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CARDINALITY

Using a cardinal number we can talk about the size (or cardinality) of
a set.

If a set is countable, its cardinality is ℵ0. Any uncountable set will
have cardinality greater than ℵ0.

You’ll see me using ω and ω1 - think of this as saying “I’m counting
to ℵ0 or ℵ1” respectively.

My project was focused on sets of cardinality ℵ1 and ℵ2 – the next
cardinals after ℵ0.
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STRUCTURES AND MODELS

The definition of a structure A is the data of:

A language L consisting of relations, functions and constants.

A set A which forms the domain of the structure.

An interpretation for each member of the language;

- Specific elements of the model are named as being constants; cA ∈ A.

- For each relation R, elements are specified as being in the relation or
not, by RA ⊆ AnR .

- A function f is defined as you might expect; f A : Anf → A.

This object is also referred to as a model.
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EXAMPLE

Let A = (N,+, ∗, 0, <,S).

This structure is the standard model of arithmetic – we already know
what each element of the language interprets to (the usual/intuitive
interpretations).

In terms of the previous definition, e.g.

<A⊂ N2 <A= {(1, 2), (1, 3), (2, 3), . . . }

This model has rules in place so it behaves like the Natural numbers
we’re used to. Rules like:

- “0 is the smallest element”

- “1 comes before 2”

- “I can always find a bigger element”

How do we write these rules and how do we ensure the model obeys
them?
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SENTENCES

Using logical sentences we can specify the properties of the structure
we are interested in.

These sentences are made up using variables (x, y and z), logical
connectives, negation and quantifiers;

∧ ∨ → ¬ ∀ ∃

For example, in the model A I can turn the sentence “0 is the
smallest element” into

¬∃x(x < 0) or ∀x(x = 0 ∨ 0 < x)
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SATISFACTION

If a sentence ϕ is true in a model A we say ϕ is satisfied in A or that
A models the sentence ϕ.

This is written A |= ϕ.

(For example, our model of the Natural numbers satisfies the
sentence “0 = 0” but not “0 = 1”)

If the sentence is false in the model, then it is not satisfied, written
A 6|= ϕ.

However from the definition of truth,

A 6|= ϕ⇔ A |= ¬ϕ
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SCOTT SENTENCES

In 1965 Scott proved by construction for any countable model there
existed a sentence that could describe the model completely; he
constructed, for a given countable structure A, a sentence ϕ such
that if B |= ϕ (where B is another countable structure) then B is
isomorphic to A (written B ∼= A).

Sidenote; an isomorphism of models is a bijection preserving relations,
functions and constants (thus preserving truth).

A sentence that has this property is now known as a Scott sentence
and although it might have infinitely many conjunctions and
disjunctions (and’s & or’s) it’s still ‘tame’ enough to do everything we
want to do in elementary first order logic.

In other words, Scott sentences are sentences of the logic Lω1,ω.
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EXAMPLE

A vector space of dimension n
Let A = (V , 0,+,−, (∗)q∈Q) be a model.
To say the dimension is at least n;

ψ(x1, . . . , xn) =
∧

q1,...,qn∈Q
q1 ∗ x1 + · · ·+ qn ∗ xn = 0↔ (q1 = 0 ∧ · · · ∧ qn = 0)

Which is to say “x1, . . . , xn are linearly independent”. To say the
dimension is at most n;

ξ(x1, . . . , xn) = ∀y

 ∨
q1,...,qn∈Q

y = q1 ∗ x1 + · · ·+ qn ∗ xn


Which is to say “x1, . . . , xn span the space”. Suppose φ captures the

axioms of a vector space; all together,

φ ∧ ∃x1, . . . , xn(ψ(x1, . . . , xn) ∧ ξ(x1, . . . , xn))

forms a Scott sentence.
BRIAN TYRRELL MODEL THEORY SUMMER 2016 8 / 22



EXAMPLE

A Michael Scott sentence:

BRIAN TYRRELL MODEL THEORY SUMMER 2016 9 / 22



WHAT THE TITLE MEANS!

If I have a Scott sentence for a countable model, I want to know
when that Scott sentence is satisfied in a bigger model.

How big? I can’t prove satisfaction in all models of all sizes at once,
so I’ll specify the cardinality of this ‘bigger model’ step by step.

So, what am I looking for?

Conditions a countable model must satisfy for its Scott
sentence to have an uncountable model of a specified

cardinality.
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THE BACK-AND-FORTH PROPERTY

DEFINITION

A partial isomorphism between (countable) structures A,B is a bijection
f : U → V on subsets U, V of A, B which itself is an isomorphism.

DEFINITION

A back-and-forth system P is a nonempty set of partial isomorphisms
f : U → V with the properties that

1 For each f ∈ P and x ∈ A there is a y ∈ B and f + ∈ P such that
f + : U ∪ {x} → V ∪ {y} and f +(x) = y .

2 For each f ∈ P and y ∈ B there is an x ∈ A and f + ∈ P such that
f + : U ∪ {x} → V ∪ {y} and f +(x) = y .

THEOREM

If there exists a a back-and-forth system P on two countable structures
A and B, then A ∼= B. �
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TYPES

DEFINITION

Let A be a structure with language L. For ~a = (a1, . . . , an) ∈ A, the type
of ~a (denoted tp(~a)) is the set of all formulas ϕ(~x) with A |= ϕ(~a).
Furthermore,

~x ≡ ~y ⇔ tp(~x) = tp(~y)

DEFINITION

An n-type (of A) is a set of formulas P(x1, . . . , xn), each having free
variables only occurring amongst x1, . . . , xn s.t. for every finite subset
P0(x1, . . . , xn) there exists ~b = (b1, . . . , bn) ∈ A s.t. A |= P0(~b).

DEFINITION

A complete type P(~x) in variables ~x = (x1, . . . , xn) contains ϕ(~x) or ¬ϕ(~x)
for every elementary first order formula ϕ(~x) in the variables x1, . . . , xn.
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HOMOGENEITY

DEFINITION

A countable structure A is (ω-)homogeneous if for any ~a, ~b ∈ A s.t. ~a, ~b
satisfy the same formulas there is an automorphism of A taking ~a to ~b.

DEFINITION

Let (A,U) be a pair where A is a countable structure and U is a predicate.
(A,U) is pair-homogeneous if, given ~a, ~b, c such that ~a and ~b realise the
same type in (A,U), there exists d ∈ A such that (~a, c) and (~b, d) realise
the same type in (A,U).

REMARK

Note: pair-homogeneity + back-and-forth system = homogeneous.
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ATOMIC MODELS

DEFINITION

An atomic model is one where the complete type of every tuple is
axiomatized or generated by a single formula.

EXAMPLE

Any finite model is atomic. The model of a dense linear ordering without
endpoints is atomic.
Atomic models are homogeneous.

DEFINITION

Given an L-structure A,

Th(A) = {ϕ : ϕ is a sentence of L and A |= ϕ}.

This is known as the theory of A.
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ATOMIC MODELS

REMARK

Note that if A is a countable atomic model, then it has a Scott sentence ϕ
that is the conjunction of Th(A) and a sentence saying

∀~x

(∨
i

γi (~x)

)

where the γi are the generators for the complete atomic types consistent
with Th(A).

THEOREM

Suppose A, B are atomic models for the same theory, where A is
countable. Then B satisfies the Scott sentence of A.

PROOF

Show the two structures satisfy the same types. �
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COUNTABLE FRAGMENTS

REMARK

Suppose ϕ is the Scott sentence of a countable structure A, and suppose
there is an uncountable structure B |= ϕ.

We want to conclude there is some connection between A and B, however
the former is countable and the latter uncountable.
What to take away from this: if B |= ϕ then there is a countable
substructure B0 of B satisfying ϕ.

We proceed as follows: let F be a countable fragment of Lω1,ω including ϕ
and be closed under subformulas of ϕ, and include all finitary formulas of
L and be closed under ∧,∨,¬ (note the language of A is countable).
Using the Infinitary Downward Löwenheim Skolem Tarski Theorem we can
obtain a countable B0 which satisfies ϕ. Thus B0

∼= A.
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MAIN CONSTRUCTION

Let T ∗ be a set of sentences in the language of A with an added symbol
U, saying the following:

(A) (∃x)¬Ux
(B) For each formula φ(~u, x), “ ∀~u ∈ U ”

∃x(φ(~u, x))→ ∃x(Ux ∧ φ(~u, x))

THEOREM

Suppose A is a countable model and has an expansion A∗ = (A,UA∗
)

satisfying T ∗. The substructure formed by restricting A∗ to UA∗
is

isomorphic to A.

�
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MAIN CONSTRUCTION

Let D0 = UA∗
= B and D1 = A. As D1

∼= D0 we wish to construct D2

with D1 a substructure and (D2,D1) ∼= (D1,D0).

Continuing on like this, we get a chain of structures D0 ⊂ D1 ⊂ D2 ⊂ · · ·
with Dω =

⋃
n<ω Dn.

THEOREM

Dω ∼= D0.

PROOF

First, Dω is homogeneous.
Dω realises the same types as D0.
Dω is still countable.
Thus we have two countable, homogeneous structures that realise the
same types, so they are isomorphic, as required. �
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MAIN THEOREM

Now we can begin one of the main results.

Recall T ∗ is a set of (finite) sentences in the language of A with an added
symbol U, saying the following:

(A) (∃x)¬Ux
(B) For each formula φ(~u, x), “ ∀~u ∈ U ”

∃x(φ(~u, x))→ ∃x(Ux ∧ φ(~u, x))

As it turns out, these are the conditions we need for a Scott sentence of a
countable structure to be satisfied in an ℵ1-sized structure.
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MAIN THEOREM

THEOREM

Let A a countable atomic model. Then a Scott sentence of A has a model
of cardinality ℵ1 if A can be expanded to model T ∗.

PROOF:
Let ϕ be a Scott sentence of A and suppose A can be expanded to a
model of T ∗. Let B = UA. Then A and B are isomorphic.
Set D0 = B and D1 = A and construct the chain (Dα)α<ω1 ; where at the
right places, Dγ =

⋃
β<γ Dβ and (Dα+1,Dα) ∼= (D1,D0). Note for all

α < ω1, Dα ∼= D0.
Set M =

⋃
α<ω1

Dα which has cardinality ℵ1. M has ‘nice properties’: it
is a model of Th(A) and is atomic (exercise left to the reader).
Therefore since we know what these Scott sentences look like, M |= ϕ, as
required. �
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WHAT NEXT?

1 The previous theorem proved things about models of size ℵ1.

2 The paper goes on to prove things about models of size ℵ2 in a
similar way.

3 The ℵ2-proof is presented in a ‘step-by-step’ way so there’s an
indication on how to generalise to ℵα, but more work is needed!

4 Scattered about the place are other small theorems with stricter
conditions that guarantee models of any size (in essence, solve the
problem in general).
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CONCLUSION

The paper in full can be found at www.maths.tcd.ie/∼btyrrel/REUs.html .

Thank you for listening!
Questions?
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