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Summary: During this tutorial we finished looking through the solutions of Assignment 2 and
went through some of the properties and proofs in graph theory presented during the first few weeks
of this term.

1 Circuits

Using closed walks we can deduce a surprising number of features of graphs. We begin with a
definition:

Definition 1.1. Let (V, E) be a graph. A circuit is a (nontrivial) closed trail in (V, E). That is,
a closed walk with no repeated edges (passing through at least two vertices).

Remark 1.1. Use the following mnemonic:
CIRCUIT = CLOSED TRAIL.

Circuits are simple if the vertices of the walk (except for the initial and final vertices) are distinct.
In this sense it is almost like a path.

The next natural question to ask is when does a graph have simple circuits? Is there anyway to
tell, apart from trial and error? The lecture notes contain two criteria for simple circuits, which are
easily seen once an example graph is drawn:

(1) Every vertex has degree > 2.
(2) Ju,v € V such that there exists 2 distinct paths from u to v.

NB: Drawing an example graph does NOT constitute a proof. If I handed you a glass of seawater,
is that proof the oceans are empty of fish? No!

We'll now talk about a specific kind of trail/circuit: the Eulerian trail/circuit.

Definition 1.2. An Fulerian trail in a graph is a trail that traverses every edge of the graph.
Note: as it is a trail it can only traverse edges once. Thus an Eulerian trail is a walk traversing
every edge exactly once.

Definition 1.3. An FEulerian circuit in a graph is a circuit that traverses every edge of the graph.



The main difference between Definition 1.2 and Definition 1.3 is an Eulerian circuit is closed;
you return to your starting vertex.

Remark 1.2. Use the following mnemonic:
EULERIAN TRAIL = EVERY EDGE is TRAVERSED.
EULERIAN CIRCUITS ARE CLOSED.

Example 1.1. Consider the graph K3, the connected graph on three vertices:
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The walk ABC'A is an Eulerian circuit; it traverses every edge of the graph once and the start and

endpoints coincide.

The main theorem of this section is as follows:

Theorem 1.1. Let (V, E) be a graph and vg ... v, be a trail. If v €V is a vertex, then the number
of edges of the trail incident to v is even, except when the trail is not closed and the trail starts or
finishes wih v, in which case the number of edges incident to v is odd.

This somewhat wordy theorem is pretty simple to understand once we are looking at a graph.
Consider K5, with the trail ADEB:
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If v = D, the number of edges incident (AD, DE) is even and when v = A (say), the number of
edges incident is odd (AD). Note if v = C the number of edges incident is 0, which is technically
even.

Two important corollaries from this:

Corollary 1.2. Let v be a vertex of the graph. Given any circuit in the graph, the number of edges
incident to v traversed by that circuit is even.

Corollary 1.3. If a graph admits an Eulerian circuit, then the degree of every vertex of that
graph must be even.



Remark 1.3. Note that with the contrapositive of Corollary 1.3, the infamous Seven Bridges of
Kénigsberg problem is solved! There exists a vertex of odd degree, so the graph doesn’t admit an
Eulerian circuit.

Now the question becomes; is the converse true? As the online notes lay out, we can work
through the proof systematically in a series of lemmas:

Lemma 1.1. If the degree of each vertex is even, then there exists a circuit in the graph.
Moral of the proof:

Given an edge vw, if we can’t find a trail beginning with v and ending at v, then degv is odd, a
contradiction. ]

We’ll tackle the rest next week.
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