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3. Tame Topology
Of tame topology, A’Campo, Ji and Papadopoulos [1] write:

Grothendieck recalls that the field of topology at the time he
wrote his Esquisse was still dominated by the development,
done during the 1930s and 1940s, by analysts, in a way that
fits their needs, rather than by geometers. He writes that the
problem with such a development is that one has to deal with
several pathological situations that have nothing to do with
geometry. He declares that the fact that “the foundations of
topology are inadequate is manifest from the very beginning,
in the form of ‘false problems’ (at least from the point of view
of the topological intuition of shape).”

There is no strict definition to what constitutes calling a property
tame; rather as this idea arose from observing the nice topological
and geometric properties of the semialgebraic sets, we observe what
properties are common to these sets which constitute preferable and
advantageous behaviour. Properties such as:

(1) Stratification. If X is semialgebraic, then X can be written as
a disjoint union X = X1 ∪ · · · ∪Xn of semialgebraic sets, where
each Xi is a connected real analytic manifold.

(2) Smooth maps. If f : X → R is semialgebraic, then X can be
partitioned into finitely many disjoint semialgebraic sets Xi such
that f |Xi

is analytic.

We can see properties (1) & (2) correspond to (I)m & (II)m in
Theorem 2.4. As it turns out, in specific structures (I)m & (II)m
can be extended to include analytic functions. Specific o-minimal
structures also have a host of other tame properties, such as definable
Skolem functions, definable partitions of unity, a uniform bound on
the size of fibers of definable sets, and a set being definably connected
if and only if it is definably path connected. In general the projection
of a definable set to a lower dimension is also definable.
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1. Introduction
Grothendieck first presented the idea of tame topology in 1984 in

Equisse d’un Programme, where he called for the recasting of topol-
ogy to reflect the ‘moderate’ or ‘tame’ topological properties of the
semialgebraic sets (§3) and avoid unpleasant results, like the Banach-
Tarski Paradox, or unpleasant objects, like the topologist’s sine curve
or space-filling curves. The first collection to generalise the proper-
ties of the semialgebraic sets was the subanalytic sets, and it was
discovered the study of o-minimal structures is a further generalisa-
tion.

O-minimality (short for order-minimality) originally arose in the
1980’s through the work of van den Dries [2], and Knight, Pillay and
Steinhorn [4, 5] in model theory. Model theory is a branch of math-
ematical logic concerned with studying mathematical structures by
examining what is true (from a logical perspective) in these struc-
tures, and what subsets of these structures can be defined by first
order logical formulae.

The principal objects of study are models, also known as struc-
tures:

Definition 1.1. Let L be a collection of constants, relations, and
functions, known as a language. An L-structure A is the data of:

• An underlying set, denoted |A|.

• Interpretations for all symbols in L, meaning:

– Each constant symbol c ∈ L is assigned to an element cA of |A|.
– Each relation symbol R ∈ L of arity k < ω is interpreted to hold

on some subset R ⊆ |A|k, meaning

RA(x1, . . . , xk) is true ⇔ (x1, . . . , xk) ∈ R.

– Each function symbol f ∈ L of arity k < ω is interpreted to take
every element of |A|k to an element of |A|. That is, f is a function

fA : |A|k → |A|.

Example 1.2. Let N = (N, 0, <,+,×, S). This structure is
the standard model of arithmetic: we assign the usual interpre-
tation to each element of the language. In terms of the previous
definition, for example:

<N⊂ N2 <N= {(1, 2), (1, 3), (2, 3), . . . }.

Using the definition of a structure we can make advances towards
answering Grothendieck’s challenge to describe a general class of sets
that shares the tame topological properties of the semialgebraic sets.

2. O-Minimality
In first order logic we can express ourselves through formulae

and sentences using the relations, functions, and constants of our
language L, connectives such as ∧ (and), ∨ (or), → (implies), quan-
tifiers ∃ (there exists), ∀ (for all), and parentheses ‘(’, ‘)’. If a sentence
ϕ is true in a structure A this is written A |= ϕ.

Example 2.1. Consider N, the standard model of arithmetic
(Example 1.2 ). Then

N |= ∀x ((0 < x) ∨ (x = 0)) .

Formulae (such as ϕ(x) = 0 < x) can define a subset A of a
structure A by

a ∈ A ⇔ A |= ϕ(a).

Sets defined by formulae like this are known as definable sets.
NB: A function is called definable if its graph is a definable set.
The definable sets of o-minimal structures are particularly simple:

Definition 2.2. An L-structure A is said to be o-minimal if every
definable subset of A is a finite union of singletons and open intervals.

This condition has profound repercussions for definable subsets
in any dimension, and for the (interval) topology on the space: given
a definable set A ⊆ |A|m, some m ≥ 1, we can partition A into a
disjoint union of cells:

Definition 2.3. An cell is a definable subset of |A|m obtained by
induction as follows:

(1)

Examples of cells in Rn+1 [3].

A point {a} ⊆ |A| or an interval
(a, b) ⊆ |A| is a cell.

(2) If X is a cell, the graph of a
definable, continuous function
f : X → |A| is a cell.

(3) If X is a cell, for f < g definable
and continuous functions,
{(x, a) ∈ X × |A| : f(x) < a < g(x)} is a cell.

Theorem 2.4. Cell Decomposition theorem.
(I)m Given definable sets A1, . . . , Ak ⊆ |A|m, there is a de-

composition of |A|m into cells, partitioning each of the
A1, . . . , Ak.

(II)m Suppose A ⊆ |A|m is definable. Given a definable function
f : A→ |A|, there is a decomposition of |A|m partitioning
A such that f |B for each cell B in the decomposition with
B ⊆ A is continuous.


