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Summary: Sometimes we can’t see the forest for the trees. However sometimes we actually
want to look at trees instead of forests - this is what we did this week.

1 Circuits

Recall what we’re attempting to prove:

Corollary 1.1. If the degree of every vertex of a graph is even, then the graph admits an Eulerian
circuit.

We can work through the proof systematically in a series of lemmas:
Lemma 1.1. If the degree of each vertex is even, then there exists a circuit in the graph. |

Lemma 1.2. If the degree of each vertex is even and if there exist edges not in the circuit incident
to a vertex in the circuit, we can construct another circuit.

Moral of the proof:
We look at the subgraph of edges ignored by the circuit. We are the same scenario as Lemma 1.1,
so we can construct another (‘independent’) circuit, as required. ]

Lemma 1.3. If we have two circuits with at least one vertex in common, we can combine them.

Moral of the proof:
We are assuming no edges of the graph are traversed by both circuits; i.e. we’re in the same scenario
as Lemma 1.2. Then we can concatenate the two circuits at the joint vertex. |

Finally, the most complicated to state and visualise:

Lemma 1.4. Let (V, E) be a connected graph, and let some trail T in this graph be given. Suppose
that no vertex of the graph has the property that not all the edges of the graph incident to that vertex
are traversed by T .

Then the given trail is an Fulerian trail.

Moral of the proof:
That is, there does not exist a vertex v such that there exists an edge coming from v not traversed



by T. So let V; be the set of vertices through which the trail passes, and V5 the set of vertices
through which the trail doesn’t pass. Our goal is to show V5 is empty.

We show no edge in V; can join an edge in V5, which is a contradiction as the graph is connected.
Thus V, = 0 as required. [ |

Using these, the main theorem (Euler’s Theorem) is proven:

Theorem 1.2. A nontrivial connected graph contains an Eulerian circuit if the degree of every
vertex of the graph is even.

bold = conditions needed for an Eulerian circuit.

Remark 1.1. By Corollary 1.1 this is an ‘if and only if’ condition on connected graphs.

Proof.

By Lemma 1.1, we have a circuit. We can consider the circuit of maximum length. If the circuit is
not Eulerian by Lemma 1.2 we can construct a second circuit about a vertex v on the circuit - i.e.,
there is a vertex on the circuit such that not all the edges incident to it are traversed by this circuit
(thus leaving us edges to spare to construct the second circuit). By Lemma 1.3 we can concatenate,
gaining a larger circuit - a contradiction to maximality.

We conclude no vertex that belongs to the circuit of maximal length has the property that not
all edges incident to it are traversed by the circuit of maximal length. By Lemma 1./, the maximal
circuit is Eulerian, as required - the previous sentence shows why we need the specific and difficult
formulation of Lemma 1./. |

2 Forests and Trees

Definition 2.1. We’ll quickly parse through the following terms:
(1) Call a graph a forest if it contains no circuits (AKA acyclic).

(2) Call a graph a tree if it is a connected forest.

Theorem 2.1. Every forest contains one isolated (deg =0) or pendant (deg = 1) vertex.

Proof.
If degv > 2 for every vertex v then by a previous theorem the graph admits a circuit, a contradiction.
]



Theorem 2.2. A (non-trivial) tree contains at least one pendant vertez.

Moral of the proof:
The tree is non trivial, so contains at least two vertices. The tree must be connected, so no isolated
vertices. As a tree is a forest, it has a pendant vertex by Theorem 2.1. |

Theorem 2.3. Let (V, E) be a tree. Suppose v,w are two distinct vertices. There exists a unique
path from v to w in (V, E).

Moral of the proof:
If (V, E) contains two distinct paths, it contains a circuit (by a previous proposition); a contradic-
tion. |

QUESTION: Given a graph, how can we make a tree from it?
ANSWER: By studying spanning trees!

Definition 2.2. A spanning tree in a graph (V, E) is a subgraph of the graph (V, E') which itself is
a tree and contains every vertex in V.

Theorem 2.4. Every connected graph (V, E) contains a spanning tree. ]

The proof of this theorem is not constructive; that is, it doesn’t provide you with the spanning
tree in its proof, it just proves the spanning tree exists. However we can convert this theorem into
an algorithm that will give us the spanning tree of a graph.

First, we will need one result; the ‘=" direction comes from an inductive proof and the ‘<"
direction comes from Theorem 2.4.

Theorem 2.5. (V,E) is a tree & #(E) = #(V) — 1. |

Let (V, E) be a connected graph.

Algorithm #1 Delete edges, one at a time, to remove all circuits.

Algorithm #2 Start with solely one edge vw. Add back in one edge per vertex v € V' \ {v,w} such that at
each step the subgraph of (V| F) is connected and a tree.

I call Algorithm #1 the ‘destructive approach’ and Algorithm #2 the ‘constructive ap-
proach’.

At the end of Algorithm #1, note we use Theorem 2.5 to check if in fact we have a tree. At every
stage ¢ of Algorithm #2, we stick to the ‘1 vertex and 1 edge’ rule to ensure #(FE;) = #(V;) — 1.



This also guarantees we don’t accidentally make a circuit (as then we wouldn’t have to add in a
vertex) and the graph is connected at each stage (as we only add one vertez and need to draw one
edge).

(Examples of both given in class)



	Circuits
	Forests and Trees

