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1. Recalling From Previous Talks

Category definition. This is a very general definition for a structure; so
much so that they were called “abstract nonsense” by Norman Steenrod.
Aluffi retorts “[abstract nonsense] is essentially accurate and not
necessarily derogatory: categories refer to nonsense in the sense that they
are all about the ’structure’, and not about the ’meaning’, of what they
represent.” I’m forced to agree with both viewpoints: by defining a very
broad structure, we can encompass many algebraic objects and instead
focus on how they relate to other algebraic objects, however for the notion
of category to be useful additional properties need to be introduced.
Abelian categories have these additional properties and are commonly used
as a basic object in this branch of mathematics.

Definition 1.1. A category C is abelian if C is additive and if each
morphism f ∈ HomC admits a kernel u and cokernel p and the thus
induced morphism f̄ : Cokeru→ Ker p is an isomorphism.

Note that if every morphism in a category C admits a kernel and cokernel,
f̄ naturally exists, is unique, and makes the following diagram commute:

(1)

Ker f X Y Coker f

Cokeru Ker p

u f

p′

p

f̄

u′

Hence the use of ”induced morphism” in Definition 1.1.

Example 1.2. A common example of an abelian category is Ab, the
category of abelian groups:
Here, the objects are abelian groups and the morphisms are group
homomorphisms. Group homomorphisms naturally satisfy the conditions
for Hom Ab, and ◦ is regular function composition.
The direct sum is the usual direct sum for abelian groups; namely given
groups (A, •) and (B, ∗), the domain of A⊕B is A×B and the product is
given by

(a1, b1)d(a2, b2) = (a1 • a2, b1 ∗ b2)

The zero object in Ab is the group {0}, and the category notions of kernel
and cokernel coincide with our usual definitions in the algebraic sense,
where for f : A→ B

Ker f = {x ∈ A : f(x) = 0} and Coker f = B/f(A)

Finally, as in Definition 1.1 we wish f̄ : Cokeru→ Ker p to be an
isomorphism. Note

Cokeru = X/u(Ker f) = X/Ker f
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as u is the canonical embedding. Also since Ker p = {y ∈ Y : p(y) = 0} and
Cokerf = Y/f(X), we have

y ∈ Ker p⇔ p(y) = 0 (in Coker f) ⇔ p(y) ∈ f(X)

so Ker p = f(X). By the first isomorphism theorem for groups,
X/Ker f ∼= f(X), thus f̄ exists, is unique, and makes (1) commute, as
required. ♦

Example 1.3. In a similar way, given a K-algebra A we can show the
category of right (or left) A-modules known as ModA is abelian. ♦

Functor definition. A map to relate two categories in a way that was
reminiscent of the properties of homomorphism (preserving identity and
operations). In particular, for more structure:

Definition 1.4. Let T : C→ C′ be a functor between categories. T is
additive if T preserves direct sums and ∀X,Y ∈ ObC, the map
TXY : HomC(X,Y )→ HomC′(T (X), T (Y )) given byf 7→ T (f) satisfies
T (f + g) = T (f) + T (g) for all f, g ∈ HomC(X,Y ).

Sequences.

Definition 1.5. Let C be an abelian category. A sequence

. . . Xn−1 Xn Xn+1 . . .
fn fn+1

is called exact if Im fn = Ker fn+1 for all n.
A short exact sequence is an exact sequence in C of the form

0 X Y Z 0
f g

Example 1.6. Let N be a normal subgroup of a group G, with identity
element 1. Then the following is an exact sequence:

1 N G G/N 1
i1 iN π 0

This follows as:

• As i1, iN are the standard inclusion maps, Im i1 = 1 = Ker iN .
• As π is the canonical projection mapping, Im iN = N = Kerπ.
• By definition the zero map 0 : G/N → 1 sends all elements to 1, so

Imπ = Ker 0.

♦

Definition 1.7. A short exact sequence

0 X Y Z 0
f g

splits if there is a map h : Z → Y such that g ◦ h is the identity on Z. This
is equivalent to saying Y ∼= X ⊕ Z, by the Splitting Lemma ([Hungerford,
Theorem 1.18]).
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Remark 1.8. Short sequences which split are exact. If

0 X X ⊕ Z Z 0
f π

is a sequence, we can make it exact by setting Kerπ = X where π is the
projection map. ♦

2. Leading to Derived Functors

Assume all categories are abelian and all functors additive.

Definition 2.1. Let C,C′ be categories and T a functor between them. let

0 X Y Z 0
f g

be a short exact sequence. We say T is

• left exact if

0→ T (X)
T (f)−−−→ T (Y )

T (g)−−−→ T (Z)

is exact.
• right exact if

T (X)
T (f)−−−→ T (Y )

T (g)−−−→ T (Z)→ 0

is exact.

Example 2.2. Let A be an abelian category, and let A ∈ ObA. Define

FA(X) = HomA(A,X) (also written HomA(A,−))

This defines a (covariant) left exact functor from A to Ab1. We let FA act
on morphisms in HomA in the natural way; by composition. Given
f : X → Y ,

FA(f) = HomA(A, f) : HomA(A,X)→ HomA(A, Y )

by
FA(f)(β) = f ◦ β

♦

Projective and Injective resolutions.

Definition 2.3. An object I in a category A is injective if given an
injective morphism f : A→ B ∈ HomA and a map α : A→ I there exists
a map β making the following diagram commute:

(2)

0 A B

I

f

α
β

One can state the idea of this in simpler terms; “Objects are highly
embeddable in I”.

1N. Jacobson, Basic Algebra II, Theorem 3.1.
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Definition 2.4. An object P in a category A is projective if given a
surjective morphism g : A→ B ∈ HomA and a map γ : P → B there
exists a map β making the following diagram commute:

(3)

P

A B 0

β
γ

g

Again one can state the idea of this in simpler terms; “P is highly
projectable”.

Remark 2.5. The existence of β in Definitions 2.3, 2.4 is known as the
universal lifting property. ♦

Definition 2.6. A category A has enough injectives if ∀A ∈ ObA there is
an injective morphism A→ I where I is an injective object.

Similarly

Definition 2.7. A category A has enough projectives if ∀A ∈ ObA there
is a surjective morphism P → A where P is an projective object.

Definition 2.8. Let M ∈ ObA. An injective resolution is an exact
sequence of injective modules

0 M I0 I1 I2 · · ·f d0 d1 d2

Similarly

Definition 2.9. Let M ∈ ObA. A projective resolution is an exact
sequence of projective modules

· · · P 2 P 1 P 0 M 0d3 d2 d1 d0

Remark 2.10. If A has enough injectives then every object has an
injective resolution. Similarly, if A has enough projectives then every
object has a projective resolution. ♦

A more general idea of Definitions 2.8, 2.9 is that of a chain complex. We
are interested mainly in the abelian category ModA, for A a K-algebra, so
we will define complexes (and homologies) in this context:

Definition 2.11. A chain complex is a sequence

C• : . . . Cn+1 Cn Cn−1 . . . C0 0
dn+1 dn d1 d0

where the Ci are right A-modules and the di are A-homomorphisms such
that dn ◦ dn+1 = 0.

Definition 2.12. A cochain complex is a sequence

C• : 0 C0 · · · Cn−1 Cn Cn+1 · · ·d−1 d0 dn−1 dn

where again the Ci are right A-modules and the di are A-homomorphisms
such that dn+1 ◦ dn = 0.
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As dn ◦ dn+1 = 0, Im dn+1 ⊆ Ker dn. We can then define, for n ≥ 0, the nth

homology A-module of C• (and the nth cohomology A-module of C•) to be

Hn(C•) = Ker dn/ Im dn+1 and Hn(C•) = Ker dn/ Im dn−1

respectively. This provides some sort of measure of how ‘nonexact’ the
complex is.

Definition 2.13. Let C• and D• be chain complexes of right A-modules.
A chain morphism u : C• → D• (commonly referred to as a morphism) is a
family of A-module homomorphisms un : Cn → Dn such that the following
diagram commutes:

(4)

. . . Cn+1 Cn Cn−1 . . .

. . . Dn+1 Dn Dn−1 . . .

un+1

dn+1

un

dn

un−1

d′n+1 d′n

Definition 2.14. A chain morphism u : C• → D• is known as a
quasi-isomorphism (or by Bourbaki as a homologism) if the homology maps
hn : Hn(C•)→ Hn(D•) are isomorphisms for all n.

Lemma 2.15. Let C• be a chain complex of right A-modules. The
following are equivalent:

(1) C• is exact (that is, exact at every Cn).
(2) C• is acyclic (that is, Hn(C•) = 0 for all n).
(3) The map 0• → C• is a quasi-isomorphism, where 0• is the chain

complex of zero modules and zero maps.

Proof. This follows from the definitions of exact, homology module and
quasi-isomorphism:

(1)⇒ (2)⇒ (3)⇒ (2)⇒ (1)

�

3. Derived Functors

We now turn to the construction of right derived functors for left exact
sequences using the tools we have built in the previous sections.
Let C be a category with enough injectives, and F a left exact functor.
Begin with M ∈ ObC. As C has enough injectives, there is an injective
resolution of M

0 M I0 I1 I2 · · ·f d0 d1 d2

which is a long exact sequence. We rewrite this as two cochain complexes

M• : 0 M 0 0 · · ·

I• : 0 I0 I1 I2 · · ·

f

d−1 d0 d1
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where the two complexes are ’similar’ in the sense that their cohomologies
at (almost) every point agree. We will work with the I• cochain complex
(in essence suppressing the M object), and we keep in mind it might not
be fully exact.
Applying the left exact functor F we obtain

F (I•) : 0 F (I0) F (I1) F (I2) · · ·F (d−1) F (d0) F (d1)

We then compute its cohomology at the ith spot and call the resulting
object RiF (M):

RiF (M) := H i(F (I•)) = KerF (di)/ ImF (di−1)

and note in particular as F is left exact we have the exact sequence

0 F (M) F (I0) F (I1)
F (f) F (d0)

and as f : M → I0 is an injection we conclude

R0F (M) = KerF (d0)/ ImF (d−1) = ImF (f)/0 ∼= F (M)

We say F has been derived to form RiF , namely RiF is a derived functor.

Remark 3.1. In a similar way we can construct the left derived functors
for right exact sequences by:

(1) Assuming C has enough projectives.
(2) Taking a projective resolution of N ∈ ObC, and forming the chain

complex K•.
(3) Computing the ith homology and defining

LiF (N) = Hi(F (K•)) = KerF (di)/ ImF (di+1)

♦

Remark 3.2. There is a correspondence between right and left derived
functors:

RiF (M) = (LiF
op)op(M)

which follows from the correspondence between injective resolutions in C
and projective resolutions in Cop. ♦

We now need to prove that the constructed functor ’fixes’ exactness. First,
two lemmas which ensure the derived functors are well defined:

Lemma 3.3. RiF (M) does not depend on the injective resolution of M .
That is, if J• is a second resolution of M , then

H i(F (I•)) ∼= H i(F (J•))

Sketch proof. We need the following fact ([Weibel, Theorem 2.3.7]):

If ε : M → I• is an injective resolution of M and f : M → N a map in A,
for every injective resolution η : N → J• there is a cochain morphism
f ′ : I• → J• ’lifting’ f , in the sense η ◦ f = f ′0 ◦ ε.
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This fact also states f ′ is unique up to (co)chain homotopy. The concept of
homotopy and its use in this sketch proof is explained in more detail in
[Osborne, Chapter 3].
There is thus a cochain morphism f : I• → J• lifting idA yielding the (as it
turns out, canonical) map f∗ : H i(F (I•))→ H i(F (J•)). Similarly there is
a cochain morphism g : J• → I• lifting idA and the corresponding map g∗.
Since g ◦ f and idI• are cochain morphisms of I• → I• lifting idA, we can
conclude g∗ ◦ f∗ = (g ◦ f)∗ = (idI•)

∗ = identity on H i(F (I•)). Similarly
f∗ ◦ g∗ = (idJ•)

∗. Thus f and g are quasi-isomorphisms and

H i(F (I•)) ∼= H i(F (J•))

as required. �

Lemma 3.4. RiF is a functor. In particular, a morphism f : M → N
yields a morphism RiF (f) : RiF (M)→ RiF (N).

Sketch proof. If I•M , I•N are injective resolutions of M and N respectively,
there is a cochain morphism f ′ : I•M → I•N lifting f unique up to cochain
homotopy. Thus by the same ideas as in Lemma 3.3 the map

f ′∗ : H i(F (I•M ))→ H i(F (I•N ))

is canonical. This will be the map we want: RiF (f) = f ′∗.
The other properties of a covariant functor (preservation of the identity
and composition) follow naturally in suit. �

We now wish to show right derived functors turn the sequences formed by
left exact functors on short exact sequences into long exact sequences.

Theorem 3.5. Suppose C and F are as previously given. Given a short
exact sequence

(5) 0 X Y Z 0
f g

the following is a long exact sequence:

(6)

0 F (X) F (Y ) F (Z)

R1F (X) R1F (Y ) R1F (Z)

R2F (X) R2F (Y ) · · ·

f0 g0

h0

f1 g1

h1

f2 g2

Proof. This theorem is proven in the context of left derived functors and
projective resolutions, however by Remark 3.2 we can convert between left
and right derived functors and projective and injective resolutions. We
need to use two lemmas to prove this statement ([Aluffi, Chapter IX, §7]):
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Lemma 3.6. Horseshoe Lemma. Given (5) in C with P •X , P
•
Z the

projective resolutions of X,Z respectively, there exists a projective
resolution P •Y of Y such that

(7) 0 P •X P •Y P •Z 0

is an exact sequence.

Sketch proof. Set P iY = P iX ⊕ P iZ . This will form a projective resolution of
Y , and all rows of the following diagram will be exact:

(8)

0 X Y Z 0

0 P 0
X P 0

X ⊕ P 0
Z P 0

Z 0

0 P 1
X P 1

X ⊕ P 1
Z P 1

Z 0

0 P 2
X P 2

X ⊕ P 2
Z P 2

Z 0

...
...

...

�

Lemma 3.7. Given (7) and F an additive functor of abelian categories,
then

(9) 0 F (P •X) F (P •Y ) F (P •Z) 0

is an exact sequence.

Proof. Since P iZ is projective,

(10)

P iZ

0 P iX P iY P iZ 0

id
β

f g

there is a map β : P iZ → P iY that composes with g to form the identity id -
i.e. β = g−1. Thus P iY can be written as P iX ⊕ P iZ , meaning the sequence
(10) splits. Then

0 F (P iX) F (P iY ) F (P iZ) 0

splits, as F is additive. By Remark 1.8, this sequence is exact thus (9) is
exact, as required. �
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Returning to the proof of Theorem 3.5:
Given (5), we obtain (7) by taking the correct projective resolutions. This
is exact by Lemma 3.6 and by Lemma 3.7, (9) is exact. Expanding (9) we
obtain:

(11)

0 F (X) F (Y ) F (Z) 0

0 F (P 0
X) F (P 0

Y ) F (P 0
Z) 0

0 F (P 1
X) F (P 1

Y ) F (P 1
Z) 0

0 F (P 2
X) F (P 2

Y ) F (P 2
Z) 0

...
...

...

We note that the homology objects of the column complexes of
(11) are exactly the left derived functors of F , as we defined them.

Finally, by a diagram chase ([Aluffi, Chapter IX, Theorem 3.5]) of these
homology objects, we obtain the long exact sequence:

F (X) F (Y ) F (Z) 0

L1F (X) L1F (Y ) L1F (Z)

· · · L2F (X) L2F (Y ) L2F (Z)

f0 g0

f1 g1

h1

f2 g2

h2

using the Snake Lemma. Thus, based on these results, we can conclude (6)
is a long exact exact sequence too, as required. �

Lemma 3.8. If A is injective then RiF (A) = 0 for i ≥ 1.

Proof. If A is injective, it has an injective resolution

X• : 0 A A 0 0 · · ·

so

RiF (A) = H i(F (X•)) = 0

for i ≥ 1, by induction on the length of X•. �

Corollary 3.9. If A is projective then LiF (A) = 0 for i ≥ 1. �
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Remark 3.10. The famous Snake Lemma can be viewed as a ’special
case’ of Theorem 3.5 - it should be noted this is not a proof of the Snake
Lemma, rather a way to rewrite it to demonstrate the previous theorem.
Recall the Snake Lemma says for a commutative diagram of exact rows

(12)

0 L M N 0

0 L′ M ′ N ′ 0

u

f

v

g h

u′ v′

there is a connecting homomorphism δ

(13)

Kerf Kerg Kerh

0 L M N 0

0 L′ M ′ N ′ 0

Cokerf Cokerg Cokerh

u v

δ

u

f

v

g h

u′ v′

u′ v′

making the sequence

0 Kerf Kerg Kerh

Cokerf Cokerg Cokerh 0

u v

δ

u′ v′

exact. If we view the columns of (12) as complexes

L• : 0 L L′ 0 · · ·

M• : 0 M M ′ 0 · · ·

N• : 0 N N ′ 0 · · ·

f

g

h

then (12) is the expansion of the short exact sequence

0 L• M• N• 0

of these complexes. The Snake Lemma then tells us there is an exact
sequence

0 H0(L•) H0(M•) H0(N•)

H1(L•) H1(M•) H1(N•) 0

δ
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which we can see is a special case of (6). ♦

4. Applications: the Ext Functor

A popular example of derived functors are the Hom functors obtained by
deriving the Hom functors. We have already come across Hom functors
before; in Example 2.2 we defined the Hom functor on abelian categories:

HomA(A,−) : A→ Ab X 7→ HomA(A,X)

and found it was a left exact functor. Using the previous results we obtain
the ith right derived functor of HomA(A,−) as

ExtiA(A,−) := Ri HomA(A,−)

Similarly
If A is a K-algebra we can similarly define the functor HomK(M,−) over
ModA and obtain the nth derived functor

ExtnK(M,−) : ModA→ ModK

of HomK(M,−) (for a fixed A-module M).

Example 4.1. We will compute ExtnZ(Zp,Z).
First, take a projective resolution of Zp:

0 Z Z Zp 0
×p ≡p

Applying the right exact contravariant functor2 HomZ(−,Z), we get the
exact sequence

0 HomZ(Z,Z) HomZ(Z,Z) HomZ(Zp,Z)
(×p)∗ (≡p)∗

Since HomZ(Z,Z) ∼= Z and HomZ(Zp,Z) = 0 we get the following:

0 Z Z 0
(×p)∗ (≡p)∗

Finally

• Ext0
Z(Zp,Z) = HomZ(Zp,Z) = 0

• Ext1
Z(Zp,Z) = Ker(×p)∗/ Im(≡p)∗ = Zp/0 = Zp

• Ext2
Z(Zp,Z) = 0 for i ≥ 2.

Note that by Corollary 3.9 this means Zp isn’t projective as a Z-module. ♦

Remark 4.2. If G is a finitely generated abelian group, then
Ext1

Z(G,Z) ∼= G. This follows from the fundamental theorem of finitely
generated abelian groups, which says G can be written as a direct sum
involving Zn and Zp. ♦

2Applying a contravariant functor to a projective resolution also leads to a right derived
functor.
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Remark 4.3. By Lemma 3.8 if N is an injective module we can
immediately conclude

∀M , ExtnK(M,−)(N) = ExtnK(M,N) = 0

for all n ≥ 1. ♦

5. Closing remarks

Definition 5.1. A (covariant) cohomological δ-functor between abelian
categories A and B is a collection of additive functors Tn : A→ B
(indexed by nonnegative integers) together with a family of morphisms
δn : Tn(C)→ Tn+1(A) for each short exact sequence

(14) 0 A B C 0

in A, such that the following two properties hold:

(1) For each short exact sequence (14) there is a long exact sequence

0 T 0(A) T 0(B) T 0(C)

T 1(A) · · · Tn(C)

Tn+1(A) Tn+1(B) · · ·

δ0

δn

(2) Each morphism of short exact sequences

0 A B C 0

0 A′ B′ C ′ 0

gives rise to a commutative diagram

Tn(C) Tn+1(A)

Tn(C ′) Tn+1(A′)

δn

δn

(This property is known as naturality.)

This definition generalises the notion of right derived functors; by Theorem
3.5 they satisfy (1) and their naturality is proven in [Weibel, Theorem
2.4.6]3.
Similarly the concept of a homological δ-functor can be defined to
generalise left derived functors.

3For left derived functors.
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Introduced by Grothendieck in his famous Tôhoku paper, this context is
intended to be the appropriate setting in which to treat and further the
development of derived functors.

We have thus plotted the course of derived functors from their roots in
categories and exact sequences to the point where we see they are part of a
much larger, more general framework, and here we end.
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