 & 8 & 6\\ 2 & -14 & -10 \end{array}\right)$$

38. Find a matrix P such that PAP^{-1} is a Jordan matrix, where

$$A = \left(\begin{array}{rrr} -1 & 1 & 1\\ -5 & 21 & 17\\ 6 & -26 & -21 \end{array}\right)$$

2

39. Find a matrix P such that PAP^{-1} is a Jordan matrix, where

$$A = \left(\begin{array}{rrr} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{array}\right)$$

40. Find a matrix P such that PAP^{-1} is a Jordan matrix, where

$$A = \left(\begin{array}{rrr} -4 & 2 & 10 \\ -4 & 3 & 7 \\ -3 & 1 & 7 \end{array} \right)$$

41. Find a matrix P such that PAP^{-1} is a Jordan matrix, where

$$A = \left(\begin{array}{rrr} 3 & 4 & 3 \\ -1 & 0 & -1 \\ 1 & 2 & 3 \end{array}\right)$$

42. Find a matrix P such that PAP^{-1} is a Jordan matrix, where

$$A = \left(\begin{array}{rrrr} 3 & 1 & 0 & 0 \\ -4 & -1 & 0 & 0 \\ 7 & 1 & 2 & 1 \\ -17 & -6 & -1 & 0 \end{array}\right)$$

- 43. Show that the push-forward T_* preserves tensor products, commutes with permutations and preserves the wedge product
- 44. Show how to use the push-forward to establish $\det ST = \det S \det T$
- 45. Let f be the function defined on the space of non-singular $n \times n$ real matrices and given by

$$f(A) = A^{-1}$$

Prove that f is differentiable and find its derivative.

46. Let f be the function defined on the space of non-singular $n \times n$ real matrices and given by

$$f(A) = A^{-2}$$

Prove that f is differentiable and find its derivative.

47. Let f be a C^2 function of two independent variables. Prove that

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

48. Show that the function

$$f(x,y) = 2xy \frac{x^2 - y^2}{x^2 + y^2}$$

if $(x,y) \neq (0,0)$ and f(0,0) = 0 is not C^2 on any open set containing (0,0).

49. Define the Hodge star operator and prove that

$$*u^1 \wedge \ldots \wedge u^r = s_{r+1} \ldots s_n u^{r+1} \wedge \ldots \wedge u^n$$

where $s_i = (u_i|u_i)$.

50. Let F be a real valued homogeneous differentiable function of n real variables. Prove that F is an eigenfunction of the operator

$$\sum_{j=1}^{n} x^{j} \frac{\partial}{\partial x^{j}}$$

- 51. Prove the chain rule for functions on finite dimensional real or complex vector spaces.
- 52. State and prove the Implicit Function Theorem
- 53. Prove the pull-back commutes with differentials.
- 54. Prove the chain rule for maps of manifolds.
- 55. Define:

 C^{∞} manifold C^{∞} compatible coordinates tangent space at a point on a manifold velocity vector of a parametrised path differential of a function partial derivative $\frac{\partial f}{\partial y^i}$ with respect to a coordinate system y^i pull-back of a differential form under a map push-forward of a tangent vector under a map n-dimensional coordinate system