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Rössler, for his advisement and support over the last 5 months. I would

also like to thank Professor Jochen Koenigsmann for encouraging me to

study this area and for his mathematical insights and assistance along

the way. Thanks to Nicolas Daans for sharing his ideas regarding

universal definitions of global fields, and for sharing his thoughts on

my thesis too.

My thanks to my parents for supporting me in everything I do; I will

always appreciate your unwavering encouragement. Finally I would like

to extend my thanks to the University of Oxford and the Mathematics

department for having the resources available allowing me to undertake

this project.

i



Abstract

The thesis we propose works to highlight efforts that have been made
to determine the definability of Z in Q. This is a gap yet to be fully
filled in the field developed around (the open question of) Hilbert’s
10th Problem over Q.

Koenigsmann’s recent paper on Defining Z in Q has contributed in
three ways to the discussion of the definability of Z in Q. It gives a
universal definition of Z in Q, a ∀∃-definition of Z in Q, and a proof
that the Bombieri-Lang Conjecture implies there is no existential defi-
nition of Z in Q. The former two results have been translated to global
function fields by Eisenträger & Morrison and Shlapentokh, respec-
tively, however an existential definition of Fq[t] in Fq(t) has yet to be
realised.

In the course of this thesis we shall outline our interest in the rela-
tionship between Z and Fq[t], and motivate the definability questions
from the perspective of Hilbert’s 10th Problem. We will then excurse
through the work of the aforementioned authors and their ilk and, fi-
nally, provide a shorter and simpler universal definition of Fq[t] in Fq(t)
than currently exists.
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Chapter 1

Introduction

1.1 Hilbert’s Tenth Problem

When originally posed by David Hilbert in 1900, his tenth problem took
the following form [Hil00]:

“Eine Diophantische Gleichung mit irgend welchen Unbekannten
und mit ganzen rationalen Zahlencoefficienten sei vorgelegt: man
soll ein Verfahren angeben, nach welchem sich mittelst einer endlichen
Anzahl von Operationen entscheiden läßt, ob die Gleichung in ganzen
rationalen Zahlen lösbar ist.

Let a diophantine equation with any number of variables and with

rational integer coefficients be given: one should present a procedure

after which, by means of a finite number of operations, it can be

decided whether the equation is solvable in rational integers.”

In a more modern formulation, the problem is considered to be the follow-
ing:

Problem. Find an algorithm which takes as input any polynomial f ∈
Z[x1, . . . , xn] and decides whether f(x1, . . . , xn) = 0 has solutions in Zn.

Number 10 in Hilbert’s list of 23 problems published after his famous
address to the International Congress of Mathematicians, these represented
the pinnacle of unsolved mathematics and have had significant impact on
the development of mathematics in the last century. Indeed, 70 years
passed before Hilbert’s 10th Problem (H10) was finally laid to rest. So
strong was Hilbert’s conviction that “wir müssen wissen, wir werden wis-
sen”1 he formulated his tenth problem to ask for the presentation of an

1“we must know, we will know”.
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CHAPTER 1. INTRODUCTION

algorithm; so it is remarkably significant and astounding that when Matiya-
sevich [Mat70] finally solved this problem in 1970, he answered it in the
negative. The algorithm does not exist2.

This result is colloquially known as the “DPRM Theorem” as Matiya-
sevich builds on the work of Davis, Putnam, and Robinson to complete
his proof. While a beautiful survey article of Poonen [Poo08] outlines the
relevant notions and historical collocation of DPRM, for us the question
is answered so we continue on past it. If we wish to solve the (often-said)
natural extension of H10, Hilbert’s 10th Problem over Q:

Problem. Find an algorithm which takes as input any polynomial f ∈
Z[x1, . . . , xn] and decides whether f(x1, . . . , xn) = 0 has solutions in Qn,

we find that logic and model-theoretic methods can tackle this question in
a more modern fashion.

Translated to the language of model theory, the disproof of H10 has a
more succinct presentation3.

Theorem. The existential first order theory Th∃(Z) of Z in the language
of rings Lrings = {0, 1,+,−, ·} is undecidable. �

Therefore the analogous question of Hilbert’s 10th Problem over Q
(H10/Q) in this format is:

Problem. Determine the decidability of Th∃(Q).

This problem has yet to be solved, though it is of interest to logi-
cians, number theorists, and geometers alike; determining the decidability
of Th∃(Q) is equivalent to determining when a variety defined over Q has
a rational point. If one had an existential (sometimes called diophantine)
definition of Z in Q then Th∃(Z) could be defined in Th∃(Q) making Th∃(Q)
undecidable by H10. The most recent breakthrough in this area is due to
Koenigsmann [Koe13]; in 2013 Koenigsmann delivered results which involve
definitions of Z in Q in three ways. He first provided a universal definition
of Z in Q, then provided a ∀∃-definition (using just one universal quanti-
fier) and finally proved, assuming the Bombieri-Lang conjecture, there is
no existential definition of Z in Q. (Note that this does not mean the de-
cidability of Th∃(Q) has been answered if there is no existential definition
of Z in Q; rather, the most direct route has been cut off from us.)

In this thesis we will explore this problem tangentially. We do not
know how to answer these questions of decidability and definability for Z

2Not only this, but there exists a specific polynomial for which it is undecidable when
the polynomial has integer solutions - see [Koe14, Cor. 3.14].

3More can be said about the interplay of these presentations of H10; cf. [Koe14].
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CHAPTER 1. INTRODUCTION

and Q, so let us move to another ring and field where answers are more
forthcoming. Let Fq be a finite field of characteristic p and q = pn elements
and let t be transcendental over Fq. Instead of Z and Q, we shall consider
the ring of polynomials over a finite field, Fq[t], and its fraction field, Fq(t).

Why is it even remotely useful to be considering these structures in
place of Z and Q? The answer to this comes from a remarkable piece of
number theory called the function field analogy.

1.2 The Function Field Analogy.

The Local-Global Principle of Hasse is not a theorem, rather a method of
attack: in the roughest of terms one can state it as

Principle 1.2.1. Prove a result over Q by proving it over R and Qp for
all primes p.

By the Hasse-Minkowski Theorem [Ser73, Chapt. IV, §3] this principle
is completely true for the problem of representing zero by quadratic forms,
and many more examples exist in number theory of the Local-Global Prin-
ciple in action (cf. [Con18b]). It is in this vein of thought the function field
analogy exists: a notably strong correspondence between properties of Z
and properties of Fq[t].

Principle 1.2.2. A theorem true over Z has a corresponding theorem true
over Fq[t], and vice versa.

From immediate and basic algebraic number theory we see examples of
this principle in action. Indeed, much of the first four chapters of [Ros02]
is dedicated to noting this correspondence! In the preface, Rosen writes

“Early on in the development of [elementary number theory] it was

noticed that Z has many properties in common with A = F[T ],

the ring of polynomials over a finite field. Both rings are principle

ideal domains, both have the property that the residue class ring

of any nonzero ideal is finite, both rings gave infinitely many prime

elements, and both rings have finitely many units. Thus, one is

lead to suspect that many results which hold for Z have analogues

of the ring A. This is indeed the case. The first four chapters of

[[Ros02]] are devoted to illustrating this by presenting, for example,

analogues of the little theorems of Fermat and Euler, Wilson’s theo-

rem, quadratic (and higher) reciprocity, the prime number theorem,

and Dirichlet’s theorem on primes in an arithmetic progression.”
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CHAPTER 1. INTRODUCTION

Furthermore, [Ros02, Chapt. 1–4] showcases a Chinese Remainder theo-
rem, an Euler totient function, a Unique Factorisation theorem, a Riemann
zeta function, a prime number theorem, a residue symbol, and a Dirichlet
character function for function fields. Finally [Poo06, §2.6] displays a nice
table highlighting a number field object and its function field analogue.

It is still not evident, however, why we write about these structures
here. To that end we will remark that Hilbert’s 10th Problem over Fq[t]
and over Fq(t) are both solved: H10 over Fq(t) (with coefficients in Fq[t]) is
unsolvable by [Phe91, Vid94] and likewise with H10 over Fq[t] by [Den79].
There is also a speckling of results for H10 over other function fields, for
which [Dem07] expounds. It is using this analogy we justify our curiosity
regarding the definability of Z in Q in relation to Fq[t] and Fq(t):

Programme. To answer H10/Q using H10/Z, we can attempt to fully
understand the connection between H10/Fq(t) and H10/Fq[t]. One way to
do this is to resolve all major definability questions of Fq[t] in Fq(t).

Efforts in this direction must then cover three points, mirroring Koenigs-
mann’s results:

(1) A universal definition. In [Koe13] Koenigsmann demonstrates
a universal definition of Z in Q. Recently Eisenträger & Morrison
[EM18] have produced a universal definition of Fq[t] in Fq(t) using
the class field theory developed by Park [Par13] which generalises
Koenigsmann’s methods. However, this result can be improved upon,
which is the focus of Section 4.3 & 4.4.

(2) A ∀∃-definition. In the same paper Koenigsmann gives a first order
definition of Z in Q of the form ∀∃ . . . ∃(P 6= 0) where P is a polyno-
mial with parameters from Z (i.e. “P 6= 0” is a quantifier-free formula
of Lring). For function fields, Theorem 7.3 of [Shl15] demonstrates a
∀∃-definition of Fq[t] in Fq(t) using a single universal quantifier.

(3) An existential definition. In [Koe13], Koenigsmann puts forth an
argument that the Bombieri-Lang conjecture implies Z is not dio-
phantine over Q. This means the following:

Definition 1.2.3. Let R be a ring. We say A ⊆ Rm is diophan-
tine over R if there exists a polynomial p(x1, . . . , xm, y1, . . . , yn) ∈
R[x1, . . . , xm, y1, . . . , yn] such that

(a1, . . . , am) ∈ A⇔ ∃r1, . . . , rn ∈ R s.t. p(a1, . . . , am, r1, . . . , rn) = 0.

4



CHAPTER 1. INTRODUCTION

Note that it is often the case that “6= 0” is positively existentially de-
finable (e.g. in global fields, rings of integers, Z, Fq[t], etc.) hence “ex-
istentially definable” and “diophantine” are often used interchange-
ably. The formulation of the Bombieri-Lang conjecture we use is:

Conjecture (Bombieri-Lang). Let V be an absolutely irreducible
affine or projective positive dimensional variety over Q such that
V (Q) is Zariski dense in V . Then so is⋃

φ:A99KV

φ(A(Q)),

where φ : A 99K V runs through all nontrivial Q-rational maps from
positive dimensional abelian varieties A defined over Q, to V . �

For function fields, it is still an open question whether Fq[t] is exis-
tentially definable in Fq(t).

1.3 A Plan of Action

There are more players to this game, however, than those that have been
mentioned so far, both on the number field and function field teams. Con-
sider Figure 1.1:

Number Fields Function Fields

Robinson Rumely

Poonen

Daans Thesis

Eisenträger
& Morrison

Koenigsmann Shlapentokh

Park ?

∀

∀∃

∃

Chapter 2

3

4

5

Figure 1.1: Outline of thesis.
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CHAPTER 1. INTRODUCTION

The next chapter (Chapter 2) will begin with the genesis of the at-
tempts to define Z in Q; Robinson’s 1949 definition and decades later
Poonen’s ∀∃-definition (with two universal quantifiers), in Section 2.1.2.
Koenigsmann’s results (Section 2.2) follow next, and in this section we
shall present an overview of Daans’ universal definition of Z in Q (Section
2.2.2), which at the time of writing is the shortest universal definition of Z
in Q. The chapter ends with Section 2.2.4: Koenigsmann’s answer to the
diophantiness of Z in Q in the negative.

Chapter 3 is broken into two sections. The first, Section 3.1, is devoted
to introducing the terminology and two main theorems of Class Field The-
ory: the Reciprocity Law (Theorem 3.1.10) and the Existence Theorem
(Theorem 3.1.12). The second section of the chapter closes the ‘number
fields’ side of the thesis with Park’s abstraction of Koenigsmann’s universal
definition to arbitrary number fields in Section 3.2.

We then begin working with function fields in Chapter 4. Rumely in
1980 provided the original first order definition of Fq[t] in Fq(t) which influ-
enced Eisenträger & Morrison’s recent universal definition of Fq[t] in Fq(t);
both of these results are discussed in Section 4.1. Eisenträger & Morrison’s
work is presented in Section 4.2, however this section is short as their work
builds heavily on that of Park’s, and uses some of the major results in
class field theory. On the other hand, Daans’ universal definition of Z in Q
can be adapted to number fields and function fields, and this adaptation is
presented in Section 4.3. The author has been successful in further refining
Daans’ method and a shorter universal definition of Fq[t] in Fq(t), again
without relying on class field theory, is presented in Section 4.4. We round
off this chapter with an analysis of Shlapentokh’s work [Shl15], where in
2015 a ∀∃-definition using a single universal quantifier was discovered for
Fq[t] in Fq(t).

Finally, the thesis draws to an end in Chapter 5 with a discussion on the
obstructions present to answering H10/Q using the undecidability of Th∃(Z)
(Section 5.1) and how these obstructions are dealt with in the function field
case (Section 5.2). It is still unknown whether Fq[t] is existentially definable
in Fq(t), hence the “?” in Figure 1.1.

The reader is encouraged to refer to Appendix A.2 for any function field
terminology encountered that is unfamiliar to them. In addition to this,
Appendix A.1 holds a summary of the valuation theory that is required to
explore this thesis.
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Chapter 2

Number Fields

This chapter is devoted to number fields where we will excurse through
the work of Robinson and Poonen and focus more heavily on the work of
Koenigsmann and Daans. In particular it is their method of attack and
style we will wish to adapt to the function field setting. We begin in 1949
with Julia Robinson.

2.1 From Humble Beginnings

As this is a subject concerned with the decidability of the theories of certain
structures, we will of course make mention of the most famous result in this
area.

Theorem (Gödel’s 1st Incompleteness Theorem). Th(〈N; 0, 1,+,−, ·〉)
is undecidable.

Proof. [Göd31]. �

Corollary 2.1.1. Th(〈Z; 0, 1,+,−, ·〉) is undecidable.

Proof. Every natural number is definable in Z as the sum of four squares,
thus if Th(Z) is decidable so must be Th(N); a contradiction. �

Corollary 2.1.2. Th(〈Q; 0, 1,+,−, ·〉) is undecidable.

Proof. Robinson [Rob49] accomplished this by providing the first explicit
definition of Z in Q, from which the undecidability follows; if Th(Q) were
decidable then as Z is definable one could create an algorithm for deciding
Th(Z) using Th(Q), a contradiction to Corollary 2.1.1.

7



CHAPTER 2. NUMBER FIELDS

Let us state Robinson’s definition. For a, b ∈ Q× and k ∈ Q let

φ(a, b, k) := ∃x, y, z(2 + abk2 + bz2 = x2 + ay2),

and for n ∈ Q let

ψ(n) := ∀a, b 6= 0
((
φ(a, b, 0)∧∀k[φ(a, b, k)→ φ(a, b, k+ 1)]

)
→ φ(a, b, n)

)
.

Then Q |= ψ(n) ⇔ n ∈ Z. The reverse implication is obvious by the
principle of induction on N, and noticing that ψ(n)⇔ ψ(−n). The forward
implication is trickier, but follows by showing some integrality conditions
at primes. For k ∈ Q,

(1) For a prime p ≡ 3 mod 4, φ(1, p, k)⇔ vp(k) ≥ 0 and v2(k) ≥ 0.

(2) For a prime p ≡ 1 mod 4 and q a prime quadratic nonresidue mod
p, φ(q, p, k)⇔ vp(k) ≥ 0 and vq(k) ≥ 0.

For a, b chosen as 1, p or q, p as above, it is the case

φ(a, b, 0) ∧ ∀k[φ(a, b, k)→ φ(a, b, k + 1)]

hence ψ(n) is equivalent to φ(1, p, n) or φ(q, p, n) for these a, b. Therefore
vp(n) ≥ 0 for all primes p, meaning n ∈ Z, as required. �

Ten years later Robinson proved the same result in more general terms.

Theorem 2.1.3. For any number field K, its ring of integers OK is de-
finable in K, and Z is definable in OK. Thus Th(OK) and Th(K) are
undecidable.

Proof. [Rob59]. �

Consider the positive arithmetical hierarchy as defined in [Poo09a, §1.1].
Robinson’s definition of Z in Q is a Π+

4 -formula, so it follows the Σ+
5 -theory

of Q is undecidable. This result can be improved upon: Poonen [Poo09a]
defines Z in Q using a Π+

2 -formula, making the theory Th∃∀∃(Q) undecidable
once we take into account the negative answer to H10/Z. How he achieves
this is by introducing quaternion algebras to the playing field, instead of
using (say) elliptic curves or valuation theory which at the time would have
been the standard approach.

8
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2.1.1 Quaternion Algebras

Definition 2.1.4. A quaternion algebra over a field F is a ring that is
a four dimensional vector space over F with a basis 1, u, v, w with the
following multiplicative relations: u2 ∈ F×, v2 ∈ F×, uv = −vu = w and
every c ∈ F commutes with u and v. When a = u2 and b = v2 this ring is
denote

(
a,b
F

)
and is equal to F + uF + vF + uvF as a vector space over F .

In this notation, Hamilton’s quaternions H =
(−1,−1

R

)
. It is standard

notation to define

Ha,b :=

(
a, b

Q

)
.

If we assume char(F ) 6= 2 then
(
a,b
F

)
is noncommutative (so we shall as-

sume this from now on). Another major definition we require is that of a
quaternionic basis :

Definition 2.1.5. A basis of
(
a,b
F

)
having the form {1, e1, e2, e1e2} where

e2
1 ∈ F×, e2

2 ∈ F× and e1e2 = −e2e1 is called a quaternionic basis of
(
a,b
F

)
.

As these algebras are vector spaces, isomorphisms between bases re-
sult in isomorphisms between structures; for instance

(
a,b
F

) ∼= (
b,a
F

)
as

{1, v, u, vu} is a quaternionic basis of
(
a,b
F

)
and

(
b,a
F

)
. From this fact we see(

a, b

F

)
∼=
(
a,−ab
F

)
∼=
(
b,−ab
F

)
∼=
(
ac2, bd2

F

)
for all c, d ∈ F×

as well. This examination of bases allows us to prove
(
a,1
F

) ∼= M2×2(F )
as vector spaces over F . From this we are inspired to define the following
phenomenon:

Definition 2.1.6. Any quaternion algebra isomorphic toM2×2(F ) is known
as split. If

(
a,b
F

)
6∼= M2×2(F ), then

(
a,b
F

)
is nonsplit.

Theorem 2.1.7. [Con18c]. A quaternion algebra
(
a,b
F

)
is either a division

ring or is isomorphic to M2×2(F ). �

One last piece of the puzzle, yet to be mentioned, are primes, or, more
generally, places of a field (see Appendix A.1 for a discussion of places and
valuation theory). Let v be a place of a global field K and let Kv denote
the completion of K at v. For any a, b ∈ K×v define the Hilbert Symbol :

(a, b)v =

{
1 if ax2 + by2 = 1 has a solution in Kv,

−1 o.w.

Recall the definition of a local field (Definition A.1.2). Note that if K
is a global field, and v a nontrivial place of K, then Kv is a local field.

9
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Definition 2.1.8. We call a local field F dyadic if char(F ) 6= 2 yet its
residue field is of characteristic two.

Lemma 2.1.9. Now, some results linking the Hilbert symbol to the split-
ting of quaternion algebras. Assume in addition Kv is nondyadic and
char(Kv) 6= 2.

(1) The quaternion algebra
(
a,b
Kv

)
splits if and only if (a, b)v = 1.

(2) (a, b)v = 1 for almost all v.

(3) For a, b ∈ K×,
∏

v(a, b)v = 1 (where the product is taken over all
places of K).

Proof. See [Cha12, Theorem 1.13] for (1). For (2), for almost all finite
places v, a and b are units of Ov = {x ∈ Kv : v(x) ≥ 0}, hence by [Cha12,

Theorem 3.13] the algebra
(
a,b
Kv

)
splits, so (a, b)v = 1 for almost all v.

(3) is an analogue to the product formula, known as Hilbert’s Reciprocity
Law. See [Daa18, Theorem 1.7.7] for a more technical presentation of this
result. �

[Ser79, Chapt. XIV, §3.8] presents a formula for calculating the Hilbert
symbol:

Theorem 2.1.10. Let K be a global field and a, b ∈ K×. Let v be a
nonarchimedian place of K. Then

(a, b)v =
(

(−1)v(a)v(b) redv

(
av(b)

bv(a)

)) |Fv |−1
2

,

where Fv is the residue field of Kv. Moreover, if a is a v-adic unit, then

(a, b)v = −1 ⇔ v(b) is odd and redv(a) is a nonsquare of Fv. �

Returning to the interplay between primes and quaternion algebras,
consider the following definition:

Definition 2.1.11. We say a quaternion algebra H is ramified at a place
v if Hv = H ⊗F Kv is a division algebra.

The set of places at which H is ramified is denoted by Ram(H), and it
is a finite set containing an even number of places (by Hilbert’s Reciprocity
Law). The product of Ram(H) is known as the discriminant of H.

The set Ram(H) appears in [Poo09a] in another guise, namely the set
∆a,b of all prime numbers p which cause the quaternion algebra Ha,b to
ramify. This we shall see in the next section.

10
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2.1.2 Poonen’s Definition

Poonen introduces the following definitions at the beginning of [Poo09a]:

Definition 2.1.12.

• ∆a,b := {p prime : Ha,b ⊗Qp 6∼= M2×2(Qp)}, as above.

• Sa,b := {2x1 ∈ Q : ∃x2, x3x4 ∈ Q s.t. x2
1−ax2

2− bx2
3 +abx2

4 = 1}, the
set of traces of norm 1 elements of Ha,b.

• Let Sa,b(Qp) be defined similarly for Ha,b ⊗Qp.

• Ta,b := Sa,b + Sa,b + {0, . . . , 2309}.

• Consider the field extension Fq2/Fq. For b ∈ Fq2 , define the trace and
norm maps

Tr(b) := b+ bq, Norm(b) := bq+1.

• Uq := Tr
(
{b ∈ Fq2 \Fq : Norm(b) = 1}

)
. This is equivalently the set

of s ∈ Fq making x2 − sx+ 1 irreducible in Fq[x].

How Poonen produces his result is via an application of the Hasse-
Minkowski Local-Global Principle for Q and a clever way of diophantically
representing Fq.
Lemma 2.1.13.

(1) If p ∈ ∆a,b, then red−1
p (Up) ⊆ Sa,b(Qp) ⊆ Zp.

(2) Sa,b = Q ∩
⋂
p Sa,b(Qp).

(3) For q a prime power greater than 11, Fq = Uq + Uq.

(4) If a, b ∈ Q× and either a > 0 or b > 0, then Ta,b =
⋂
p∈∆a,b

Z(p).

Proof. (1) is Lemma 2.1(ii) of [Poo09a]. (2) is the Hasse-Minkowski Local-
Global Principle for Q in action. (3) and (4) are Lemmata 2.3 and 2.5 of
[Poo09a], the latter a combination of (1), (2) & (3) of this lemma. �

It is this last point that (essentially) allows us to conclude
⋂
a,b∈Q>0

Ta,b =
Z, and produce the following definition of Z in Q:

Theorem 2.1.14. The set Z equals the set of t ∈ Q for which the following
Π+

2 -formula is true over Q:

(∀a, b)(∃a1, a2, a3, a4, b1, b2, b3, b4, x1, x2, x3, x4, y1, y2, y3, y4, n)(
(a+ a2

1 + a2
2 + a2

3 + a2
4)(b+ b2

1 + b2
2 + b2

3 + b2
4)

·
[
(x2

1 − ax2
2 − bx2

3 + abx2
4 − 1)2 + (y2

1 − ay2
2 − by2

3 + aby2
4 − 1)2

+ n2(n− 1)2 · · · (n− 2309)2 + (2x1 + 2y1 + n− t)2
]

= 0
)
.

11
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Proof. Recall by Lagrange’s Four Square Theorem, the set of a satisfying
a + a2

1 + a2
2 + a2

3 + a2
4 = 0 for some a1, a2, a3, a4 ∈ Q are those a ∈ Q with

a ≤ 0. Thus

(a+ a2
1 + a2

2 + a2
3 + a2

4)(b+ b2
1 + b2

2 + b2
3 + b2

4)

·
[
(x2

1 − ax2
2 − bx2

3 + abx2
4 − 1)2 + (y2

1 − ay2
2 − by2

3 + aby2
4 − 1)2

+ n2(n− 1)2 · · · (n− 2309)2 + (2x1 + 2y1 + n− t)2
]

= 0

is equivalent to(
a ≤ 0 or b ≤ 0

)
or

(x2
1 − ax2

2 − bx2
3 + abx2

4 − 1)2 + (y2
1 − ay2

2 − by2
3 + aby2

4 − 1)2

+ n2(n− 1)2 · · · (n− 2309)2 + (2x1 + 2y1 + n− t)2
]

= 0

which is in turn logically equivalent to

a > 0 ∧ b > 0 →
Norm(x̄) = 1 ∧ Norm(ȳ) = 1 ∧ n ∈ {0, . . . , 2309} ∧ t = 2x1 + 2y1 + n,

that is,
a > 0 ∧ b > 0 → t ∈ Ta,b.

Since
⋂
a,b∈Q>0

Ta,b = Z, we are done. �

Tidying up this definition, it is possible to define Z in Q using 2 universal
and 7 existential quantifiers; Z is the set of those t ∈ Q such that

(∀a, b)(∃x1, x2, x3, x4, y2, y3, y4)(
(a+ x2

1 + x2
2 + x2

3 + x2
4)(b+ x2

1 + x2
2 + x2

3 + x2
4)

·
[(
x2

1 − ax2
2 − bx2

3 + abx2
4 − 1

)2
(2.1)

+
2309∏
n=0

(
(n− t− 2x1)2 − 4ay2

2 − 4by2
3 + 4aby2

4 − 4
)2
]

= 0

)
.

Poonen continues to extend this result to “big subrings” of Q and to a
number field K in place of Q, but the above proof is the crux of the matter
and what Koenigsmann considers at the beginning of his paper.

12
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2.2 Great Things

The first in Koenigsmann’s trifecta of results is the universal definition of
Z in Q. The following results originate in [Koe13] (resp. [Koe16]) while an
earlier draft of the paper [Koe10] contains some more detailed quantifier
calculations.

2.2.1 Koenigsmann’s Universal Definition

Koenigsmann lays out a four step process to achieving this universal def-
inition. The first step, “Diophantine definition of quaternionic semi-local
rings à la Poonen” does exactly what it claims: Poonen’s definition (2.1)
of Z in Q is modified to create a formula which, like (2.1) has two universal
and 7 existential quantifiers but the degree of the polynomial involved de-
creases from 9244 to 8. Koenigsmann deviates from Poonen’s terminology
slightly to achieve this:

Definition 2.2.1.

• Let P be the set of rational primes and∞ the infinite place of Q (see
Definition A.1.6). Note Q∞ := R.

• Let a, b ∈ Q×. Now ∆a,b := {p ∈ P ∪ {∞} : Ha,b ⊗Qp 6∼= M2×2(Qp)}.

• Ta,b := Sa,b+Sa,b where Sa,b is defined exactly as in Definition 2.1.12.

• Sa,b(Qp) and Ta,b(Qp) are defined as before.

Koenigsmann also gives a crucial explicit set of criteria for determining
when a prime p ∈ P ∪ {∞} is a member of ∆a,b or not; this is known as
Observation 5 ([Koe13]) which we replicate below for the sake of complete-
ness.

Lemma 2.2.2. Assume a, b ∈ Q× and p ∈ P∪ {∞}. Then p ∈ ∆a,b if and
only if:

For p = 2: After multiplying by suitable rational squares and integers ≡
1 mod 8 and, possibly, swapping a and b, the pair (a, b) is one of the
following:

(2, 3) (3,3) (5,6) (6, 6) (15, 15)
(2, 5) (3, 10) (5, 10) (6, 15) (15, 30)
(2, 6) (3, 15) (5, 30) (10, 30) (30, 30)
(2, 10)

13
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For 2 6= p ∈ P:

vp(a) is odd, vp(b) is even, and
(
bp−vp(b)

p

)
= −1 or

vp(a) is even, vp(b) is odd, and
(
ap−vp(a)

p

)
= −1 or

vp(a) is odd, vp(b) is odd, and
(
−abp−vp(ab)

p

)
= −1.

For p =∞: a < 0 and b < 0.

Proof. These properties can be deduced from the computation of the
Hilbert symbol (a, b)p as presented in [Ser73, Chapt. III Theorem 1]:

If we write a = pαu, b = pβv, where u, v are p-adic units, then we have

(a, b)p = (−1)αβε(p)
(
u
p

)β (
v
p

)α
if p 6= 2,

(a, b)p = (−1)ε(u)ε(v)+αω(v)+βω(u) if p = 2,

where ε(n) and ω(n) are the modulo 2 class of n−1
2

and n2−1
8

respectively.
�

Remark 2.2.3. One can generalise Lemma 2.2.2 to all local fields, as
Daans does:

Lemma 2.2.4. [Daa18, Prop. 1.5.2]. Suppose K is a nondyadic, nonar-
chimedian local field and char(K) 6= 2. Let O be its valuation ring, v its
corresponding valuation and π its uniformiser1. For a, b ∈ K we have

(
a,b
K

)
is nonsplit if and only if one of the following holds:

(a) v(a) is odd, v(b) is even and bπ−v(b) is a nonsquare modulo πO.

(b) v(b) is odd, v(a) is even and aπ−v(a) is a nonsquare modulo πO.

(c) v(a) and v(b) are odd and abπ−v(ab) is a nonsquare modulo πO.

�

The next step in Koenigsmann’s paper is to reprove Lemma 2.1.13,
taking great care to reprove (4) with the new definition of Ta,b, i.e. that

Ta,b (= Sa,b + Sa,b) =
⋂

p∈∆a,b

Z(p), (2.2)

still. As a byproduct of this, a simpler Poonen-like definition arises:

1If m is the maximal ideal of O, π is any fixed element of m \m2.

14
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Theorem 2.2.5. For any t ∈ Q,

t ∈ Q ⇔ (∀a, b)(∃x1, x2, x3, x4, y2, y3, y4)(
(a+ x2

1 + x2
2 + x2

3 + x2
4) · (b+ x2

1 + x2
2 + x2

3 + x2
4)·[

(x2
1 − ax2

2 − bx2
3 + abx2

4 − 1)2+

((t− 2x1)2 − 4ay2
2 − 4by2

3 + 4aby2
4 − 4)2

]
= 0
)
.

Proof. See the proofs of Theorem 2.1.14 and [Poo09a, Theorem 4.1] for
further explanation. �

However Theorem 2.2.5 was not the goal of Koenigsmann, merely a
stepping stone. Step 2 of Koenigsmann’s plan, “Towards a uniform dio-
phantine definition of all Z(p)’s in Q” begins with the following definitions:

Definition 2.2.6. Define the following sets: for p, q ∈ Q×,

• R
[3]
p := T−1,−p + T2,−p,

• R
[5]
p := T−2,−p + T2,−p,

• R
[7]
p := T−1,−p + T−2,p,

• R
[1]
p := T−2p,q + T2p,q.

These sets are existentially definable in Q and moreover uniform in p and
q. For k = 1, 3, 5 or 7, and p ∈ Q×, define

• P[k] := {l ∈ P : l ≡ k mod 8},

• P(p) := {l ∈ P : vl(p) is odd}, and P[k](p) := P(p) ∩ P[k].

These seemingly random allocation of sets in fact existentially define
the localisations Z(p) exactly: as a result of [Koe13, Prop. 10], if p is a

prime and p ≡ k mod 8 for k = 3, 5, 7 then Z(p) = R
[k]
p . Moreover if

p ≡ 1 mod 8 and q is a prime congruent to 3 mod 8 with
(
p
q

)
= −1, then

Z(p) = R
[1]
p,q. Therefore

Z = Z(2) ∩
⋂

p,q∈Q×
(R[3]

p ∩R[5]
p ∩R[7]

p ∩R[1]
p,q),

where every set to the right hand side is defined existentially (as Z(2) =
T3,3 + T2,5).

The next step is showing that, for some of the R
[k]
p and R

[1]
p,q rings their

Jacobson radical is also existentially defined.

15
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Definition 2.2.7. The Jacobson radical of a ring R, denoted J(R), is the
intersection of all maximal ideals of R.

Koenigsmann achieves this in Corollary 15 and Proposition 16 of [Koe13]
as follows:

Proposition 2.2.8. Define for k = 1, 3, 5 and 7,

Φk := {p ∈ Q>0 : p ≡ k mod 8Z(2) and P(p) ⊆ P[1] ∪ P[k]},
Ψ := {(p, q) ∈ Φ1 × Φ3 : p ∈ 2 · (Q×)2 · (1 + J(R[3]

q ))}.

(1) For k = 1, 3, 5 and 7, Φk is diophantine in Q.

(2) If k = 3, 5 or 7 and if p ∈ Φk then

{0} 6= J(R[k]
p ) =


⋂
l∈∆−1,−p∩∆2,−p

lZ(l) if k = 3,⋂
l∈∆−2,−p∩∆2,−p

lZ(l) if k = 5,⋂
l∈∆−1,−p∩∆−2,p

lZ(l) if k = 7.

In particular, in each of these cases the Jacobson radical is diophan-
tine in Q, defined by a formula uniform in p.

(3) Hence Ψ is diophantine in Q.

(4) If (p, q) ∈ Ψ then J(R
[1]
p,q) =

⋂
l∈∆−2p,q∩∆2p,q

lZ(l) and thus the Jacob-

son radical of R
[1]
p,q is diophantine in Q too. �

What remains now is to take all these existential definitions and convert
them to something useful and universal, which is Step 4 of Koenigmann’s
plan exactly. If ∆ ⊆ P is a finite set of primes, Koenigsmann defines for a
“semilocal” (has finitely many maximal ideals) subring R =

⋂
p∈∆ Z(p),

Definition 2.2.9. R̃ := {x ∈ Q : @y ∈ J(R) with x · y = 1}.

Clearly if J(R) is diophantine then R̃ is given by a universal formula.

Moreover it can be shown R̃ =
⋃
p∈∆ Z(p) (provided ∆ 6= ∅). This is the

final nail in the coffin: using this set we have at last obtained a universal
definition of Z in Q.

Theorem 2.2.10. ([Koe13, Prop. 18]).

(1) Z = Z̃(2) ∩
(⋂

k=3,5,7

⋂
p∈Φk

R̃
[k]
p

)
∩
⋂

(p,q)∈Ψ R̃
[1]
p,q.
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(2) For any t ∈ Q,

t ∈ Z ⇔ t ∈ Z̃(2) ∧

∀p
[ ∧
k=3,5,7

(p 6∈ Φk ∨ t ∈ R̃[k]
p )
]
∧

∀p, q
[
(p, q) 6∈ Ψ ∨ t ∈ R̃[1]

p,q

]
.

(3) There is a polynomial g ∈ Z[t;x1, . . . , x418] of degree 28 such that, for
any t ∈ Q,

t ∈ Z ⇔ ∀x1, . . . , x418 ∈ Q g(t, x1, . . . , x418) 6= 0.

Proof. (2) and (3) follow directly from (1); see [Koe10, Prop. 15(c)] for
the degree and quantifier count in (3).

For (1), we can see Z ⊆ R̃
[k]
p for k = 3, 5, 7 and Z ⊆ R̃

[1]
p,q for p ∈ Φk and

(p, q) ∈ Ψ respectively [Koe13, Prop. 10, Corollary 15(b)]. As Φk and Ψ
are nonempty, we conclude

Z ⊆ Z̃(2) ∩

( ⋂
k=3,5,7

⋂
p∈Φk

R̃
[k]
p

)
∩
⋂

(p,q)∈Ψ

R̃
[1]
p,q.

Recall that if p is a prime and p ≡ k mod 8 for k = 3, 5, 7 then Z(p) =

R
[k]
p = R̃

[k]
p . Moreover if p ≡ 1 mod 8 and q is a prime congruent to 3 mod

8 with
(
p
q

)
= −1, then Z(p) = R

[1]
p,q = R̃

[1]
p,q. Therefore

Z =
⋂
p∈P

Z(p) ⊇ Z̃(2) ∩

( ⋂
k=3,5,7

⋂
p∈Φk

R̃
[k]
p

)
∩
⋂

(p,q)∈Ψ

R̃
[1]
p,q,

as required. �

The definition and use of the sets Φk,Ψ are ultimately unnecessary if
our sole goal is to produce a universal definition, as Daans [Daa18] demon-
strates.

2.2.2 Daans’ Universal Definition

Daans [Daa18] produces a universal definition of Z in Q using the basics of
[Koe13] however crucially he does not use the sets Φk and Ψ. This makes
his definition vastly simpler. Begin with the following definition:

17
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Definition 2.2.11. Define Ja,b :=
⋂
l∈∆ lZ(l), where

∆ =

{
∆a,b \ {2,∞} if 2 ∈ ∆a,b and v2(a), v2(b) are even,

∆a,b \ {∞} o.w.

It can be proven that ∆ = ∆a,b ∩ (P(a) ∪ P(b)).

If we define Ra,b :=
⋂
l∈∆ Z(l) with ∆ as above, then whenever ∆ 6= ∅,

Ra,b is a semilocal subring of Q with Ja,b as its Jacobson radical. By [Koe13,
Lemma 13(d)], Ja,b is existentially definable, hence there is a universal

definition for R̃a,b. The Jacobson radical here requires 122 quantifiers to

define (see [Koe10] or [Daa18, Prop. 4.2.6]) so R̃a,b requires 122 + 1 = 123
universal quantifiers.

What is central to Daans’ proof is his use of Hilbert Reciprocity. Recall
the Hilbert symbol (a, b)p from §2.1.1, and the third result of Lemma 2.1.9:

Theorem 2.2.12. (Hilbert Reciprocity). If a, b ∈ Q× then∏
p∈P

(a, b)p = 1. �

Now, for one of Daans’ main results:

Theorem 2.2.13. We have

Z =
⋂
p,q>0

q∈Q2 ·T×−1,−1

R̃−p,−2q. (2.3)

Hence there is a universal definition of Z in Q using 146 quantifiers.

Proof. First, if q ∈ Q2 ·T×−1,−1 then q ∈ Q2 ·Z×(2) demonstrating v2(−2q) =

1. Hence according to Definition 2.2.11, ∆ = ∆a,b \ {∞}.
For any p, q > 0 the quaternion algebra

(−p,−2q
R

)
is nonsplit as it is

isomorphic to H. This means precisely that (−p,−2q)∞ = −1. By Hilbert
Reciprocity we concludeH−p,−2q is nonsplit at some finite prime too. There-
fore ∆ = ∆−p,−2q \ {∞} is nonempty and

R̃−p,−2q =
⋃
l∈∆

Z(l) ⊇ Z

always. This demonstrates inclusion from left to right in (2.3).
On the other hand we wish to find parameters p, q satisfying p, q > 0

and q ∈ Q2 ·T×−1,−1 such that R̃−p,−2q = R−p,−2q = Z(l) for any prime l.
That is, we wish to find parameters p, q such that ∆−p,−2q \ {∞} = {l}.
Daans [Daa18, Theroem 4.6.3] produces a list to this effect:

18
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• If l = 2, take p = q = 1.

• If l ≡ 3, 7 mod 8, take p = 1, q = l.

• If l ≡ 5 mod 8, take p = l, q = 1.

• If l ≡ 1 mod 8, take q = l and let p be a prime such that p ≡ 5
mod 8 and

(
p
l

)
= −1.

On this last point, we exploit the Hilbert symbol formula in Theorem
2.1.10: as −p is an l-adic unit,

(−p,−2l)l = −1⇔ vl(−2l) = 1 is odd and redl(−p) is a nonsquare of Fl.

As
(−p
l

)
=
(−1
l

) (
p
l

)
= 1 · −1 = −1, we conclude redl(−p) is indeed a

nonsquare of Fl hence l ∈ ∆−p,−2l as required. Moreover, 2 6∈ ∆−p,−2l by a
similar calculation. Thus ∆−p,−2l \ {∞} = {l} in this case, as desired.

Therefore for each prime l there are adequate parameters p, q such

that R̃−p,−2q = R−p,−2q = Z(l), meaning the RHS of (2.3) is a subset of⋂
l∈P Z(l) = Z, as required to prove equality.

This leads to a universal definition of 146 quantifiers as 123 are re-

quired for the ring R̃−p,−2q, a further 4 is required to express “p > 0” (by
Lagrange’s Four Square Theorem) and another 4 for “q > 0” and finally
“Q2 ·T×−1,−1” requires 15 existential quantifiers to define. �

Remark 2.2.14. We can apply the general method of Daans later in the
thesis to obtain a new universal definition of Fq[t] in Fq(t). Thus it is worth
highlighting the main steps in the above proof.

The main goal is to find a set of conditions D on parameters a, b such
that:

(1) If a, b satisfies D this forces ∆ = ∆a,b \ {∞}.

(2) If a, b satisfy D, then (a, b)∞ = −1. Equivalently, ∆ is always
nonempty.

(3) For each prime p, one can find a, b satisfying D such that ∆ = {p}.
Equivalently, there exist a, b satisfying D such that

(a, b)p = −1 and (a, b)q = 1 for all primes q 6= p.

Then we obtain a universal definition, which in Theorem 2.2.13 is:

(4) t ∈ Z ⇔ ∀a, b ∈ Q ((a, b) 6∈ D ∨ t ∈ R̃a,b). �
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If it is the case that Φk and Ψ are inessential to produce a universal
definition of Z in Q, why bother?

As Koenigsmann demonstrates in §3 of [Koe13], these sets give rise to
new (and old) diophantine predicates in Q; in Proposition 20 (b) & (e)
Koenigsmann exhibits the set of nonsquares of Q ({x ∈ Q : x 6∈ Q2})
and the set of those rational numbers outside the image of any norm map2

({(x, y) ∈ Q2 : x 6∈ Norm(y)}) are diophantine.
The former of these sets (for a general number field K) was the focus

of a 2009 paper of Poonen’s where he proved the set K× \ K×2 is dio-
phantine using highly nontrivial properties of Châtelet surfaces and the
Brauer-Manin obstruction to the Hasse Principle ([Poo09b]). However, us-
ing the sets Φk and Ψ Koenigsmann gives an elementary proof that the set
of nonsquares of Q is diophantine and moreover gives an explicit formula
for the set.

The sets Φk and Ψ are also crucial to Koenigsmann’s ∀∃-definition of Z
in Q of one universal quantifier, as we shall see in the next section.

2.2.3 Koenigsmann’s ∀∃-Definition

In this section Koenigsmann first replaces the set “R
[1]
p,q” with “R

[1]
p ”:

Lemma 2.2.15. Assume p ∈ Φ1 and define

R[1]
p := {x ∈ Q : ∃q s.t. (p, q) ∈ Ψ, q ∈ (R[1]

p,q)
× and x ∈ R[1]

p,q}.

Then R
[1]
p is diophantine in Q and R

[1]
p =

⋃
l∈P(p) Z(l). In particular, if p is

a prime ≡ 1 mod 8 then R
[1]
p = Z(p).

Proof. [Koe13, Lemma 19]. Note that the ‘in particular’ property is the

same as that mentioned on page 15 for the sets R
[k]
p , k = 3, 5, or 7. �

Theorem 2.2.16. For all t ∈ Q, t ∈ Z if and only if

∀p

t ∈ Z(2) ∧


(
p ∈ Q2 ·(2 + 4Z(2))

)
∨
k=1,3,5,7

{(
p 6= 0 ∧ p ∈ Q2 ·(k + 8Z(2))

)
∧
(
(p 6∈ Φk) ∨ p ∈ Q2 ∨

(
p ∈ Φk \Q2 ∧ t ∈ R[k]

p

))


Proof. First note that this formula for Z is indeed of the shape ∀∃ as there
is one universal quantifier (∀p) at the beginning and everything defined

2Norm : Q(
√
y)→ Q ; a+ b

√
y 7→ a2 − yb2.
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thereafter is existential: under the assumption p ∈ Q2 ·(k+8Z(2)), ‘p 6∈ Φk’
becomes equivalent to

p 6∈ Z×(2) ∨
(
p ∈ k + Z(2) ∧p 6∈ Φk

)
,

which is diophantine by [Koe13, Prop. 20(c)]. Also ‘p ∈ Φk \ Q2’ is dio-
phantine by [Koe13, Prop. 20(b)]. So this is indeed a ∀∃-formula with one
universal quantifier3.

Now the question becomes: is this formula accurate? Denote the for-
mula in question by (<). If t ∈ Z then t ∈ Z(2) and t ∈ R

[k]
p for all

p ∈ Φk \ Q2 and k = 1, 3, 5, 7 (by [Koe13, Prop. 10, Corollary 15, Lemma
19]), hence t satisfies (<). Also for all odd primes p ∈ P, if p ≡ k mod 8

then R
[k]
p = Z(p), therefore

(<) ⊆
⋂
p

Z(p) = Z,

as required. �

2.2.4 Koenigsmann’s Existential Definition

Now for something of a different flavour: a result of Koenigsmann’s final
section of [Koe13], that Z is not diophantine in Q (provided the Bombieri-
Lang conjecture is true). The version of the Bombieri-Lang conjecture we
will use is the following:

Conjecture (Bombieri-Lang). Let V be an absolutely irreducible affine
or projective positive dimensional variety over Q such that V (Q) is Q-
Zariski dense in V . Then so is⋃

φ:A99KV

φ(A(Q)),

where the φ : A 99K V run through all nontrivial Q-rational maps from
positive dimensional abelian varieties A defined over Q, to V . �

This conjecture is based on [HS00, §F.5.2] in the special case of varieties
over Q. Koenigsmann also makes note that “. . . our reading of ‘nontrivial’
in the Conjecture implies that there are such φ : A 99K V over Q for which
φ(A(Q)) is infinite (it is certainly in the spirit of the conjecture that the
φ(A(Q)) account for V (Q) being dense in V but, strictly speaking, this
reading gives a slightly stronger, though equally plausible, conjecture).”

3And 1109 existential quantifiers by [Koe10, Corollary 18].
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In order to obtain the desired result we must deal with the following
lemma which, in layman’s terms, posits that (for hypersurfaces V ) if V (Q)
is Zariski dense in V then there are not many points of V (Q) with integer
first coordinate:

Lemma 2.2.17. Assume the Bombieri-Lang Conjecture as presented above.
Let f ∈ Q[x1, . . . , xn+1] \ Q[x1, . . . , xn] be absolutely irreducible and let
V = V (f) ⊆ An+1 be the affine hypersurface defined over Q by f . As-
sume that V (Q) is Zariski dense in V and denote by π : An+1 → A the
projection map to the first coordinate. Then

V (Q) ∩ π−1(Q \Z)

is also Zariski dense in V .

Proof. This is [Koe13, Lemma 22]. For any g ∈ Q[x1, . . . , xn]\{0} by the
Bombieri-Lang conjecture there exists an abelian variety A and rational
map φ : A 99K V both defined over Q such that φ(A(Q)) \ V (g)(Q) is
infinite (we consider V (g) as a subset of An+1). We may assume that
π(φ(A(Q)) \V (g)(Q)) is infinite and the pole divisor D = (π ◦φ)∞ is what
is known as ‘ample’4 (we may need to compose φ with another rational
map to do so).

By [Fal91, Corollary 6.2] there are only finitely many P ∈ A(Q) \D(Q)
with π(φ(P )) ∈ Z, so (φ(A(Q)) \ V (g)(Q)) ∩ π−1(Z) is finite meaning

(V (Q) \ V (g)(Q)) ∩ π−1(Q \Z) 6= ∅,

as recall φ(A(Q)) ⊆ V (Q). As g was arbitrary we conclude V (Q) ∩
π−1(Q \Z) is Zariski dense in V , as required. �

The following theorem has been proven model-theoretically in [Koe10]
and algebraically in [Koe13]. Although the former takes longer to prove,
the author is partial to it.

Theorem 2.2.18. Assume the Bombieri-Lang conjecture as above. Then
there is no infinite subset of Z existentially definable in Q; in particular, Z
is not diophantine in Q.

Proof. Suppose A ⊆ Z is infinite and defined in Q by an existential
formula φA(x). Let Q∗ be a countable proper elementary extension of Q,
realising the type {φA(x) ∧ x 6= a : a ∈ A} (given by the Compactness
Theorem; here we use A is infinite). Suppose ζ1 witnesses this type. Note
ζ1 is a nonstandard natural number.

4See Definition A.2.2 for ‘divisor’ and [HS00, §A.3.2] for ‘ample’.

22



CHAPTER 2. NUMBER FIELDS

The map N → N;n 7→ 2n is definable in N, hence Q. Thus ζ2 := 2ζ1

is a nonstandard natural number as well. The elements ζ1, ζ2, . . . , ζi+1 :=
2ζi , . . . are algebraically independent over Q, and they form a countable
transcendence base of Q∗ over Q. Finally, set A∗ := φA(Q∗) and notice
ζ1 ∈ A∗ by design.

Let K = Q(ζ1, ζ2, . . . ). As Q∗ is countable we find αi ∈ Q∗, i ∈ N such
that

K(α1) ⊆ K(α2) ⊆ · · · with
∞⋃
i=1

K(αi) = Q∗,

where in addition we make the standard assumption that, for each i ∈ N
the minimal polynomial of αi is of the form fi(ζ1, . . . , ζi, z) ∈ K[z] with
coefficients in Q. As Q is relatively algebraically closed in Q∗, all the
polynomials fi ∈ Q[x1, . . . , xi, z] are absolutely irreducible over Q.

Consider the following set of formulae in the free variables x1, x2, . . . :

p :={g(x1, . . . , xi) 6= 0 : g ∈ Q[x1, . . . , xi] \ {0}, i ∈ N}
∪ {∃zfi(x1, . . . , xi, z) = 0 : i ∈ N}
∪ {x1 ∈ Q \Z}.

Note this last condition is (existentially) definable by the results of
Chapter 2.

Claim: p is finitely realisable in Q.
Let p0 ⊆ p be finite and let k be the highest index occurring in p0 among the
formulae from the second line above. Since the K(αj) are linearly ordered
by inclusion, if ∃zfk(x1, . . . , xk, z) = 0 then ∃zfi(x1, . . . , xi, z) = 0 for all
i < k. Hence we need only check that V (fk)(Q) ∩ π−1(Q \Z) is Q-Zariski
dense in V (fk); this will follow from Lemma 2.2.17 provided V (fk)(Q) is Q-
Zariski dense in V (fk). We know that it is, as (ζ1, . . . , ζk, αk) ∈ V (fk)(Q∗),
so if V (fk)(Q) \ V (g) = ∅ with g ∈ Q[x1, . . . , xk], then g(ζ1, . . . , ζk) = 0 in
Q∗ and ζ1, . . . , ζk are algebraically independent over Q; a contradiction.

Therefore by Compactness we can realise p in some elementary exten-
sion Q∗∗ of Q. Calling the realising ω-tuple in Q∗∗ again ζ1, ζ2, . . . our
construction yields that Q∗ can be realised as a subfield of Q∗∗. Finally
note that ζ1 ∈ A∗ ⊆ Z∗ and ζ1 6∈ Z∗∗, hence ζ1 6∈ A∗∗ := φA(Q∗∗). But φA is
an existential formula so its realisations should pass from the structure Q∗
to its superstructure Q∗∗; a contradiction. Therefore A has no existential
definition in Q, as required. �

Remark 2.2.19. We will revisit existential definitions (this time, for func-
tion fields) in Chapter 5. �
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Chapter 3

Class Field Theory: An
Introduction

Definition 3.0.1. A global field is a field which is either an (algebraic)
number field (a finite field extension of Q) or a global function field (a
finite field extension of Fq(t)).

The results of §2.2.1 have been generalised to global fields; to number
fields by Park [Par13] and to global function fields by Eisenträger & Mor-
rison [EM18]. In order to tackle Park’s and Eisenträger & Morrison’s work
we must first present the basic definitions and main theorems of class field
theory. It is important that the reader be familiar with the terminology
covered in Appendices A.1 & A.2 before examining the next section.

We will primarily operate from Milne’s book [Mil13], and all results
mentioned without proof can be found in Takagi’s landmark paper [Tak20]1.

3.1 The Main Theorems of Class Field The-

ory

Let K be a number field (initially). We state the following definition in a
general fashion, but one can see how it applies for F = K and A = OK :

Definition 3.1.1. Let A be a Dedekind domain with field of fractions F .
A fractional ideal I of F is a set of the form

I = 1
a
J, where a ∈ A and J is an ideal2 of A.

1See [Con18a, Theorem 5.6] for a list of major class field theory results due to [Tak20].
2Sometimes called an integral ideal to distinguish from fractional ideals.
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One can show the set of all fractional ideals of K forms a group (cf.
[Neu99, I 3.8]). The group of fractional ideals of K is denoted IK . For a
finite set S of primes of K we define ISK to be the subgroup of IK generated
by prime ideals not in S. To elaborate further, each element a of ISK factors
uniquely as

a = pn1
1 . . . pnss , pi 6∈ S, ni ∈ Z .

ISK is thus the free abelian group generated by the prime ideals not in
S.

Define

KS = {a ∈ K× : ordp(a) = 0 for all finite p ∈ S}
= {a ∈ K× : (a) ∈ ISK} where (a) = aOK ,

and let i : KS → ISK be the canonical map a 7→ (a). Lemma 1.1 of
[Mil13, Chapt. V] demonstrates there is an exact sequence

0 O×K KS ISK IK/i(K
×) 0

p1 i p2

where p1 is the natural inclusion and p2 is the natural inclusion com-
posed with the natural projection. The group CK = IK/i(K

×) with the
multiplication operation

for all a, b ∈ IK ai(K×) · bi(K×) = (ab)i(K×)

(sometimes this is written in the equivalence class notation: [a][b] = [ab])

is known as the (full) ideal class group of K. Not only is p2 surjective but
moreover every class in CK can be represented by an integral ideal in ISK .

The next important concept is that of a modulus :

Definition 3.1.2. A modulus for K is a function m : {primes of K} → Z
such that

(1) m(p) ≥ 0 for all primes p and m(p) = 0 for all but finitely many p,

(2) if p is real, then m(p) ∈ {0, 1},

(3) if p is complex, then m(p) = 0.

One generally writes m =
∏

p p
m(p) and calls this ideal a modulus, too.

It can also be written as m = m∞m0 where m∞ is a product of real primes
and m0 is a product of prime ideals (hence is an ideal of OK).

Given a modulus m we define Km,1 to be the set of a ∈ K× such that

ordp(a− 1) ≥ m(p) for all finite p |m,
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σp(a) > 0 for all real p |m,

where σp is the embedding σp : K ↪→ R.
Let S(m) be the set of primes dividing m. Then for a finite p ∈ S(m)

and a ∈ Km,1, ordp(a − 1) > 0 = ordp(1), hence by the nonarchimedian
property ordp(a) = 0. For an infinite p ∈ S(m), ordp(a) = 0 immediately.
We conclude there is a well-defined injection

i : Km,1 → I
S(m)
K , a 7−→ (a).

Definition 3.1.3. The quotient of this map, Cm = I
S(m)
K /i(Km,1), is known

as the ray class group (modulo m).

We can also show ([Mil13, Prop. 1.6]) that every class in Cm is repre-
sented by an integral ideal a, and two integral ideals a and b represent the
same class in Cm if and only if there exist nonzero a, b ∈ OK such that
aa = bb, and also a ≡ b ≡ 1 mod m0 and a and b have the same sign for
every real prime p |m. Thus, this is some generalisation of the full ideal
class group CK (if m = 1 then Cm = CK trivially).

Definition 3.1.4. If m = m0, a product of finite primes, then Cm is known
as the narrow class group.

Class groups have a direct connection to Galois groups of abelian exten-
sions. One of the most important elements of the Galois group of a finite
Galois extension of K is the Frobenius element, which concerns unramified
primes.

Definition 3.1.5. ([Neu99, Chapt. I §9]). Let L be a finite Galois extension
of K and let p be a prime ideal of K. Suppose P is a prime ideal of L lying
over p (i.e. P ∩ OK = p). Consider the natural map

θ : D(P)→ Gal(OL/P / OK/ p), σ 7→ (α 7→ σ(α) mod p),

where D(P) is the stabiliser of P in Gal(L/K) (also known as the decom-
position group of P over K). There is an exact sequence

1→ I(P)→ D(P)
θ−→ Gal(OL/P / OK/ p)→ 1,

where I(P), the kernel of θ, is the inertia group of P over K. We say P is
unramified over p if the inertia group is trivial. Otherwise, P ramifies3.

It can be shown that only finitely many primes of K may ramify in L
[Neu99, Chapt. I (8.4)]. Now let B be a prime ideal of L, unramified and
lying over a prime ideal p of K.

3One can define ramification in a more general context - see [Neu99, Chapt. I §8].
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Definition 3.1.6. An element σ ∈ Aut(L/K) satisfying σB = B and, for
all α ∈ OL, σα ≡ α#OK/ p mod B is known as the Frobenius element at B
and denoted (B, L/K).

One of the major results of Galois theory is the next theorem:

Theorem 3.1.7. If L is a finite Galois extension over K, for all prime
ideals p of K if B is an unramified prime ideal of L lying over p then
(B, L/K) exists and is unique.

Proof. By Definition 3.1.5, D(P) ∼= Gal(OL/B / OK/ p) hence D(B) is
cyclic with a canonical generator, namely the Frobenius map x 7→ x#OK/ p

of Gal(OL/B / OK/ p). This element of D(B) is (B, L/K) exactly. �

Moreover, as Gal(L/K) acts transitively on the primes dividing p, the
set {(B, L/K) : B| p} is a conjugacy class in Gal(L/K) which we shall
denote (p, L/K). We pause here to note that if L/K is abelian, (p, L/K)
contains only one element (so is treated as an element of Gal(L/K) itself).

Excitingly, this brings us to the two main theorems in class field theory,
both of which concern the Artin map.

Definition 3.1.8. For every finite set S of primes of K containing all
primes which ramify in L, we can define a homomorphism

ψL/K : ISK → Gal(L/K), pn1
1 . . . pntt 7−→

t∏
i=1

(pi, L/K)ni ,

known as the (global) Artin map, or the reciprocity map.

Definition 3.1.9. If S is a finite set of primes of K, a homomorphism
ψ : ISK → G admits a modulus m if there exists a modulus m with S(m) ⊃ S
such that ψ(i(Km,1)) = 0. (So ψ admits m if and only if it factors through
Cm.)

The first main theorem is known as the reciprocity law :

Theorem 3.1.10. Reciprocity Law. Let L be a finite abelian extension
of K and S be the set of primes of K which ramify in L. Then the Artin
map ψL/K : ISK → Gal(L/K) admits a modulus m with S(m) = S and it
defines an isomorphism

I
S(m)
K /i(Km,1) · Norm(I

S(m)
L ) Gal(L/K),

∼=

where the norm map NormL/K = Norm : IL → IK is the unique ho-
momorphism such that for any prime ideal B of L lying over p of K,
Norm(B) = pf(B/ p), where f(B/ p) = [OL/B : OK/ p] is the inertia degree
of B over p. �
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Now, write ImK for I
S(m)
K and ImL for I

S(m)′

L where S(m)′ contains the prime
ideals of L lying over a prime in S(m).

Definition 3.1.11. A subgroup H of ImK is called a congruence subgroup
(modulo m) if i(Km,1) ⊆ H ⊆ ImK .

The second main theorem of class field theory is the Existence Theorem:

Theorem 3.1.12. Existence Theorem. Let m be a modulus. For every
congruence subgroup H modulo m, there exists a finite abelian extension
L/K such that H = i(Km,1) ·NormL/K(ImL ) and the set of primes ramifying
in L is precisely S(m). �

This is known as the “Existence Theorem” as in particular it asserts
the existence of an important abelian extension of K, called the ray class
field (modulo m) and denoted Km. This extension satisfies the following
properties, listed in [Cla18]:

(1) There is a canonical isomorphism Cm = ImK/i(Km,1) ∼= Gal(Km/K).
This follows from the Existence Theorem and Reciprocity Law (The-
orems 3.1.12 & 3.1.10) by choosing H = i(Km,1). Thus, there is a
correspondence between the ray class group and ray class field of a
modulus m.

(2) In the number field case, Km/K is a finite extension. The ray class
field of a function field contains the extension Fq of the constant
field, hence is an infinite extension. Later, this will be an important
distinction.

(3) The extension Km ramifies only at primes dividing the modulus.

(4) If m |m′ then Km ⊆ Km′ .

According to [Cla18], “the divisibility relation endows the moduli with
the structure of a directed set (a partially ordered set in which any pair
of elements is less than or equal to some third element). Therefore by
[item (4)] the ray class fields form a directed system of fields”. Within this
directed system we may take a limit and obtain:

(5) lim→mKm = Kab, the maximal abelian extension of K. In other
words, every finite abelian extension of K is contained in some ray
class field.

For a field L ⊆ Km, define

Norm(CL,m) = i(Km,1) · Norm(ImL ) mod i(Km,1).
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Corollary 3.1.13. Fix a modulus m. There is a 1-to-1 correspondence

{abelian extensions of K contained in Km} ↔ {subgroups of Cm},

given by L 7→ Norm(CL,m). Moreover,

L1 ⊆ L2 ⇐⇒ Norm(CL1,m) ⊇ Norm(CL2,m),

Norm(CL1·L2,m) = Norm(CL1,m) ∩ Norm(CL2,m),

Norm(CL1∩L2,m) = Norm(CL1,m) · Norm(CL2,m). �

We shall finally reap the benefits of class field theory after we introduce
one more concept; that of a conductor.

Let L/K be an abelian extension and ψL/K : I
S(n)
K → Gal(L/K) be

the Artin map for a modulus n. We say Artin Reciprocity holds for n if ψ
factors through Cn; equivalently if i(Kn,1) ⊆ Ker(ψ).

Definition 3.1.14. The conductor of L/K, denoted f(L/K), is the highest
common factor of all moduli for which Artin reciprocity holds. Equiva-
lently4,

f(L/K) = gcd{m : Km ⊇ L}.

Due to the Reciprocity Law, there is a modulus m with S(m) equal to
the set of primes of K which ramify in L, such that the kernel of the Artin
map ψL/K : IS(m) → Gal(L/K) contains i(Km,1). So f(L/K) is always
nontrivial. Moreover, Artin reciprocity holds for f(L/K) so it is then the
smallest modulus such that ψL/K factors through Cf(L/K). By its definition
then the conductor is divisible exactly by the primes ramifying in L.

Lemma 3.1.15. The subfields of the ray class field Km containing K are
those with conductor f|m.

Proof. Note that if Km ⊇ L ⊇ K then f(L/K)|f(Km/K) and by defini-
tion f(Km/K)|m. �

We are now ready to reap what we have sown.

Example 3.1.16. Let K = Q(
√
m) where m is a square-free integer. Iden-

tify Gal(K/Q) with {±1}. The modulus m = 4|m|∞ is admissible for this
extension ([Con18a, Ex. 5.8]), so the Artin map is the homomorphism de-
termined by

ψK/Q : I
S(m)
Q → Gal(K/Q); esp. for p ∈ Z a prime, p 7→ (p,Q(

√
m)/Q).

Assume p 6= 2 (which we can do by choice of m). In order to compute
this Frobenius element we break into two cases:

4cf. [Cla18, (RC5)].
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Case 1: m ≡ a2 mod p. Then the ideal pOK splits; pOK = (p,
√
m +

a)(p,
√
m − a) = B+B− by [Mil17, Theorem 3.41]. As Gal(K/Q)

is abelian, the conjugacy class {(B, K/Q) : B|p} has size one, so
(p,K/Q) = (B+, K/Q) = (B−, K/Q). The Frobenius element sat-
isfies

(1) σB+ = B+,

(2) For all α ∈ OK , σα ≡ αp mod B+,

hence (p,K/Q) = a+ b
√
m 7→ a+ b

√
m “=” 1.

Case 2: If m is not a square mod p, then pOK = (p) is inert by [Mil17,
Theorem 3.41]. The Frobenius element must satisfy

(1) σp = p (trivial, as Gal(K/Q) fixes p),

(2) For all α ∈ OK , σα ≡ αp mod p,

By use of Fermat’s Little Theorem, we see (p,K/Q) = a + b
√
m 7→

a− b
√
m “=”− 1.

Therefore (p,K/Q) = 1 ⇔
(
m
p

)
= 1, and so ψK/Q : p 7→

(
m
p

)
, where(

m
p

)
is the Legendre symbol. We have just demonstrated the Legendre

symbol is subsumed by the Artin map. �

In fact, the Reciprocity Law of Theorem 3.1.10 also contains the usual
Quadratic Reciprocity Law:

Example 3.1.17. (See [Con18a, Ex. 6.5]). Let p be an odd prime. Define

p∗ = (−1)
p−1

2 p. This guarantees p∗ ≡ 1 mod 4 and thus for K = Q(
√
p∗),

2 does not ramify in K. The Artin map ψK/Q : Ip∞Q → Gal(K/Q) maps any

odd prime q to (q,K/Q). As the conductor f(K/Q) = p∞, ψK/Q admits

the modulus p∞. By the Reciprocity Law (Theorem 3.1.10), i(Kp∞,1) ⊆
Ker(ψK/Q). Identifying Ip∞Q /i(Kp∞,1) with (Z /pZ)× and Gal(K/Q) with

{±1} again, the Artin map is a homomorphism

(Z /pZ)× → {±1}, q mod p 7→
(
p∗

q

)
,

by the previous example. However, it can be shown the only homomor-

phism from (Z /pZ)× onto {±1} is the Legendre map
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(
·
p

)
: x mod p 7→

(
x
p

)
, hence

(
p∗

q

)
=
(
q
p

)
. Using the formula

(
−1
q

)
= (−1)

q−1
2 ,

we obtain the Quadratic Reciprocity Law

(−1)
p−1

2
q−1

2

(
p

q

)
=

(
q

p

)
exactly. �

Not only does the Artin Reciprocity Law generalise the Quadratic Reci-
procity Law, it generalises Hilbert’s Reciprocity Law of

∏
v(a, b)v = 1 for

a, b ∈ Q×. This is covered by Conrad [Con18a, §7] working off of [Has30].
This coincidentally relates back to Hilbert’s list of 23 problems, where
Artin’s reciprocity map for abelian extensions of Q is accepted as a partial
solution to the 9th problem:

Conjecture (Hilbert’s 9th Problem). Find the most general law of the
Quadratic Reciprocity Theorem in any algebraic number field. �

According to [Con18a], “three themes in number theory at the end of
the 19th century led to class field theory: relations between abelian exten-
sions and ideal class groups, density theorems for primes . . . and reciprocity
laws”. We have seen the study of the Artin map is the study of reciprocity
laws, and we have seen one connection between abelian extensions and
ideal class groups (Corollary 3.1.13). Here is another, which one could
argue motivated the existence of the whole subject (or, at least, motivated
Hilbert):

Theorem 3.1.18. (Kronecker-Weber). Every finite abelian extension of Q
lies in a cyclotomic field Q(ζm) for some m.

Hilbert was deeply interested in this theorem. It was he who gave the
first complete proof in 1896 [Hil96], and included its generalisation as one
of his 23 problems published in 1900:

Conjecture (Hilbert’s 12th Problem). Extend the Kronecker-Weber
theorem on abelian extensions of the rational numbers to any base number
field. �

Remarkably, the Kronecker-Weber Theorem can be deduced from the
Artin Reciprocity Law.

31



CHAPTER 3. CLASS FIELD THEORY: AN INTRODUCTION

Proof of the Kronecker-Weber Theorem: Let m be a positive integer.
The ray class group for m = m∞ is Cm = ImQ/i(Qm,1) ∼= (Z /mZ)×, hence
the ray class field Lm is the field where

Gal(Lm/Q) ∼= Cm ∼= (Z /mZ)× ∼= Gal(Q(ζm)/Q),

so Lm = Q(ζm). Every abelian extension of Q has conductor dividing m
for some m, hence by Lemma 3.1.15 is contained in Q(ζm) as required. �

The final concern of 19th century number theory which led to class field
theory was determining the density of primes (both in Q and its extensions).
Remarkably, one can show that every element of the Galois group of a finite
extension of number field L/K has (infinitely many) representations as a
Frobenius element for some prime of K:

Theorem 3.1.19. Chebotarev’s Density Theorem. Let L/K be a
finite extension of number fields with Galois group G and let C be a conju-
gacy class in G. Then the set of prime ideals of K such that (p, L/K) = C

has density |C||G| in the set of all prime ideals of K. In particular,

(1) If G is abelian, then for a fixed τ ∈ G, the set of prime ideals p of K
with (p, L/K) = τ has density 1

|G| .

(2) For any σ ∈ G, there are infinitely many primes p of K with
(p, L/K) = σ.

(3) The set of prime elements which completely split in L has density 1
|G| .

Proof. The density theorem for an abelian extension L/K is a conse-
quence of applying the surjective homomorphism Cm → Gal(L/K) (from
Theorem 3.1.10) to a result of Milne ([Mil13, Theorem 2.5]) noting the
primes of K are equidistributed amongst the classes of Cm. Milne also re-
marks that the nonabelian case can be derived from the abelian one [Mil13,
Chapt. VIII].

(1) is clear and (2) follows from the infinitude of primes of K. For (3),
note that if p splits completely in L if and only if (p, L/K) is trivial (cf.
the proof of Lemma 3.1.22, yet to appear) so |C| = 1. �

Chebotarev’s theorem is a generalisation of Dirichlet’s theorem on arith-
metic progressions; Dirichlet’s theorem now follows very easily:

Corollary 3.1.20. (Dirichlet’s Theorem on Arithmetic Progressions). For
coprime a, d ∈ Z, there are infinitely many primes in the arithmetic pro-
gression a, a+ d, a+ 2d, . . . .
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Proof. Let K = Q and L = Q(ζd). Consider the conjugacy class C =
{ζd 7→ ζad}. The density of those primes p with (p,Q(ζd)/Q) = C is posi-
tive, hence there exist an infinitude of primes congruent to a modulo d, as
required. �

The final important object we will introduce for class field theory is the
Hilbert class field.

Definition 3.1.21. The ray class group for the modulus m = 1 is the
full ideal class group, and the corresponding ray class field is known as
the Hilbert class field ; it is the maximal abelian extension H of K that is
unramified at all primes5.

As a consequence of this definition, the full ideal class group of K is
CK ∼= Gal(H/K) so [H : K] = hK , the class number of K.

Recall that OK is a principal ideal domain if and only if hK = 1; it is
often said that the larger (than 1) hK is, the “further away” OK is to being
a principal ideal domain. In fact, this notion can be made precise using
the Hilbert class field.

Lemma 3.1.22. The prime ideals of K which split completely in H are
exactly the principal ideals.

Proof. If p a prime ideal of K splits completely, then pOH = B1 . . .BhK

and each inertia degree fi = 1, 1 ≤ i ≤ hK . Therefore for each i, fi =
[OH/Bi : OK/ p] = 1 so the Galois groups Gal(OH/Bi / OK/ p) ∼= {1},
hence for each i the decomposition groups D(Bi) ∼= {1}meaning the Frobe-
nius element (p, H/K) is trivial. Thus p is principal, by the Artin map
isomorphism CK ∼= Gal(H/K).

On the other hand, if p is a principal ideal of K then the Frobe-
nius element (p, H/K) is trivial (by the Artin map again) so the Ga-

lois groups Gal(OH/Bi / OK/ p) for 1 ≤ i ≤ [H:K]
fi

are trivial, meaning

fi = [OH/Bi : OK/ p] = 1 for all i. As H/K is Galois and p is unramified,
we conclude p splits completely as required. �

Corollary 3.1.23. The density of the principal primes in K is 1
hK

.

Proof. By the Chebotarev Density Theorem (Theorem 3.1.19 (3)), the
set of prime numbers which split in H has density

1

|Gal(H/K)|
=

1

|CK |
=

1

hK
.

5This includes the real primes, where a real prime is unramified if it remains real in
the extension. A complex prime cannot ramify.
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However, as Lemma 3.1.22 demonstrates, the set of prime ideals which
split completely in H is exactly the set of principal prime ideals in K.
Therefore the density of the principal primes in K is 1

hK
, as required. �

Remark 3.1.24. Recall for a number field K, OK is a principal ideal
domain if and only if it is a unique factorisation domain. Thus, 1

hK
also

measures how far from “unique factorisation” K is. �

The last phenomenon surrounding the Hilbert class field we will mention
is sometimes called principalization; the situation where an extension of
algebraic number field forces ideals of the lower field’s ring of integers to
become principal in the extension:

Theorem 3.1.25. (Principal Ideal Theorem). Every ideal in K becomes
principal in the Hilbert class field of K.

Proof. See [Mil13, Theorem 3.17]. �

We are now ready to give Park’s universal definition of the ring of
integers in a number field.

3.2 Park’s Universal Definition

The first step in Park’s definition of the ring of integers OK in a number
field K is setting up the relevant quaternion algebra machinery, in the
style of Poonen and Koenigsmann. This time, however, since the primes
and valuations we deal with may be more complicated (and some may be
redundant) we deal directly with places instead of primes.

Notation A. See [Par13].

• Let P be the set of finite places of K and let P ∪∞ be the set of all
places of K, both finite and infinite.

• ‘Prime ideals of K’ and their corresponding valuations are mentioned
interchangeably, as according to Appendix A.1.

• Ha,b, Sa,b, Ta,b, Uv (previously Up), Sa,b(Kv) and Ta,b(Kv) are defined
as in Definition 2.2.1.

• ∆a,b := {v ∈ P ∪∞ : Ha,b ⊗Kv does not split}.
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• For a prime ideal p ⊆ OK and its associated valuation v, Ov is the set
of elements in the completion Kv whose valuations are nonnegative.
In the context of a given a, b ∈ K, for an infinite place v, we define

Ov :=


R if v is a real place and v(a) > 0 or v(b) > 0,

[−4, 4] if v is a real place and v(a), v(b) < 0,

C if v is a complex place.

• Denote by (OK)p the localisation of OK at p.

Using the same machinery as in [Koe13] or [Poo09a], we conclude for
any a, b ∈ K× such that v(a) > 0 or v(b) > 0 for each real archimedian
place v, Ta,b =

⋂
p∈∆a,b

(OK)p ([Par13, Prop. 2.3]; cf. (2.2) of this thesis).

The next step in [Koe13] was to produce a uniform diophantine def-
inition of all Z(p)’s in Q using the congruence class of p modulo 8. As
these “modulo 8” congruence classes cannot be replicated in general num-
ber fields, Park uses class field theory (in particular, ray classes) in their
stead.

To obtain a uniform definition of the ring of integers of a number field
as the intersection of localised rings as Park does [Par13, §3.3] we will fix
the following notation:

Definition 3.2.1. Let a, b be totally positive6 elements of K× whose im-
ages in K×/K×2 are independent. Let

ψ : Cm → Gal(K(
√
a,
√
b)/K) = {±1} × {±1}

be the Artin map. Denote by m an admissible modulus to the extension
K(
√
a,
√
b)/K. Partition the set of primes of K as follows:

• P[i,j] := {prime ideals p of K : ψ(p) = (i, j)}, where i, j ∈ {±1}.

• P[i,j](p) := {primes p ∈ P[i,j] : vp(p) is odd}.

Sometimes ‘σ’ is used in place of ‘[i, j]’ in the superscript of P.

With a careful choice of a, b ∈ K×, there is a direct correspondence
between the sets of primes Pσ(p) and ∆x,p ∩∆y,p for x, y combinations of
a, b:

Lemma 3.2.2. Choosing a, b according to [Par13, Lemma 3.19],

P[−1,−1](p) = ∆a,p ∩∆b,p,

P[−1,1](p) = ∆a,p ∩∆ab,p,

P[1,−1](p) = ∆b,p ∩∆ab,p. �
6An element is totally positive if it is a square in Kp for every infinite prime p.
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From this point forward, fix a and b as in [Par13, Lemma 3.19]. The
above lemma leads us to a definition strikingly similar to Definition 2.2.6:

Definition 3.2.3.

• R
[−1,−1]
p := Ta,p + Tb,p =

⋂
p∈∆a,p∩∆b,p

(OK)p =
⋂

p∈P[−1,−1](p)(OK)p.

• R
[1,−1]
p := Tab,p + Tb,p =

⋂
p∈∆ab,p∩∆b,p

(OK)p =
⋂

p∈P[1,−1](p)(OK)p.

• R
[−1,1]
p := Ta,p + Tab,p =

⋂
p∈∆a,p∩∆ab,p

(OK)p =
⋂

p∈P[−1,1](p)(OK)p.

• R
[1,1]
p := Tap,q + Tbp,q =

⋂
p∈∆ap,q∩∆bp,q

(OK)p.

As a result of this definition, once again7 we have a representation of
OK in terms of the Rσ

p :

Proposition 3.2.4. Let (K×)+ denote the set of totally positive elements
of K. Then

OK =
⋂
p|m0

(OK)p ∩
⋂

p,q∈(K×)+

(R[−1,−1]
p ∩R[−1,1]

p ∩R[1,−1]
p ∩R[1,1]

p,q ).

Proof. Note that OK =
⋂

p(OK)p where p ranges over all finite primes of
OK . This proposition follows from Lemmata 3.11 & 3.12 of [Par13]. �

The next three sections of Park’s paper are devoted to the Jacobson
radical and attempting to create conditions which impose integrality at each
finite place of K. This results in the following definition and proposition:

Definition 3.2.5. For each σ ∈ Gal(K(
√
a,
√
b)/K),

Φσ := {p ∈ K× : (p) ∈ IS(m), ψ((p)) = σ, and P(p) ⊆ P[1,1] ∪ Pσ},
Φ̃σ := K×2 · Φσ,

Ψ :=

{
(p, q) ∈ Φ̃(1,1) × Φ̃(−1,−1) :

∏
p|m

(ap, q)p = −1 and

p ∈ a ·K×2 · (1 + J(R[−1,−1]
q ))

}
.

Proposition 3.2.6.

(1) For each σ ∈ Gal(K(
√
a,
√
b)/K), Φσ is diophantine in K.

7See just before Definition 2.2.7.
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(2) For any p ∈ Φσ and σ ∈ Gal(K(
√
a,
√
b)/K) with σ 6= (1, 1), Pσ(p) 6=

∅. Also for (p, q) ∈ Ψ, ∆ap,q ∩∆bp,q ∩ IS(m) 6= ∅.

(3) The Jacobson radical J(Rσ
p ) is diophantine for p ∈ Φσ, σ 6= (1, 1).

For (p, q) ∈ Ψ, J(R
[1,1]
p,q ) is diophantine.

(4) Hence Ψ is diophantine.

(5) For σ ∈ Gal(K(
√
a,
√
b)/K) with σ 6= (1, 1), if p - m0 is a prime

ideal of K satisfying ψ(p) = σ then there exists p ∈ Φσ such that
p ∈ Pσ(p). Similarly if ψ(p) = (1, 1) then there exists (p, q) ∈ Ψ such
that ∆ap,q ∩∆bp,q = {p}.

Proof. See Lemmata 3.22, 3.23 & 3.25 of [Par13]. �

Note that (2) is important as it demonstrates OK ⊆ Rσ
p for all p ∈ Φσ

and OK ⊆ R
[1,1]
p,q for (p, q) ∈ Ψ.

Remark 3.2.7. The parallel drawn between Definition 3.2.5 and Koenigs-
mann’s Φk, Ψ is immediate. Also, Proposition 3.2.6 is a combination of
Corollary 15 and Proposition 16 of [Koe13] exactly. �

We put everything together in §4 of [Par13]. There, we have the theorem
below. Recall the definition of the Jacobson radical of a semilocal ring R
(Definition 2.2.7) and the notation

R̃ = {x ∈ K : @y ∈ J(R) with x · y = 1}.

Theorem 3.2.8. ([Par13, Theorem 4.2]) For any number field K,

OK =
⋂
p|m0

(̃OK)p ∩

 ⋂
σ 6=(1,1)

⋂
p∈Φσ

R̃σ
p

 ∩ ⋂
(p,q)∈Ψ

R̃
[1,1]
p,q . (3.1)

Proof. The argument relies on Proposition 3.2.6 in two ways: first, all
the sets Pσ(p) and ∆ap,q ∩ ∆bp,q are nonempty for p ∈ Φσ and (p, q) ∈ Ψ
respectively, by Proposition 3.2.6 (2). This means OK is a subset of the
RHS of (3.1). Second, we need to indicate that (for σ 6= (1, 1)) we can
always find p, p′ ∈ Φσ such that

(OK)p0
=

⋃
p∈Pσ(p)

(OK)p ∩
⋃

p∈Pσ(p′)

(OK)p =
⋃

p∈Pσ(p)∩Pσ(p′)

(OK)p,

for p0 - m0 - i.e. that integrality at p0 is imposed. This can be done
precisely by Proposition 3.2.6 (5). Suppose ψ(p0) = (−1,−1). Choose
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p ∈ Φ(−1,−1) such that p0 ∈ P(−1,−1)(p). Let p1, . . . , pn be the rest of the
primes in ∆a,p∩∆b,p. By our choice of a, b we may choose a prime ideal q in
the ideal class of p−1

0 with ψ(q) = (1, 1) and q distinct from p1, . . . , pn (cf.
[Par13, Lemma 3.19]). Let (p′) = p0q; then p′ ∈ Φ(−1,−1) by construction
and P(−1,−1)(p) ∩ P(−1,−1)(p′) = {p0} as desired. The argument is the same
if ψ(p0) = (1,−1) or (−1, 1).

If ψ(p0) = (1, 1) we show the analogous result using Proposition 3.2.6
(5) again:

there exists (p, q) ∈ Ψ s.t.
⋃

p∈∆ap,q∩∆bp,q

(OK)p = (OK)p0
,

meaning once again integrality at p0 is imposed, as is required to prove
the equality (3.1). �

Corollary 3.2.9. For any number field K, OK is defined in K by a uni-
versal first-order Lrings-formula.

Proof. Note that
⋂

p|m0
(̃OK)p is universally definable, as J((OK)p) = p

is diophantine by [Eis03a, Theorem 5.15] (using the trick vp(x) > 0 ⇔
vp
(
x
π

)
≥ 0, where π is a uniformiser of p).

From this result, and the diophantiness results of Proposition 3.2.6, we
conclude everything to the RHS of (3.1) is universally definable. Then by
Theorem 3.2.8, OK can be universally defined in K, as required �

The proof of this result also concludes the paper. What is remark-
able about this result is the similarities we see when we apply the same
techniques to function fields, as we do in the next chapter.

Remark 3.2.10. Can we apply the same method as Daans from Section
2.2.2 to obtain a universal definition without the class field theory fuss?
Unfortunately, an immediate application will not work. If we make the
natural assumption that ‘p > 0’ means ‘p is a square’ or even ‘p is the sum

of four squares’, then it is no longer guaranteed that
(
−p,−2q
K∞

)
is nonsplit

for ∞ an infinite prime of K. Indeed, if K = Q(i) then K∞ = C and all
quaternion algebras over C are split. Therefore Daans’ definition fails in
the general case. However, a modification to his original method will work
and produce significant results. See Section 4.3 for a discussion on what
modifications need be made.

Remark 4.4.11 also discusses why the author’s short universal definition
for function fields cannot be immediately applied to number fields. �
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Chapter 4

Function Fields

This chapter will be structurally and mathematically similar to Chapter
2: we will first briefly analyse Rumely’s early results on defining Fq[t] in
Fq(t) [Rum80], then pass to the more modern universal definition of the
ring of S-integers OS in a global function field K (see Definition 4.1.4)
by Eisenträger & Morrison and Daans. The author then shares his own
improvement on these results: a shorter universal definition of Fq[t] in
Fq(t) using the methods of §2.2.2. We conclude with a ∀∃-definition of
OS in K with a single universal quantifier (the analogy of §2.2.3) due to
Shlapentokh, however this appears quite out of left field as Shlapentokh
does not use the techniques outlined in Chapter 2, §3.2 or §4.2.

In this chapter the language we consider for function fields is Lrings∪{t}.
Once again the reader is referred to Appendix A.2 if unfamiliar function
field terminology is encountered.

4.1 In the Beginning. . .

Rumely made a contribution to the area of undecidability and definability
in global function fields in 1980, where the following results are a subset of
his paper [Rum80]:

Theorem 4.1.1.

I. Every valuation ring (archimedian and nonarchimedian alike) of ev-
ery global field is definable.

II. There is a sentence of Lrings which distinguishes number fields from
function fields.

III. If K is a function field then Th(K) defines its field of constants F,
the polynomial ring F[t] and a model of N given by the powers of t.
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This last result has the following consequence:

IV. The theory of global (function) fields is essentially undecidable1. �

Rumely’s tactics are completely different to what we have discussed
before in the case of Poonen, Koenigsmann and Park; as his work predates
the introduction of quaternion algebras to this field he instead focuses more
on the Hasse Norm Theorem and Artin’s Reciprocity Law ([Rum80, Prop.
C & D]). This mirrors Robinson’s proof of the undecidability of Th(Q)
(Corollary 2.1.2) where the active local-global principle was the Hasse-
Minkowski Theorem (replaced in [Rum80] by the Hasse Norm Theorem)
and the theory of quadratic forms were used (replaced by the theory of
norm forms, controlled by Artin’s Reciprocity Law).

Note that the defining formulae for Theorem 4.1.1 (I), (III) are neither
universal nor existential nor of the form “∀ . . . ∃ . . . ”. The sentence of The-
orem 4.1.1 (II) is in some sense exactly what one might expect; it is based
on the fact that the field of constants of any function field K (characteristic
6= 2) is definable in K, while if K is a number field there is no substructure
which is a subfield to OK , like F is to F[t]. Finally, Theorem 4.1.1 (IV)
follows from the ability to define F[t] in K and Raphael Robinson’s con-
struction of a model of N in F[t] using powers of t (reproduced in [Rum80,
§4]).

Nearly 40 years later our picture is clearer yet still incomplete. By the
results of Hilbert’s 10th Problem discussed in Chapter 1, we now know the
existential theories of Fq[t] and Fq(t) are undecidable as well2. In fact, the
existential theory of any algebraic function field K is undecidable [Shl96,
Eis03b]. It still eludes us, however, whether Fq[t] is diophantine in Fq(t)
and, until very recently, it eluded us whether Fq[t] is universally definable
in Fq(t).

Eisenträger & Morrison [EM18] answered this latter question in the pos-
itive in 2018; they generalise Rumely’s result and improve on Shlapentokh’s
definition [Shl15] which requires one change of quantifier. They prove three
results in the paper, all generalisations of Koenigsmann’s results to global
function fields, using Park’s class-field-theoretic methods. Their second
and third results are the following:

1Recall that a theory is essentially undecidable if every consistent extension of it
is undecidable too. Robinson arithmetic is essentially undecidable, hence every theory
which includes or interprets it is (essentially) undecidable too - which is used in The-
orem 4.1.1 (IV). For example, the theory of fields is undecidable but not essentially
undecidable, as ACF admits QE.

2We will emphasise here that the theories are in a language containing t.
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Theorem 4.1.2. ([EM18, Theorem 1.2]). Let K be a global field with
char(K) 6= 2. Then

{(x, y) ∈ K× ×K× : x 6∈ Norm(K(
√
y))},

is diophantine over K.3 �

Theorem 4.1.3. ([EM18, Theorem 1.4]). Let K be a global field with
char(K) 6= 2. Then K× \K×2 is diophantine over K. �

Originally established in [Poo09b] and proven using elementary means
in [Koe13] for K = Q, here Theorem 4.1.3 is reproven using techniques
more in line with Park’s setup.

However, it is their first result which is of principle interest to us and
the focus of the next section. Recall:

Definition 4.1.4. Denote by vp the valuation corresponding to the prime
p. For S a finite set of primes of a global function field K, define OS to be
the ring

OS := {x ∈ K : vp(x) ≥ 0 for all primes p 6∈ S}.

The reader would do well to recall as well Remark A.1.10; that all
primes of a global function field are considered to be finite.

Theorem 4.1.5. ([EM18, Theorem 1.2]). Let K be a global function field
of odd characteristic and let S be a finite nonempty set of primes of K.
Then OS is first-order universally definable in K.

In particular for K = Fq(t) and S = {∞}4, OS = Fq[t] is universally
definable in Fq(t). �

4.2 Eisenträger & Morrison’s Universal Def-

inition

Eisenträger & Morrison’s universal definition of Fq[t] in Fq(t) is based on
the same idea present in [Koe13], [Par13] and even [Poo09a]; use certain
diophantine-definable rings, parameterised by K×, to encode ‘integrality’
at some finite set of primes. However, although we prove analogous results
to Koenigsmann and Park, we cannot use the latter’s arguments exactly.

For instance, although most of the results of §3.1 apply to global func-
tion fields (cf. [EM18, §2]), we cannot use [Par13, Lemma 3.19] or the

3This generalises [Koe13, Prop. 20(e)] from K = Q to global fields.
4The prime at infinity; see Definition A.1.9.
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a, b ∈ K× that result from it (thus scrapping the whole biquadratic exten-
sion K(

√
a,
√
b)). This is because, as part of Park’s choice of a, b ∈ K×,

we use the Chebotarev density theorem on the extension H/K where H is
the Hilbert class field of K. For number fields, this is allowed, however for
function fields the Hilbert class field is an infinite field extension hence the
Chebotarev density theory cannot be applied.

Our work-around, Lemmata 3.8 & 3.10 of [EM18], does not use the
Hilbert class field but instead a smaller field extension with Hilbert class
field-like features. For the sake of completeness, here are those lemmata,
condensed into one result:

Lemma 4.2.1. Let K be a global function field and S be a finite set of
primes in SK = P, the set of all primes of K. We can choose a, b ∈ K× so
that the following hold:

(1) The images of a, b in K×/K×2 are distinct.

(2) Any admissible modulus m for K(
√
a,
√
b)/K is divisible by the primes

of S.5

(3) Given a finite set of primes S ′ ⊆ SK disjoint from S, an ideal class I
in COS′ , and an element σ ∈ Gal(K(

√
a,
√
b)/K) there exists a prime

q of K such that q∩OS′ is in the ideal class I, q ∈ Im and ψ(q) = σ.

(4) As fractional ideals, (a), (b) are coprime.

We can also choose c, d ∈ K× such that

(5) ∆a,c = P(a) or ∆a,c = P(a) ∪ {pa}, where pa is coprime to (a), (b).

(6) ∆b,d = P(b) or ∆b,d = P(b)∪{pb}, where pb is coprime to (a), (b) and
pa. �

Finally, we shall fix an admissible modulus m for K(
√
a,
√
b)/K such

that m contains all primes dividing (a), (b), (c) and (d) along with any other
primes p such that (a, c)p = −1 or (b, d)p = −1.

This choice of a, b, c, d ∈ K× allows Eisenträger & Morrison to sweep
through the rest of Park’s paper with relative ease in a stunning display
of mathematical grace and symmetry. For instance, Lemma 3.2.2 of §3.2
becomes, in this context;

Lemma 4.2.2. Choose a, b, c, d according to Lemma 4.2.1. Let p ∈ K×

such that (p) and m are coprime. Then

P[−1,−1](p) = ∆a,p ∩∆b,p,

5This in particular is vital to their paper.
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P[−1,1](p) = ∆a,p ∩∆ab,p ∩∆a,cp,

P[1,−1](p) = ∆b,p ∩∆ab,p ∩∆b,dp. �

This leads us to a definition strikingly similar to Definition 3.2.3:

Definition 4.2.3. For p, q ∈ K×,

(1) R
[−1,−1]
p :=

⋂
p∈∆a,p∩∆b,p

(OK)p

(
=
⋂

p∈P[−1,−1](p)(OK)p

)
.

(2) R
[1,−1]
p :=

⋂
p∈∆ab,p∩∆b,p∩∆a,cp

(OK)p

(
=
⋂

p∈P[1,−1](p)(OK)p

)
.

(3) R
[−1,1]
p :=

⋂
p∈∆a,p∩∆ab,p∩∆b,dp

(OK)p

(
=
⋂

p∈P[−1,1](p)(OK)p

)
.

(4) R
[1,1]
p :=

⋂
p∈∆ap,q∩∆bp,q

(OK)p.

(where the second equality in items (1)-(3) holds only when (p) and m are
coprime.)

Now define Ψ, Φσ for σ 6= (1, 1) exactly the same as in [Par13] (Defi-
nition 3.2.5). Then, in a series of lemmata ([EM18, Lemmata 3.14, 3.15
& 3.17]) Eisenträger & Morrison recreate Proposition 3.2.6 exactly, which
leads us to the following theorem: the precise near replication of [Par13,
Theorem 4.2], i.e. Theorem 3.2.8:

Theorem 4.2.4. ([EM18, Theorem 3.20]) For any global function field K
and finite set of primes S ⊂ SK, with m chosen as before,

OS =
⋂

p∈S(m)\S

(̃OK)p ∩

 ⋂
σ 6=(1,1)

⋂
p∈Φσ

R̃σ
p

 ∩ ⋂
(p,q)∈Ψ

R̃
[1,1]
p,q . �

Corollary 4.2.5. For any global function field K with char(K) 6= 2, and
any nonempty finite set of primes S of K, OS is definable in K by a
universal formula.

Proof.

For f ∈ K, f ∈ OS ⇔ f ∈
⋂

p |m , p6∈S

Õp

∧ ∀p
∧

σ 6=(1,1)

(p 6∈ Φσ ∨ f ∈ R̃σ
p )

∧ ∀p, q
(

(p, q) 6∈ ΨK ∨ f ∈ R̃(1,1)
p,q

)
. �
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This is more or less the same definition which would result if K was
a number field, i.e. from Corollary 3.2.9. Note the number of quantifiers
needed for a universal definition of Fq[t] in Fq(t) would be no less than 418,
the number needed for Koenigsmann’s definition (Theorem 2.2.10 (3)).

4.3 Daans Strikes Again

In §4.4 of [Daa18], Daans modifies the method he uses to produce a uni-
versal definition of Z in Q, to construct a universal definition of OK in K
for any global field K. This modification he does in two ways.

(A) Theorem 2.2.13 is not how the result appears in [Daa18]; using the
same proof the following is shown instead. Using the notation defined
in Definition 2.2.11,

Theorem 4.3.1. [Daa18, Theorem 4.3.3].⋃
l∈P

lZ(l) =
⋃
p,q>0

q∈Q2 ·T×−1,−1

J−p,−2q. �

To fabricate a universal definition from this, Daans has the following
proposition. Let P be the set of finite primes (prime ideals) of K.

Proposition 4.3.2. Let K be a global field and let T ⊆ P be a
nonempty set of primes. Suppose that

⋃
p∈T p(OK)p has a positive

existential definition in K with n quantifiers. Then
⋂

p∈T (OK)p has
a universal definition in K with n+ 1 quantifiers.

Proof. This is Proposition 4.1.1 of [Daa18]. Let φ(t) be the exis-
tential formula defining

⋃
p∈T p(OK)p. Then⋂

p∈T

(OK)p = {x ∈ K : K |= ∀u(x · u = 1→ ¬φ(u))}.

�

Notice the similarity between this definition and Definition 2.2.9. In
abstract terms, we are showing that for a subring R of K containing
OK , R has a universal definition when J(R) has an existential defini-
tion. This was the motivating idea behind Koenigsmann’s universal
definition of Z in Q.
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(B) For Daans’ method (Remark 2.2.14) one of the main underlying ideas
is to force all quaternion algebras satisfying the conditions of D to be
nonsplit at ∞. For a general global field, the behaviour of ∞ could
be quite erratic - to counteract this, Daans adapts his method so that
the set of conditions he considers, denoted ΦS

u , deliberately forces all
quaternion algebras at infinity to split, yet all quaternion algebras at
primes of S to be nonsplit. We change (1) & (2) of Remark 2.2.14 as
follows:

(1’) If a, b satisfies D = ΦS
u this forces ∆ = ∆a,b \ (S ∪ P∞), where

P∞ is the set of infinite primes of K (empty when K is a global
function field).

(2’) If a, b satisfy D = ΦS
u , then (a, b)q = 1 for all q ∈ P∞. Also if

a, b satisfy D then (a, b)p = −1 for all p ∈ S.

Let us expand on (B). Let K be a global field of characteristic not equal
to6 2. We wish to find a universal definition of OS in K, where S ⊆ P. We
will first show that S can be taken to have odd cardinality.

Proposition 4.3.3. Let S ⊆ S ′ ⊆ P and suppose S ′ \ S is finite. If⋃
p∈P\S′ p(OK)p has a positive existential definition with n quantifiers, then⋃
p∈P\S p(OK)p has a positive existential definition with max{n, 15} quan-

tifiers.

Proof. See [Daa18, Prop. 4.4.1]. Note⋃
p∈P\S

p(OK)p =
⋃

p∈P\S′
p(OK)p ∪

⋃
p∈S′\S

p(OK)p,

and the union of positive existentially defined sets is again positive ex-
istential. The number of quantifiers needed to define

⋃
p∈P\S p(OK)p is

the maximum of the number needed for
⋃

p∈P\S′ p(OK)p, which is n, and⋃
p∈S′\S p(OK)p, which is 15, by [Daa18, Corollary 4.1.3]; the generalisation

of defining Z(p) in Q (see [Koe13, Prop. 10]). �

So we will assume from this point without loss of generality that |S| is
odd. Let P[2] be the set of dyadic primes, where a prime p is dyadic if Kp

is a dyadic field (recall Definition 2.1.8). Define the following notation:

Definition 4.3.4. For a finite prime p of K and a ∈ (OK)×p , define

a⊗ p ⇔


if p 6∈ P[2], a is a nonsquare modulo p(OK)p,

if p ∈ P[2], a is a nonsquare modulo 4 p(OK)p,

but is a square modulo 4(OK)p.

6See Remark 4.3.11 for the characteristic 2 case.

45



CHAPTER 4. FUNCTION FIELDS

Finally, Ξ(S) := {a ∈ K× : a⊗ p for all p ∈ S}.

Lemma 4.3.5. For any finite set of finite primes S, Ξ(S) is nonempty.

Proof. See [Daa18, Lemma 4.4.2] for details. This follows from applying
the Weak Approximation Theorem [Mil17, Theorem 7.20]: if | · |1, . . . , | · |n
are nontrivial inequivalent norms of a field F , and a1, . . . , an ∈ F , then for
every ε > 0 there exists a ∈ F such that |a− ai|i < ε, for 1 ≤ i ≤ n. �

By Siegel’s Theorem [Lam05, Chapt. XI Cor. 1.5], the totally positive
elements of K are exactly those elements which can be written as the sum
of four squares. Moreover, if K has no real infinite primes then every
element is totally positive. Let “a > 0” denote “a is nonzero and the sum
of 4 squares” if K has real infinite primes and “a is nonzero” otherwise.

Lemma 4.3.6. [Daa18, Lemma 4.4.3]. Let S be a nonempty, finite set of
finite primes of K. Let u ∈

⋂
p∈S(OK)×p . Then the set

ΦS
u = {(a, b) ∈ K2 : a > 0, b ∈ (OK)×p , a ≡ u mod

∏
p∈S

4 p(OK)p}

has a positive existential definition with 49 quantifiers. Moreover, the num-
ber of quantifiers can be reduced by 4 if K is nonreal, by 3 if |S| is odd but
at least 3, and by 24 if |S| is even. �

We have now arrived at the main theorem for this section. Recalling
Definition 2.2.11, define J ca,b :=

⋂
p∈∆∩P(c) p(OK)p. This also has a positive

existential definition of 61 quantifiers (cf. [Daa18, Prop. 4.2.6] & [Koe10,
Lemma 11]).

Theorem 4.3.7. Let S be a finite set of finite primes of K of odd cardinal-
ity. Let π ∈ K× be an element such that S ⊆ P(π). Let u, c be parameters
such that

(i) u ∈ Ξ(S),

(ii) for all p ∈ S, vp(c) = 0 and for all p ∈ P[2] ∪ P(π) \ S, vp(c) = 1.7

Then ⋃
p∈P\S

p(OK)p =
⋃

(a,b)∈ΦSu

(Jaa,bπ ∩ J ba,bπ ∩ J ca,bπ).

In particular, the set
⋃

p∈P\S p(OK)p has a positive existential definition in
K.

7Such a u, π and c exist by Weak Approximation.
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Proof. We will show the equality holds; that
⋃

(a,b)∈ΦSu
(Jaa,bπ∩J ba,bπ∩J ca,bπ)

has a positive existential definition in K follows from Lemma 4.3.6 given
Jxa,bπ is positive-existentially definable.

First, let ∆ = ∆a,bπ ∩ (P(a) ∪ P(b) ∪ P(c)). For (a, b) ∈ ΦS
u , a > 0

hence a is a square in all completions of K at infinite primes, meaning
(a, b)q = (1, b)q = 1 for all q ∈ P∞. Therefore ∆a,bπ contains no infinite
primes. When a, b and c satisfy the conditions of the theorem, (P(a)∪P(b)∪
P(c))∩S = ∅ and P(π) \S ⊆ P(c). By the former property, ∆ ⊆ ∆a,bπ \S.
By the latter, used in conjunction with Lemma 2.2.4, ∆a,bπ \ S ⊆ ∆. We
conclude

∆ = ∆a,bπ \ S = ∆a,bπ \ (S ∪ P∞),

which is (1’) of the modified Remark 2.2.14 complete. Therefore

Jaa,bπ ∩ J ba,bπ ∩ J ca,bπ =
⋂

p∈∆a,bπ∩(P(a)∪P(b)∪P(c))

p(OK)p =
⋂
p∈∆

p(OK)p,

and we now wish to prove

⋃
p∈P\S

p(OK)p =
⋃

(a,b)∈ΦSu

(⋂
p∈∆

p(OK)p

)
.

For the inclusion from left to right, we must show ∆ is nonempty (modified
Remark 2.2.14 (2’)). However as u ∈ Ξ(S), a ≡ u mod

∏
p∈S 4 p(OK)p,

and b ∈
⋂

p∈S(OK)×p , by Lemma 2.2.4 (b) it is the case S ⊆ ∆a,bπ. As |S|
is odd, we conclude by Hilbert Reciprocity that ∆ is nonempty.

Finally, as per Remark 2.2.14 (3) we must show for all q ∈ P \ S there
exists (a, b) ∈ ΦS

u such that (a, b)q = −1. Fix q ∈ P \ S. By Weak
Approximation we can choose a such that

• a > 0,

• a ≡ u mod
∏

p∈S 4 p(OK)p,

• and a⊗ q.

Due to [Daa18, Theorem 1.7.10], there exists b′ 6= 0 such that ∆a,b′π =
S ∪ {q}. As vp(a) is even for all8 p ∈ S, by Lemma 2.2.4 (b) again we see
vp(b

′π) = vp(π)+vp(b
′) must be odd. Thus vp(b

′) must be even, for all p ∈ S.
Multiply b′ by an appropriate square γ such that b = b′γ ∈

⋂
p∈S(OK)×p .

Then (a, b) ∈ ΦS
u as desired and ∆ = ∆a,bπ \ S = ∆a,b′π \ S = {q} as

required. �

8By assumption u ∈
⋂

p∈S(OK)×p and a ≡ u mod
∏

p∈S 4 p(OK)p.
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Remark 4.3.8. If one can find π ∈ K× such that S = P(π) (as one can
do in fields of class number 1, e.g. K = Fq(t), when S 6= {∞}) then for all
S ⊆ P, one can define OS in K without the need for the parameter c as
follows:

If needed, expand S to S ′ such that P[2] ⊆ S ′. Choose π′ ∈ K× such
that S ′ = P(π′). Then the set P[2] ∪ P(π′) \ S is empty. In the second
paragraph of the above proof we see there is no need for c; ∆ = ∆a,bπ \ S
still. Therefore J ca,bπ is unnecessary in this case.

In private correspondence with the author, Daans shared the following
conjecture:

Conjecture 4.3.9. Let K be a global field and S a finite set of finite
primes. There exists π ∈ K such that S ⊆ P(π) and |P(π)| is odd. �

A consequence of this conjecture, using the same argument as above, is
that the element c (and thus the set J ca,bπ) is always unnecessary in defining
OS in K. �

Remark 4.3.10. Theorem 4.3.7 produces a universal definition of Fq[t] in
Fq(t) with 167 quantifiers as follows:

First note c is not needed by Remark 4.3.8. Let S be some set of
finite primes of Fq(t) of cardinality 5. By Lemma 4.3.6 the number of
quantifiers needed for ΦS

u is 49 − 4 − 3 = 42, as Fq(t) is nonreal and
|S| ≥ 3. The total number of quantifiers needed to define OS in Fq(t) is
1 + 2 + 42 + 61 + 61 = 167, by the formula

x ∈ OS ⇔ ∀u
(
x · u = 1→ ¬

(
∃a, b((a, b) ∈ ΦS

u ∧ x ∈ Jaa,bπ ∧ x ∈ J ba,bπ)
))

(cf. Proposition 4.3.2 with T = P \ S). Then by Proposition 4.3.3, Fq[t]
also has a universal definition in Fq(t) with 167 quantifiers. �

Remark 4.3.11. Daans also demonstrates there is a universal definition
of OS in K for K a global field of characteristic 2 and S any finite set of
finite primes [Daa18, §4.5]. He uses central simple algebras to do this (an
introduction to which is given in [GS06]). �

4.4 A New Universal Definition

We will now provide a shorter universal definition of Fq[t] in Fq(t) than ap-
pears in [EM18] and [Daa18] (with a loss of generality, however; Eisenträger
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& Morrison’s and Daans’ universal definitions apply to any ring of S-
integers OS). We will remain in the case char(Fq) 6= 2. We first need
the following lemma:

Lemma 4.4.1. Any nonsquare of Fq((1/t)) is of the form 1/tc
2, fc2, or f/tc

2

where c ∈ Fq((1/t)) and f ∈ Fq is a nonsquare.

Proof. This is [Daa18, Prop. 1.4.5] exactly. For an explicit proof see Ap-
pendix B. �

Lemma 4.4.2. The quaternion algebra Hf,g/t
(Fq((1/t))) =

(
f , g/t

Fq((1/t))

)
is non-

split, where f, g ∈ Fq and f is a nonsquare.

Proof. We will use an equality found in [EM18]: for a p-adic unit a,

(a, b)p = −1 ⇔ vp(b) is odd and redp(a) is a nonsquare of Fp.

Thus (f, g/t)∞ = −1 if and only if v∞(g/t) = 1 is odd and f ∈ Fq is a
nonsquare (as it was chosen to be). Hence Hf,g/t

(Fq((1/t))) is nonsplit, as
desired. Note this also means Hf/t,g

(Fq((1/t))) is nonsplit too. �

Now for some results concerning primes, and nonsquares of the base field
Fq. Recall the residue field Ff(t) and residue map redf(t) from Appendix A.2.
We will use the Legendre symbol, which in this context is defined as:

Definition 4.4.3. Let f(t) ∈ Fq[t] be a prime (that is, the monic and
irreducible polynomial corresponding to the principal prime ideal p) and
g(t) ∈ Fq[t], where f(t) - g(t). Then

(
g(t)
f(t)

)
:=

{
1 if redf(t)(g(t)) is a square of Ff(t),

−1 if redf(t)(g(t)) is a nonsquare of Ff(t).

Lemma 4.4.4. Let f(t) ∈ Fq[t] be a prime and g ∈ Fq be nonsquare. If

deg(f) is odd, then
(

g
f(t)

)
= −1 still. If deg(f) is even, then

(
g
f(t)

)
= 1.

Proof. This follows from the formula(
g
f(t)

)
= g

q−1
2
·deg(f) = (−1)deg(f)

of [Ros02, Prop. 3.2]. �
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Lemma 4.4.5. Given a prime f(t) ∈ Fq[t], one can choose g ∈ Fq non-
square and d(t) a prime of Fq[t] of opposite parity in degree to f(t) such
that redf(t)(gd(t)) is a nonsquare of Ff(t).

Proof. We will assume that g is chosen according to Lemma 4.4.4. We
wish to find a polynomial d(t) which is monic, irreducible, of degree of
opposite parity to deg(f) and congruent to either a square or nonsquare,
modulo f(t). By Dirichlet’s Theorem on primes in arithmetic progressions
[Ros02, Chapt. 4], there are infinitely many primes equivalent to c(t) mod
f(t) for any c(t) ∈ Ff(t). Moreover, for N large enough, there is a prime of
degree N in this arithmetic progression [Ros02, Theorem 4.8].

Therefore if f(t) is of odd degree then we can choose d(t) to be monic,
irreducible, of even degree and d(t) ≡ c(t)2 mod f(t), where c(t) 6≡ 0
mod f(t). If f(t) has even degree then we can choose d(t) to be monic,
irreducible, of odd degree and d(t) ≡ c(t) mod f(t) where c(t) ∈ Ff(t) is a
nonsquare, as required. �

These lemmata will contribute to the next result. Before this, some
notation. Let φ(a) denote the formula “the degree of a is even and the
leading coefficient of a is a square”. Note that an element a ∈ Fq(t) satisfies
φ if and only if a is a square in Fq((1/t)), by Lemma B.0.1 of Appendix B.

If f1, . . . , fr are the nonsquare elements of Fq, let ψ(a, b) denote

∃c, d
(

“c and d are of opposite parity in degree”

∧
[{
φ(c) ∧ (a = f1c ∨ · · · ∨ a = frc) ∧ b ∈ Fq · d

}
∨
{
φ(d) ∧ (b = f1d ∨ · · · ∨ b = frd) ∧ a ∈ Fq · c

}])
.

Finally define

Definition 4.4.6. D := {(a, b) ∈ Fq(t)× Fq(t) : ψ(a, b)}.

The complicated choice of ψ(a, b) will be justified in the upcoming the-
orem.

Remark 4.4.7. In order to create this universal definition we will employ
Daans’ method of defining Z in Q, with a twist. Recall that this was a 4
step process, centred around a set of conditions D on parameters a, b such
that:

(1) If a, b satisfies D this forces ∆ = ∆a,b \ {∞}.

(2) If a, b satisfy D, then (a, b)∞ = −1. Equivalently, ∆ is always
nonempty.
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(3) For each prime p, one can find a, b satisfying D such that ∆ = {p}.
Equivalently, there exist a, b satisfying D such that

(a, b)p = −1 and (a, b)q = 1 for all primes q 6= p.

To accommodate the fact that all primes of Fq(t) are finite (see Remark

A.1.10) we will have to modify (1), in order for the upcoming R̃a,b to still
have a universal definition by [EM18]:

(1’) If a, b satisfies D this forces ∆ = ∆a,b.

Then we will obtain a universal definition as follows:

(4) t ∈ Fq[t] ∪ (Fq[t])∞ ⇔ ∀a, b ∈ Fq(t) ((a, b) 6∈ D ∨ t ∈ R̃a,b).

I claim that the aforementioned D, defined by ψ(a, b), satisfies (1’), (2) &
(3). Let us explore. �

Theorem 4.4.8. We have

Fq[t] ∪ (Fq[t])∞ =
⋂

(a,b)∈D

R̃a,b,

where

Ra,b :=
⋂

p∈∆a,b∩(P(a)∪P(b))

(Fq[t])p, R̃a,b =
⋃

p∈∆a,b∩(P(a)∪P(b))

(Fq[t])p.

Proof. By [EM18, Lemma 3.19], R̃a,b has a universal definition, provided
∆a,b ∩ (P(a) ∪ P(b)) 6= ∅.

Consider this set of primes in more detail.

p ∈ ∆a,b ⇔ (a, b)p = −1

⇔
(

(−1)vp(a)vp(b) redp

(
avp(b)

bvp(a)

))#Fp−1
2

= −1.

If p 6∈ P(a) ∪ P(b) then vp(a) and vp(b) are both even. Assume one of
them is nonzero.9

⇔
(

redp(c)
2

)#Fp−1
2

= −1

9If both are 0, c = 1 and redp(c)
#Fq−1

2 = 1, a contradiction too.
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⇔ redp(c)
#Fp−1 = −1,

however redp(c) must satisfy the equation x#Fp = x of a finite field;
with our assumption of a noneven characteristic, we have a contradiction.
Thus

∆ = ∆a,b ∩ (P(a) ∪ P(b)) = ∆a,b. (Remark 4.4.7 (1’).)

According to our general strategy, we next must prove ∆a,b is nonempty
for (a, b) ∈ D; Remark 4.4.7 (2).

Any nonsquare of Fq(t)∞ = Fq((1/t)) is of the form 1/tc
2, fc2, or f/tc

2 for
c ∈ Fq((1/t)) and f ∈ Fq a nonsquare, by Lemma 4.4.1. For (a, b) ∈ D
considered as elements of Fq((1/t)), there are at most 9 possible classes for
(a, b) modulo squares of Fq((1/t)):

(1/t,
1/t) (1/t, f) (1/t,

f/t)
(f, 1/t) (f, g) (f, g/t)
(f/t,

1/t) (f/t, g) (f/t,
g/t)

for f, g ∈ Fq nonsquares. However out of these possible scenarios, only
four are allowed by choice of a and b: (f, g/t), (

f/t, g), (1/t, f) and (f, 1/t). By
the rules of quaternionic bases (cf. [Con18c, Definition 4.1]) we conclude
Ha,b(Fq((1/t))) is nonsplit for any such a, b if Hf,g/t

(Fq((1/t))) is nonsplit. How-
ever by Lemma 4.4.2 we know this is nonsplit.

This demonstrates for all (a, b) ∈ D, ∞ ∈ ∆a,b. As well as this, by
Hilbert Reciprocity we conclude the quaternion algebra given by (a, b) must
be nonsplit at some finite prime too, meaning ∆a,b\{∞} is nonempty. This

allows us to conclude Fq[t] ∪ (Fq[t])∞ ⊆ R̃a,b for each (a, b) ∈ D, therefore

Fq[t] ∪ (Fq[t])∞ ⊆
⋂

(a,b)∈D

R̃a,b.

We will now show the reverse inclusion, à la Remark 4.4.7 (3). Consider
the prime ideals of Fq[t]; these are principal ideals p = (f(t)) with f(t) ∈
Fq[t] a monic and irreducible polynomial.

Set a = zf(t) where z ∈ Fq is a nonsquare (chosen later). Set b = gd(t)
according to Lemma 4.4.5. By this choice of a and b, (a, b)f(t) = −1 as
vf(t)(a) is odd and redf(t)(b) is a nonsquare of Fp. Also, for any prime
q 6= p, q 6=∞, vq(a) = 0 and b is either a q-unit (in which case (a, b)q = 1)
or q = (d(t)) (from Lemma 4.4.5). In this case,

(a, b)d(t) =
(

(−1)v(a)v(b) redd(t)

(
av(b)

bv(a)

)) qdeg d−1
2
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= redd(t)(zf(t))
qdeg d−1

2

=
(
zf(t)
d(t)

)
=
(

z
d(t)

)(
f(t)
d(t)

)
.

By the law of Quadratic Reciprocity,(
d(t)
f(t)

)(
f(t)
d(t)

)
= (−1)

qdeg f−1
2

qdeg d−1
2 = 1,

as f and d have opposite parity in degree (and q is not a power of 2).
Consider the following two cases.

Case 1: f has odd degree. Then
(
d(t)
f(t)

)
= 1 by Lemma 4.4.5, meaning(

f(t)
d(t)

)
= 1. Now choose z ∈ Fq nonsquare such that

(
z
d(t)

)
= 1

(cf. Lemma 4.4.4). Then

(a, b)d(t) =
(

z
d(t)

)(
f(t)
d(t)

)
= (1)(1) = 1.

Case 2: f has even degree. Then
(
d(t)
f(t)

)
= −1 by Lemma 4.4.5, meaning(

f(t)
d(t)

)
= −1. Now choose z ∈ Fq nonsquare such that

(
z
d(t)

)
= −1

still (cf. Lemma 4.4.4). Then

(a, b)d(t) =
(

z
d(t)

)(
f(t)
d(t)

)
= (−1)(−1) = 1.

In either case, we conclude (a, b)d(t) = 1. So by choice of a and b,
p = (f(t)) and naturally ∞ are the only primes at which the algebra
Ha,b(Fq(t)p) is nonsplit. Moreover by design (a, b) ∈ D so ∆a,b = {p,∞} as
required. �

Remark 4.4.9. We will show now that D of Theorem 4.4.8 is diophantine.
Consider φ(c): “the degree of c is even and the leading coefficient of c

is a square”. This is captured by

∃f
(

deg(c) = deg(f 2) ∧ ∃g
(

deg(c) > deg(g) ∧ c = f 2 + g
))

⇔ ∃f
(

deg(c) = deg(f 2) ∧ deg(c) ≥ deg(t(c− f 2))
)

⇔ ∃f
(

deg(f 2) ≥ deg(t(c− f 2))
)

What if we additionally wanted to say “d is of odd degree”? This would
be

∃f
(

deg(f 2) ≥ deg(t(c− f 2))
)
∧ ∃h

(
deg(f 2) = deg(th2d)

)
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⇔ ∃f, h
(

deg(th2d) ≥ deg(t(c− f 2))
)
∧ ∃g

(
deg(g) < deg(f 2) ∧ f 2 = k · th2d+ g

)
for some k ∈ Fq,
⇔ ∃f, h

(
deg(th2d) ≥ deg(t(c− f 2)) ∧ deg(f 2) ≥ deg(t(f 2 − k · th2d))

)
for some k ∈ Fq.

Let Fq = {k1, . . . , kq}. Let χ(c, d) denote

∃f, h
(

deg(th2d) ≥ deg(t(c− f 2)) ∧
{

deg(f 2) ≥ deg(t(f 2 − k1 · th2d))

∨ deg(f 2) ≥ deg(t(f 2 − k2 · th2d)) ∨ · · · ∨ deg(f 2) ≥ deg(t(f 2 − kq · th2d))
})
.

Then, by the above argument, “the degree of c is even, the degree of d
is odd, and the leading coefficient of c is a square” is represented by this
formula.

Recall ψ(a, b) denotes

∃c, d
(

“c and d are of opposite parity in degree”

∧
[{
φ(c) ∧ (a = f1c ∨ · · · ∨ a = frc) ∧ b ∈ Fq · d

}
∨
{
φ(d) ∧ (b = f1d ∨ · · · ∨ b = frd) ∧ a ∈ Fq · c

}])
.

This formula is equivalent to

χ(f1a, b) ∨ · · · ∨ χ(fra, b) ∨ χ(f1b, a) ∨ · · · ∨ χ(frb, a). (4.1)

“deg(A) ≥ deg(B)” is equivalent to “v∞(B
A

) ≥ 0”. By [Eis03a, The-
orem 5.15], the set {z ∈ K : vp(z) ≥ 0} is diophantine (and requires 9
quantifiers to define), therefore ψ(a, b) is indeed diophantine and moreover
requires 2 + 9 + 9 = 20 quantifiers according to (4.1). �

Corollary 4.4.10. There is a universal definition of Fq[t] in Fq(t) given
by 145 quantifiers.

Proof. By Remark 4.4.7 (4), we have

f(t) ∈ Fq[t] ∪ (Fq[t])∞ ⇔ ∀a, b
(

(a, b) 6∈ D ∨ f(t) ∈ R̃a,b

)
. (4.2)

By [EM18, Lemma 3.19], R̃a,b is universally defined, hence as D is
diophantine, (4.2) is indeed a universal formula for Fq[t]∪ (Fq[t])∞. Denote
this formula by Φ(f).

Recall that the number of quantifiers needed to define R̃a,b is one more
than is required to define its Jacobson radical, which is 2 + 8 · 15 = 122
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by [Par13, Lemma 3.17]. Thus the number of universal quantifiers need to
define Fq[t]∪ (Fq[t])∞ in Fq(t) using (4.2) is at most 2 + 20 + 122 + 1 = 145.

What about the definition of Fq[t]? This is simply

f(t) ∈ Fq[t] ⇔ Φ(f(t))∧ (deg(f(t)) > 0 ∨ f(t) = k1 ∨ · · · ∨ f(t) = kq) ,

where k1, . . . , kq are the elements of Fq. Note that “deg(f) > 0” is uni-
versally defined by 9 quantifiers ([Eis03a, Theorem 5.15]) and thus Fq[t] is
universally defined in Fq(t) by max{145, 9} = 145 quantifiers, as required.

This definition requires the use of elements of Fq as parameters; alterna-
tively one could instead include the constant α in the language Lrings ∪ {t}
where Fq = Fp(α). Or one could declare the language to be Lrings ∪{t} and
define α as part of D (using one additional existential quantifier). �

Remark 4.4.11. As we are able to take Daans’ method in defining Z over
Q and apply it to function fields, we might wonder if the same can be done
for number fields, as Park’s work also builds on Koenigsmann’s and has
great similarities to Eisenträger & Morrison’s result. We can say at the
least that the set of conditions D of Definition 4.4.6 cannot be directly
applied in their current form to number fields; ψ(a, b) relies on the finite
field Fq of which there is no definable analogy in a number field K (cf.
Theorem 4.1.1 (II)). Therefore this definition of Fq[t] in Fq(t) will fail to
define OK in K. �

4.5 Shlapentokh’s ∀∃-Definition

We shall outline part of [Shl15] which gives (when simplified) a ∀∃-definition
of Fq[t] in Fq(t) using one universal quantifier:

Theorem 4.5.1. Let K be a global function field. Fq[t] has a definition
(with parameters) over K of the form ∀∃ . . . ∃(P = 0) where P is a polyno-
mial over K and only one variable is in the range of the universal quantifier.

In particular, for K = Fq(t), there is a ∀∃-definition of Fq[t] in Fq(t)
with a single universal quantifier.

Shlapentokh uses the following notation (in addition to Appendix A.2):

Notation B.

• Let r be a rational prime and ζr be a primitive rth root of unity.
Suppose Fq has an extension of degree r and let ζr ∈ Fq.
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• Let p∞ be the pole of t.

• Let o be the smallest positive integer such that for some prime a it is
the case orda t = o.

Suppose f ∈ Fq(t) is given. Consider the following first order statement,
which we will denote as S, in the language Lrings ∪ {t}:

∀c ∈ Fq(t) ∃v, v̂, t̃, ṽ ∈ Fq(t),(
∃s̄ ∈ Z>0 s.t. fp

s̄

= f (A1)

∨ ordp∞ c > ordp∞ t (A2)

∨ (∃s′ ∈ Z≥0 s.t. v = tp
s′ ∧ ordp∞ v

p < ordp∞ c < ordp∞ v)

)
(A3)∨

(
∃s, ŝ, s̃ ∈ Z≥0 s.t. v = tp

s ∧ ṽ = t̃p
s ∧ v̂ = tp

ŝ ∧ ṽ
o

t̃o
=

(
v̂

t

)ps̃
(B1)

∧ ordp∞ c = ordp∞ v (B2)

∧ ordp f ≥ 0 for all p s.t. ordp t > 0 (B3)

∧ ∃y ∈ Li( r
√
c) s.t. NormLi( r

√
c)/Li(y) = ti

f rp
ŝ − f r

tpŝ − t
, (B4)

for some i ∈ {0, . . . , r − 1}
)
,

where for each i, the field

Li = Fq(t)

(
r

√
1 +

(
ti f

rpŝ−fr

tpŝ−t

)−1

,
r

√
1 + (c+ c−1)

(
ti f

rpŝ−fr

tpŝ−t

)−1
)
.

Note that the norm equations of (B4) can also be written in polynomial
format, as can all the ordp statements for any prime p of a global field (cf.
[Eis03a, Theorem 5.15]). One might be wary of the quantifier “∃s ∈ Z≥0”
however [Shl15, Lemma 5.6] demonstrates this has a diophantine definition
in Fq(t). Hence S is a first order sentence in the given language. In fact,
S is of the form ∀∃ . . . ∃(P = 0) where P is a polynomial over Fq(t).

Before Shlapentokh tackles Theorem 4.5.1, she opens with the ‘easier’
case of q = p, i.e. the field Fp(t) where p is prime.

Lemma 4.5.2. Fp[t] has a first order definition in Fp(t). Let r be a rational
prime, and define
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F =

{
y ∈ Fp(t) : ∀m ∈ Z>0,∀ primes p 6= p∞, ordp

yrp
m − yr

tpm − t
≥ 0 ∨

ordp
yrp

m − yr

tpm − t
≡ 0 mod r

}
.

Then F = Fp[t].

Proof. If y is a polynomial in t, then for all m ∈ Z>0, yrp
m−yr

tpm−t is a poly-

nomial in t ([Shl15, Lemma 5.10]). Hence ordp
yrp

m−yr
tpm−t ≥ 0 for all primes p

for such y and thus y ∈ F .
On the other hand, for any prime p 6= p∞ of Fp(t), there exists m0 ∈ Z≥0

such that ordp(t
pm − t) = 1 for all integers m such that m0|m. Thus for

this prime,

ordp
yqp

m − yq

tpm − t
= qpm ordp y − 1,

so if ordp y < 0 it is the case

ordp
yqp

m − yq

tpm − t
< 0 and ordp

yqp
m − yq

tpm − t
6≡ 0 mod r,

thus y 6∈ F . So F is the polynomial ring Fp[t] exactly, as required. �

Remark 4.5.3. To switch from Fp[t] to Fq[t], where q = pn, we allow for
all m above to be divisible by n. However, there is still the problem of
quantifying over Z>0 in Fq(t). To fix this inaccuracy, we can instead use
the following definition of F :

F =

{
y ∈ Fp(t) : ∀c ∈ Fp(t), ∀primes p 6= p∞,(

ordp∞ c ≥ 0 ∨ (C1)

∃tpm s.t. ordp∞ t
pm+1

< ordp∞ c < ordp∞ t
pm
)

(C2)∨
(
∃tpm̃ s.t. ordp∞ c = ordp∞ t

pm̃ ∧ (D1)

ordp
yrp

m̃ − yr

tpm̃ − t
≥ 0 ∨ ordp

yrp
m̃ − yr

tpm̃ − t
≡ 0 mod r

)}
. (D2)

Together (C1), (C2) and (D1) replace the quantifier “∀m ∈ Z>0” by

ensuring only adequate values of tp
m̃

pass to (D2).
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Not only is this formulation of F equivalent to that of Lemma 4.5.2,
we see (C1) is similar to (A2) and (C2) is equivalent to (A3) of S. (A1)
of S simply determines if f ∈ Fq, so is quite harmless and can be ignored.

Also note that in S, “∃tpm̃” of the above definition of F is replaced by
“∃s ∈ Z≥0 s.t. v = tp

s
” as by [Shl15, Lemma 5.6] this articulation ensures

diophantiness. The condition (D2) is replaced in S by (B3) and (B4).
This is tricky and invokes the Strong Approximation Theorem to allow us
to reuse the universally quantified c instead of “∀ primes p 6= p∞” [Shl15,
Prop. 3.9 & 3.10]. Finally, note that all requirements of the order at a
single prime can be stated existentially [Eis03a, Theorem 5.15]. �

Remark 4.5.4. If we assume S to be true about f ∈ Fq(t) and assume
f is nonconstant, and c doesn’t satisfy (A2) and (A3), then (B1) implies

t̃o(p
s−1) = tp

s̃(pŝ−1). Thus a must be a zero of t̃ (where orda t = o) and

o(ps − 1) orda t̃ = ops̃(pŝ − 1).

From this we conclude (ps − 1)|(pŝ − 1) and s|ŝ. This will be useful to us
later on. �

We now approach the result mentioned at the beginning of the section.

Proposition 4.5.5. Fq[t] is definable over Fq(t) by a ∀∃-formula using a
single universal quantifier.

Proof. As we have argued above, S can be expressed by a Π+
2 -formula

using a single universal quantifier. We shall show this defines Fq[t] in Fq(t).
Let f ∈ Fq(t) and assume S is true about f . Suppose for the purpose

of contradiction it is the case that for some prime q, ordq f < 0. Then there
are three cases:

Case 1: ordq t > 0.

Case 2: ordq t = 0.

Case 3: ordq t < 0.

By (B3) Case 1 is immediately eliminated. Suppose we are in Case 2;
ordq t = 0. Let u be the smallest positive integer such that ordq(t

pu−t) > 0;
such an u exists by [Shl15, Prop. 5.7]. Then let c ∈ Fq(t) be such that c
is not an rth power modulo q and ordp∞ c = ps with u|s (such an element
exists by [Shl15, Lemma 7.2]). (B2) and (B4) of S will hold for such a c.

On the other hand, we know s|ŝ by Remark 4.5.4, so u|ŝ. As ordq f <

0, it follows ordq t
i fqp

ŝ−fq

tpŝ−t
< 0 for i = 0, . . . , r − 1 and ordq t

i fqp
ŝ−fq

tpŝ−t
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6≡ 0 mod r, by [Shl15, Prop. 5.7]. However, then (B4) contradicts [Shl15,
Prop. 3.10] exactly.

As a result only Case 3 is permitted to occur; all poles of f are poles
of t. As f ∈ Fq(t) we conclude in fact f ∈ Fq[t] as desired.

Now assuming f ∈ Fq[t], we shall show S is true of f . WLOG assume
f is nonconstant (so (A1) of S does not hold) and let c ∈ Fq(t). Let s1, s2

be positive integers such that o|ps1(ps2 − 1).
If for all s ∈ Z≥0 it is the case ordp∞ c 6= −ps then either (A2) or (A3)

is true, and thus S holds. Assume otherwise, that

∃s ∈ Z≥0 s.t. ordp∞ c = −ps.

Let ŝ be a multiple of sns2 (recalling that q = pn) and let s̃ = s1. Notice
from this assignment that o(ps − 1)|ps̃(pŝ − 1). Lastly, set

w =
ps̃(pŝ − 1)

o(ps − 1)
and t̃ = tw.

Note that, by design, now (B1) and (B2) are true. Also note (B3) is
true by virtue of the fact f ∈ Fq[t].

Finally, as Fpŝ contains the coefficients of f , by [Shl15, Lemma 5.10]
frp

ŝ−fr

tpŝ−t
is a polynomial and for some j ∈ {0, . . . , r − 1}, tj frp

ŝ−fr

tpŝ−t
has de-

gree divisible by r (hence ordp∞ t
j frp

ŝ−fr

tpŝ−t
≡ 0 mod r). Therefore by [Shl15,

Prop. 3.10] there exists y ∈ Lj( r
√
c) such that NLj( r

√
c)/Lj(y) = tj f

rpŝ−fr

tpŝ−t
,

which is (B4) exactly. This concludes the theorem. �

We can extend this result to an arbitrary global function field and prove
Theorem 4.5.1 as follows: let K be a finite extension of Fq(t). Revise
Notation B:

Notation C.

• Let pK,∞ be a prime of K which is a pole of t.

• Let e be the ramification degree of pK,∞ over Fq(t) (the size of the
inertia group in Definition 3.1.5).

• Let o be the smallest positive integer such that for some K-prime aK
we have ordaK t = o.

• Let E(t) be the polynomial divisible by all primes which ramify in
K/Fq(t) and are not poles of t.
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We can assume WLOG t is not a pth power in K (otherwise t can be
replaced by a parameter w, where w is not a pth power, and the polynomial
ring of t can be existentially defined in the polynomial ring of w).

We need to modify statements of S to reflect the extension K. Let S′

be the first order statement:

∀c ∈ K ∃v, v̂, t̃, ṽ ∈ K,(
∃s̄ ∈ Z>0 s.t. fp

s̄

= f (A1)

∨ ordpK,∞ c > e ordpK,∞ t (A2)

∨ (∃s′∈ Z≥0 s.t. v = tp
s′∧ e ordpK,∞v

p < ordpK,∞c < e ordpK,∞v)

)
(A3)∨

(
∃s, ŝ, s̃ ∈ Z≥0 s.t. v = tp

s ∧ ṽ = t̃p
s ∧ v̂ = tp

ŝ ∧ ṽ
o

t̃o
=

(
v̂

t

)ps̃
(B1)

∧ ordpK,∞ c = e ordpK,∞ v (B2)

∧ ordpK f ≥ 0 for all pK s.t. ordpK t > 0 (B3)

∧ ordpK f ≥ 0 for all pK ramifying in the extension K/Fq(t) (B4)

which are not poles of t

∧ f̄ = E(t)rf + 1 (B5)

∧ ordpK t
if

rpŝ − f r

tpŝ − t
≥ 0 ∧ ordpK t

i f̄
rpŝ − f̄ r

tpŝ − t
≥ 0 for all K-primes (B6)

pK ramifying in the extension K/Fq(t) which are not poles of t,

for all i = 0, . . . , r − 1

∧ ∃y ∈ Li( r
√
c) s.t. NLi( r

√
c)/Li(y) = ti

f rp
ŝ − f r

tpŝ − t
, (B7)

for some i ∈ {0, . . . , r − 1}

∧ ∃y ∈ Li( r
√
c) s.t. NLi( r

√
c)/Li

(y) = ti
f̄ rp

ŝ − f̄ r

tpŝ − t
, (B8)

for some i ∈ {0, . . . , r − 1}
)

where for each i, the field

Li = Fq(t)

(
r

√
1 +

(
ti f

rpŝ−fr

tpŝ−t

)−1

,
r

√
1 + (c+ c−1)

(
ti f

rpŝ−fr

tpŝ−t

)−1
)
,

and
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Li = Fq(t)

(
r

√
1 +

(
ti f̄

rpŝ−f̄r

tpŝ−t

)−1

,
r

√
1 + (c+ c−1)

(
ti f̄

rpŝ−f̄r

tpŝ−t

)−1
)
.

Theorem 4.5.6. Fq[t] is definable over K by a ∀∃-formula using a single
universal quantifier.

Proof. In the same way that S was a Π+
2 -formula with a single universal

quantifier, so too is S′. The proof that S′ is a first order statement defining
Fq[t] in K is [Shl15, Theorem 7.3]; in short, if f satisfies S′ then we apply
the same argument as in the proof of Proposition 4.5.5, with some minor
extra arguments to compensate for ramification in K/Fq(t). The ‘Weak
Vertical Method’ [Shl07, §10.1] allows us to deduce f r ∈ Fq(t) from f ∈ K.
Combining this with the fact10 that the only poles of f are poles of t, we
conclude f r is a polynomial. In the same fashion we deduce f̄ r (defined at
(B5)) is a polynomial.

If f̄ 6∈ Fq(t), yet f̄ r ∈ Fq[t], then clearly f̄ r is not an rth power in
Fq(t). Therefore for some prime p0 of Fq(t), ordp0

f̄ r 6≡ 0 mod r, hence by
[Shl15, Lemma 3.4] p0 is ramified in the extension Fq(t)(f̄ )/Fq(t). Since
Fq(t)(f̄ ) ⊆ K, p0 ramifies in K too. However, by design E(t) is divisible
by every prime ramifying in the extension K/Fq(t) and not a pole of t, and
we have proven f has poles at poles of t only, so f̄ , and hence f̄ r, cannot
have a zero or pole at any prime ramifying in the extension K/Fq(t) as
f̄ = E(t)rf + 1. This is a contradiction to the existence of p0. Accordingly
f̄ r is an rth power in Fq[t], so f̄ ∈ Fq[t], and from this we see f ∈ Fq(t),
again with poles only at poles of t, thus f ∈ Fq[t] as required. �

We conclude that, although Shlapentokh does not appeal to the same
basic quaternionic techniques as Koenigsmann, Park, or Eisenträger & Mor-
rison [Koe13, Par13, EM18], she still produces the analogous ∀∃-definition
for Fq[t] in Fq(t), as asserted.

10See Case 3 of the proof of Proposition 4.5.5.
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Chapter 5

An Existential Question

5.1 A Rational Obstruction

We have seen in Section 2.2.4 that the Bombieri-Lang conjecture is an
obstruction to an existential definition of Z in Q. However, this is unfor-
tunately not the only obstruction - an older conjecture of Mazur [Maz92]
also blocks the path to a diophantine definition of Z in Q:

Conjecture (Mazur). If X is a variety over Q, then the (real) topological
closure of X(Q) in X(R) has at most finitely many connected
components. �

Here the topology of X(R) is the subspace topology inherited from Rn.
A direct consequence (cf. [Poo03, Prop. 12.11]) of this conjecture is what
the author refers to as the Diophantine Mazur Conjecture:

Conjecture (Diophantine Mazur Conjecture). If X is any algebraic
set and S is a diophantine subset of X(Q) then the closure of S in X(R)
has at most finitely many connected components. �

Corollary 5.1.1. If Z is diophantine over Q, then Mazur’s Conjecture is
false. �

Of course, giving a diophantine definition of Z in Q is not the only way
to embed H10/Z as a subproblem of H10/Q; by a similar argument to that
made in Chapter 1, if we had a diophantine model of Z in Q we could also
deduce H10/Q is undecidable.

Definition 5.1.2. A diophantine model of the ring Z in Q is a diophantine
set S ⊆ X(Q) for some algebraic set X over Q, equipped with a bijection
φ : Z→ S such that the graphs of addition and multiplication - subsets of
Z3 - correspond to diophantine subsets of S3 ⊆ X3(Q).
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Remark 5.1.3. Using terminology from model theory, a diophantine model
of Z in Q is equivalent to Z being existentially definably interpretable in Q
[Mar02, §1.3]. �

Unfortunately, Mazur’s conjecture still blocks our path.

Theorem 5.1.4. ([CZ00]). If there exists a diophantine model of Z in Q,
then Mazur’s Conjecture is false. �

Remarkably, however, the same problem is not encountered in function
fields.

5.2 Function Fields

In [Maz98, II §2] Mazur devised a conjecture of the same type as before
which applies to any completion of a number field (not just an archimedian
completion like R). This conjecture can be transferred to function fields,
as Cornelissen & Zahidi do:

Conjecture (Function Field Mazur Conjecture). [CZ00, §4]1. Let V
be a variety over a global field K, v a valuation on K, and Kv the com-
pletion of K w.r.t. v. For every point x ∈ V (Kv), let W (x) be the Zariski
closure of

⋂
U(V (K) ∩ U), where U ranges over all v-open neighbourhoods

of x in V (Kv).
Is the set {W (x) : x ∈ V (Kv)} finite? �

Cornelissen & Zahidi then immediately show the answer to this question
is negative in positive characteristic global fields:

Theorem 5.2.1. Let K = Fq(t) and v be the valuation at infinity. There is
a variety V for which the Function Field Mazur Conjecture does not hold.

Proof. In [Phe91] and [Vid94] it was proven that, for any prime p, the set
Dp = {tps : s ∈ Z≥0} is diophantine over Fq(t). For the prime p such that
q = pn, let V be the variety whose projection to the first coordinate is Dp.

The sets W (x) for x ∈ V (K) are disjoint, since their first coordinates
are separated in the topology; v(tp

r − tp
s
) > 1 for r 6= s. Therefore

{W (x) : x ∈ V (Kv)} is infinite, in contradiction to the Function Field
Mazur Conjecture. �

1There is a typo in [CZ00, Question 4.1] that is corrected here to fit Mazur’s original
statement [Maz98, II §2].
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Finally, Cornelissen & Zahidi demonstrate that, not only does Mazur’s
conjecture not hold in function fields, there is indeed a diophantine model
of Fq[t] in Fq(t). Similar to the approach of [Dem07], in [CZ00, Theorem
4.3] it is shown that the polynomial ring has a diophantine model in Z≥0,
and the latter has a diophantine model in the field of rational functions.

Since there is a diophantine model of Fq[t] in Fq(t), we now wonder
if there is a diophantine definition of Fq[t] in Fq(t); equivalently if there
exists an existential definition of Fq[t] in Fq(t). This question remains
open and its answer could have major implications for the decidability of
Th∃(Q). As we know from §2.2.4, the Bombieri-Lang conjecture implies
there is no existential definition of Z in Q; one might wonder whether
a similar conclusion can be drawn from a formulation of the Bombieri-
Lang conjecture over function fields (one such formulation is due to Gillet
& Rössler [GR17] for the function field of a variety over an algebraically
closed field of constants). Alas this thesis does not offer an answer to this
question, and only indicates that one method of answering such a query
is to adapt the proofs of Lemma 2.2.17 and Theorem 2.2.18 (or [Koe13,
Corollary 23]) to the function field setting. It is perhaps too brazen to
suggest leaving this as an exercise for the reader.

To summarise, this thesis explored the definability of certain rings in
certain fields. We began in Chapter 1 with a discussion of the decidability of
the existential theories of certain rings and certain fields and how answering
definability questions can in turn answer decidability questions. In Chapter
2 we turned our attention to Z and Q and explored results due to Poonen,
Daans and a trio of results from Koenigsmann about the definability of Z
in Q: its universal definition, its ∀∃-definition, and its existential definition.
The universal definition was generalised in Chapter 3 to number fields after
introducing the required class field theory. We began exploring function
fields in Chapter 4 to mirror the previous progress made in number fields.
This chapter highlighted a universal definition of Fq[t] in Fq(t) (amongst
other things) due to Eisenträger & Morrison, Daans, and the author and
concluded with Shlapentokh’s ∀∃-definition. Finally in Chapter 5 we briefly
discussed obstructions to the existential definition of Z in Q and how they
may appear (or disappear) for defining Fq[t] in Fq(t).

Ongoing work includes adapting Section 4.4 to cater to function fields
Fq(t) with char(Fq) = 2 (as Daans has adapted his own definition [Daa18,
§4.5]), and answering the question of the existential definability of Fq[t] in
Fq(t). It is the hope of the author that one day soon Hilbert’s Tenth Prob-
lem over Q will be solved; until then we will make efforts in its direction.
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Background Definitions

A.1 There is a Prime and a Place for every-

thing

In this section we will present an overview of the theory of primes for global
fields. This material can be found in most introductory texts to valuation
theory, however the author found [vdD14], [Daa18], [O’M00] and [Mil17]
most helpful.

Let K be a field.

Definition A.1.1. A norm on K is a map | · | : K → R≥0 such that the
following 3 conditions hold:

(1) For all x ∈ K, |x| = 0⇔ x = 0.

(2) For all x, y ∈ K, |x · y| = |x| · |y|.

(3) For all x, y ∈ K, |x+ y| ≤ |x|+ |y|.

If in addition the norm satisfies the stronger property

(3’) For all x, y ∈ K, |x+ y| ≤ max{|x|, |y|},

then the norm is known as nonarchimedian. Otherwise it is archimedian.
Finally, one calls a norm trivial if |x| = 1 for all x ∈ K.

There is a canonical metric arising from each norm (d(x, y) = |x − y|)
which is commonly used to turn K into a topological field.

Definition A.1.2. A local field is a field K with a nontrivial norm | · | such
that the induced topology is locally compact.
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Examples of local fields are R, C, and Qp for any prime p ∈ N. In fact,
it is possible to give a complete classification of local fields [Mil17, Remark
7.49].

Definition A.1.3. We call two norms | · |1 and | · |2 on K equivalent if there
exists α ∈ R>0 such that | · |1 = | · |α2 . An equivalence class of nontrivial
norms on K is known as a place of K.

Note a nonarchimedian norm and an archimedian norm can never be
equivalent.

On the other side of the algebraic coin lie valuations.

Definition A.1.4. Let v : K → Γ ∪ {∞} where Γ is a totally ordered
abelian group (commonly Z in this thesis) and ∞ 6∈ Γ. This map is a
valuation if

(1) v(x) =∞ if and only if x = 0.

(2) For all x, y ∈ K, v(x · y) = v(x) + v(y).

(3) For all x, y ∈ K, v(x+ y) ≥ min{v(x), v(y)}.

Given a valuation v on a field K we also define

(1) Ov := {x ∈ K : v(x) ≥ 0}, the valuation ring (of v).

(2) mv := {x ∈ K : v(x) > 0}, the maximal ideal (of Ov).

(3) kv := Ov/mv, the residue field (of K).

(4) redv : Ov → kv (the canonical map).

Valuations and norms are connection by the following proposition:

Proposition A.1.5. There is a 1-1 correspondence between nonarchime-
dian norms and R-valued valuations on K. For a nonarchimedian norm
| · | on K,

v : K → R∪{− ln(0)} : x 7→ − ln |x|,

is a real valued valuation on K. Conversely if v is an R-valued valuation
then

| · | : K → R≥0 : x 7→ e−v(x),

is a nonarchimedian norm on K, with the convention e−∞ = 0.
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Proof. See [Daa18, Prop. 1.1.5] �

The terminology introduced in Definition A.1.3 also applies to valua-
tions. Throughout the thesis, when the author speaks of places we shall un-
derstand this to mean an equivalence class of valuations, instead of norms.

Now let K be a number field (a finite extension of Q).

Definition A.1.6. By a prime of K we mean a place of K. Primes can
be separated into two flavours: finite (the nonarchimedian places), which
can be identified with prime ideals of OK , and infinite (the archimedian
places).

If K is a number field then either K embeds into R or K cannot embed
into R but can embed into C. The former embedding is known as real and
the latter as complex.

We can further separate the infinite primes into two classes:

Definition A.1.7.

(1) A real infinite prime is the equivalence class of the norm | · | := |σ(·)|
where σ : K ↪→ R.

(2) A complex infinite prime is the equivalence class of the norm | · | :=
|σ(·)| where σ : K ↪→ C.

Example A.1.8. Let K = Q(
√
−5). Then OK = Z[

√
−5]. The finite

primes of K are primes ideals of Z[
√
−5] and there is one (complex) infinite

prime corresponding to the equivalence class of σ : Q(
√
−5) ↪→ C. In this

setting the conjugate pair of embeddings

σ1 :
√
−5 7→

√
−5, σ2 :

√
−5 7→ −

√
−5,

are equivalent so determine the same place of Q(
√
−5). �

If K is an algebraic function field (i.e. a finite extension of Fq(t)), much
of the same is true: primes of K are places of K. There is one difference to
Definition A.1.6; all primes of K are nonarchimedian, including the infinite
primes. So we instead introduce the following terminology:

Definition A.1.9. Let K be an algebraic function field and OK be the
integral closure of Fq[t] in K. Let v be a prime (i.e. a place) of K.

(1) If v corresponds to a prime of OK (if the set {x ∈ K : v(x) > 0} is a
prime ideal of the ring OK) then v is known as finite. Otherwise v is
known as infinite.
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(2) In the special case of K = Fq(t), OK = Fq[t], there is one infinite
prime known as the prime at infinity and denoted ∞ or v∞ as a val-
uation. For f ∈ Fq(t), v∞ = − deg(f). In general ∞ may decompose
in the extension K/Fq(t) to many infinite primes.

Remark A.1.10. Note that although we make a distinction between finite
and infinite primes of global function fields in the above definition, in other
works such a distinction is not usually made. In [EM18] and [Daa18] the
finite primes of a global field are the non-archimedian ones; thus, every
prime of a global function field is finite from this viewpoint. This frame
of reference is in fact necessary to obtain important results on diophantine
definability, so is one perspective we shall take in this thesis. �

For convenience when we speak about (finite) primes we are usually
referring to the corresponding ideal, and occasionally the corresponding
valuation, though this distinction should be clear from context. We will
close this section with the following diagram relating (finite) prime ideals,
norms, and valuations for global fields:

“Prime”

Prime Ideal p Valuation v

Norm | · |

v(x) :=


maxN{x ∈ pN yet x 6∈ pN+1} if x ∈ OK , x 6= 0

v
(

1
x

)
if x 6∈ OK , x 6= 0

∞ if x = 0.

p := {x ∈ K : v(x) > 0}

|x| :=
e −
v(x

)
v(x)

:=
−

ln |x|

p
:=
{x
∈
K

:
|x
| <

1}

|x
| :

=
e
−
k ,
k

:=

  
m

ax
N
{x
∈
p
N

ye
t
x
6∈
p
N

+
1 }

if
x
∈
O K

, x
6=

0

1
k

if
x
6∈
O K

, x
6=

0

∞

if
x

=
0.

Figure A.1: Relationship between (finite) prime ideals, norms, and valuations for global
fields. An arrow from A to B indicates how one might take object A and turn it into object B.
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A.2 Function Fields

Some basic definitions from [Ros02] are presented below. The author also
found [Che51] to be a helpful reference.

Definition A.2.1. Let F be a field.

a) An (algebraic) function field of m variables over a field k is a finitely
generated field extension K of the field of rational functions in m
variables over k, k(x1, . . . , xm).

b) For the function fields we shall consider, k = Fq, a finite field of
characteristic p and q = pn elements, and m = 1. The variable x1 is
usually denoted t. In this case, K is known as a global function field.

We will follow the same definitions as noted by [Shl15] for a global
function field K:

c) The order of f ∈ K at (a prime) p is defined as:

ordp f =


maxN∈Z{f ∈ pN and f 6∈ pN+1}, if f ∈ Ov and f 6= 0,

− ordpv
1
x
, if f 6∈ Ov and f 6= 0,

∞ if f = 0.

Furthermore we say f has a zero at p if ordp f > 0 and f has a pole
at p if ordp f < 0. In the terminology of Appendix A.1, ordp is a
valuation on K.

d) If SK is the set of all primes of a function field K, and S ⊆ SK ,
then define OK,S to be the subring of K consisting of those elements
without any poles outside of S; i.e.

OK,S := {x ∈ K : ∀ primes p 6∈ S, ordp x ≥ 0}.

If S is finite, then OK,S is known as the ring of S-integers. Frequently
this is written simply as OS.

e) Finally, for any prime p, we set Kp to be the completion of K under
the p-adic topology (much like Qp is the completion of Q under the
p-adic topology).

We adopt the following piece of notation: if p = (f(t)) is a prime of
Fq(t) (where f(t) is a monic and irreducible polynomial) then the residue
field of Fq(t)p = Fq(t)f(t) is denoted Ff(t) and is isomorphic to the set of
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polynomials of Fq[t] of degree strictly less than deg(f), which is isomorphic
to Fqdeg(f) . The residue map Fq[t]f(t) → Ff(t) is denoted redf(t).

The final collection of definitions concerns divisors, which are the func-
tion field analogue of the fractional ideals of a number field according to
[Poo06, §2.6].

Definition A.2.2.

a) Let DK be the free abelian group consisting of formal sums, generated
by the primes of a function field K; this is known as the group of
divisors of K. If D ∈ DK is of the form D =

∑
P aPP then the

degree of D,

deg(D) :=
∑
P

aP deg(P ).

(The degree of a finite prime ideal is the degree of the polynomial to
which it corresponds, while the degree of the prime at infinity is 1.)

b) Let a ∈ K∗. The divisor of a, denoted (a), is defined to be∑
P ordP (a)P . Note that ordP (a) is zero for all but finitely many

P .

c) As in Definition A.2.1 (c), if P is a prime such that ordP (a) = m > 0,
we say P is a zero of a of order m. Similarly if Q is a prime such
that ordQ(a) = −n < 0, we say Q is a pole of a of order n.

d) Define the zero divisor of a, (a)0, to be

(a)0 :=
∑
P

ordP (a)>0

ordP (a)P.

Define the pole divisor of a, (a)∞, to be

(a)∞ := −
∑
P

ordP (a)<0

ordP (a)P.

Finally, note (a) is simply (a)0 − (a)∞.
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Squares and Nonsquares in
Fq
((
1/t
))

.

We present here an explicit proof of Lemma 4.4.1 which gives a direct
characterisation of square and nonsquare elements of Fq((1/t)).

Lemma B.0.1. Any nonsquare of Fq((1/t)) is of the form 1/tc
2, fc2, or f/tc

2

where c ∈ Fq((1/t)) and f ∈ Fq is a nonsquare.

Proof. First we have the following characterisation of squares:

−∞∑
i=N

cit
i is a square in Fq

((
1/t
))× ⇔ N is even & cN is a square in Fq.

The forward direction is obtained by noting

−∞∑
i=N

cit
i =

(
−∞∑
i=K

ait
i

)2

=
−∞∑
i=2K

 ∑
j+k=i,
j,k≤K

ajak

 ti,

so necessarily N = 2K and cN = (aK)2. The reverse direction is ob-
tained by constructing a solution of

−∞∑
i=N

cit
i =

(
−∞∑
i=K

ait
i

)2

=
−∞∑
i=2K

 ∑
j+k=i,
j,k≤K

ajak

 ti.

For i = 2K it is necessary that cN = (aK)2. We have assumed cN is a
square, however, so we can find aK . Then

cN−n = 2aKaK−n +
∑

j+k=2K−n,
j,k≤K

ajak,
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((
1/t
))

.

so we can solve for aK−n inductively.
From this characterisation there is a useful characterisation of non-

squares (nonsq.) too:

−∞∑
i=N

cit
i is a nonsq. in Fq

((
1/t
))× ⇔ N is odd or cN is a nonsq. in Fq.

Thus any nonsquare of Fq((1/t))
×

is a square times one of the following
elements:

(1) 1/t.

(2) Some fixed nonsquare f ∈ Fq.

(3) f/t for f as above.

This concludes the lemma. �
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