
HOMOLOGICAL ALGEBRA

BRIAN TYRRELL

Abstract. In this report we will assemble the pieces of homological
algebra needed to explore derived functors from their base in exact se-
quences of abelian categories to their realisation as a type of δ-functor,
first introduced in 1957 by Grothendieck. We also speak briefly on the
typical example of a derived functor, the Ext functor, and note some of
its properties.
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1. Introduction

We will begin by defining the notion of a category ;

Definition 1.1. A category is a triple C = (ObC,HomC, ◦) where

• ObC is the class of objects of C.
• HomC is the class of morphisms of C.

Furthermore, ∀X,Y ∈ ObC we associate a set HomC(X,Y ) - the set of
morphisms from X to Y - such that (X,Y ) 6= (Z,U) ⇒ HomC(X,Y ) ∩
HomC(Z,U) = ∅.
Finally, we require ∀X,Y, Z ∈ ObC the operation

◦ : HomC(Y,Z)×HomC(X,Y )→ HomC(X,Z) (g, f) 7→ g ◦ f
to be defined, associative and for all objects the identity morphism must ex-
ist, that is, ∀X ∈ ObC ∃1X ∈ HomC(X,X) such that ∀f ∈ HomC(X,Y ), g ∈
HomC(Z,X), f ◦ 1X = f and 1X ◦ g = g.

This is a very general definition for a structure; so much so that they
were called “abstract nonsense” by Norman Steenrod. Aluffi in [1] retorts
“[abstract nonsense] is essentially accurate and not necessarily derogatory:
categories refer to nonsense in the sense that they are all about the ’struc-
ture’, and not about the ’meaning’, of what they represent.” The author is
forced to agree with both viewpoints: by defining a very broad structure,
we can encompass many algebraic objects and instead focus on how they
relate to other algebraic objects, however for the notion of category to be
useful additional properties need to be introduced. Abelian categories (§2)
have these additional properties and are commonly used as a basic object
in this branch of mathematics.

If we wish to relate two categories, we can do so via a functor ;

Definition 1.2. Let C,C′ be categories. A covariant functor T : C→ C′ is a
map allocating every object X of C to an object T (X) of C′, every morphism
f : X → Y in C to a morphism T (h) : T (X)→ T (Y ) in C′ such that;

(1) T preserves identity, that is, ∀X ∈ ObC, T (1X) = 1T (X)
1.

(2) T preserves ◦, namely for all pairs of morphisms f : X → Y ,
g : Y → Z of C, T (g ◦ f) = T (g) ◦ T (f).

Note these properties (preserving identities and operations) are reminis-
cent of a homomorphism (between groups, modules, etc) of algebraic struc-
tures.

We can then naturally wonder about sequences of abelian categories -
in particular we discover in §2.3 sequences that are particularly ’nice’; ex-
act sequences. When we apply functors to these exact sequences, however,
exactness can fail, which leads us to derived functors via §3:

If a functor fails to preserve the exactness of a sequence, it can be derived
in an attempt to repair the failure of exactness. In some sense these derived

11X is the identity function on X.
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functors measure to what extent the original functor fails to be exact. The
construction of derived functors is covered in §5 and the Ext functor, (re-
alised as the derivation of a Hom functor) is outlined in §5.1. Homological
algebra arose in part from the study of Ext on abelian groups, thus derived
functors are a cornerstone of the subject.

Chain homotopies are defined in §4 and two lemmas important to the
construction of derived functors are also proven in this section. Finally in
§6 we leave the reader with a glimpse to the abstraction of a derived functor
by defining a δ-functor.

2. Background & Opening Definitions

To begin, we recall some basic definitions regarding category theory. The
appendix of [2] holds many key ideas presented here, and the author also
recommends [8] for more detailed accounts.

2.1. Categories. We wish to impose more order on the very general struc-
ture that is a category. We first define:

Definition 2.1. A direct sum of objects X1, . . . , Xn in C is an object⊕n
i=1Xi := X1

⊕
· · ·

⊕
Xn of C with morphisms pi : Xi →

⊕n
i=1Xi such

that for all objects Z ∈ C and morphisms fi : Xi → Z there exists a unique
morphism f :

⊕n
i=1Xi → Z making the following diagram commute:

Xi
⊕n

i=1Xi

Z

pi

fi
f

Definition 2.2. Let C be a category. C is additive if:

• For any finite set of objects X1, . . . , Xn there exists a direct sum⊕n
i=1Xi in C.

• ∀X,Y ∈ ObC, HomC(X,Y ) is equipped with an abelian group struc-
ture.
• ◦ is bilinear.
• The zero object exists, that is, an object 0 ∈ ObC such that 10 is

the zero element in HomC(0, 0).

We also wish to introduce aspects of algebra such as the Kernel or Cok-
ernel of a map, however we don’t have access to elements of objects, so we
proceed a little more cautiously:

Definition 2.3. Let C be an additive category and f : X → Y a morphism
of C. A kernel of f is an object Ker f and a morphism u : Ker f → X such
that f ◦ u = 0 and ∀Z ∈ ObC, for all morphisms h : Z → X ∈ HomC such
that f ◦ h = 0 there exists a unique morphism h′ : Z → Ker f such that the
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following diagram commutes:

Ker f X Y

Z

u f

h′
h

The cokernel of f , Coker f , is defined analogously resulting in the following
commutative diagram:

X Y Coker f

Z

f p

g g′

where p ◦ f = 0.

Definition 2.4. A morphism u : X → Y ∈ HomC is an isomorphism if
there exists a morphism v : Y → X ∈ HomC such that uv = 1Y and
vu = 1X .

Definition 2.5. A category C is abelian if C is additive and if each morphism
f ∈ HomC admits a kernel u : Ker f → X and cokernel p : Y → Coker f
and the induced morphism, f̄ : Cokeru→ Ker p, is an isomorphism.

Note that if every morphism in a category C admits a kernel and cokernel,
f̄ naturally exists, is unique, and makes the following diagram commute:

(1)

Ker f X Y Coker f

Cokeru Ker p

u f

p′

p

f̄

u′

(See [2, Appendix A.1].) Hence the use of “induced morphism” in Defi-
nition 2.5.

Example 2.6. A common example of an abelian category is Ab, the cate-
gory of abelian groups:
Here, the objects are abelian groups and the morphisms are group ho-
momorphisms. Group homomorphisms naturally satisfy the conditions for
Hom Ab, and ◦ is regular function composition.
The direct sum is the usual direct sum for abelian groups; namely given
groups (A, •) and (B, ∗), the domain of A⊕B is A×B and the product is
given by

(a1, b1)d(a2, b2) = (a1 • a2, b1 ∗ b2)

The zero object in Ab is the group {0}, and the category notions of kernel
and cokernel coincide with our usual definitions in the algebraic sense, where
for f : A→ B

Ker f = {x ∈ A : f(x) = 0} and Coker f = B/f(A)
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Finally, as in Definition 2.5 we wish f̄ : Cokeru → Ker p to be an isomor-
phism. Note

Cokeru = X/u(Ker f) = X/Ker f

as u is the canonical embedding. Also since Ker p = {y ∈ Y : p(y) = 0} and
Coker f = Y/f(X), we have

y ∈ Ker p⇔ p(y) = 0 (in Coker f) ⇔ p(y) ∈ f(X)

so Ker p = f(X). By the first isomorphism theorem for groups, X/Ker f ∼=
f(X), thus f̄ exists, is unique, and makes (1) commute, as required. ♦

Example 2.7. In a similar way, given a K-algebra A we can show the cat-
egory of right (or left) A-modules, known as ModA, is abelian.
The objects are right A-modules and the morphisms are A-module homo-
morphisms. The direct sum is the standard K-vector space direct sum with
the additional structure of a right A-module induced by the natural scalar
multiplication. The zero object is the trivial A-module {0} and the ker-
nel and cokernel coincide with our standard conception; for an A-module
homomorphism f : M → N

Ker f = {x ∈M : f(x) = 0} and Coker f = N/f(M)

Finally by the first isomorphism theorem for modules (as in Example 2.6)
we obtain the required isomorphism f̄ : Cokeru → Ker p for (1), making
ModA an abelian category. ♦

Finally if we want to introduce the possibility of scalars into our category
structure we define what might be called a category over a field :

Definition 2.8. Let K be a field. A K-category is a category C such that
for all pairs X,Y ∈ ObC, HomC(X,Y ) is equipped with a K-vector space
structure such that ◦ is a K-bilinear map.

2.2. Functors. Similar to a covariant functor, we can define:

Definition 2.9. A contravariant functor T : C→ C′ (between categories C,
C′) is a map allocating every object X of C to an object T (X) of C′, every
morphism f : X → Y in C to a morphism T (h) : T (Y ) → T (X) in C′ such
that:

(1) ∀X ∈ ObC, T (1X) = 1T (Y ).
(2) For all pairs of morphisms f : X → Y , g : Y → Z of C, T (g ◦ f) =

T (f) ◦ T (g).

The difference between a covariant and a contravariant functor is how
it treats a morphism; a contravariant functor ’reverses’ the order of the
morphism.

Remark 2.10. From this point onwards we will assume all functors are
covariant, unless specified otherwise. ♦
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Definition 2.11. Given categories C, D we can define the product C ×D
in the natural way. A functor T : C×D→ C′ is known as a bifunctor.

Definition 2.12. Let T : C → C′ be a functor. T is additive if T pre-
serves direct sums and ∀X,Y ∈ ObC, the map TXY : HomC(X,Y ) →
HomC′(T (X), T (Y )) given byf 7→ T (f) satisfies T (f + g) = T (f) + T (g)
for all f, g ∈ HomC(X,Y ).

Much more is left to be said on the topic of functors, however for our
purposes this is as much as we need. If the reader would like to dive a little
deeper in this area, the author recommends [2, Appendix A.2] or [6, Chapter
1].

2.3. Sequences. Finally we introduce a core concept in homological alge-
bra; sequences (and their exactness).

Definition 2.13. Let C be an abelian category. A sequence

. . . Xn−1 Xn Xn+1 . . .
fn fn+1

is called exact if Im fn = Ker fn+1 for all n, where ∀i Xi ∈ ObC and
fi ∈ HomC.
A short exact sequence is an exact sequence in C of the form

0 X Y Z 0
f g

Example 2.14. Let N be a normal subgroup of a group G, with identity
element 1. Then the following is an exact sequence:

1 N G G/N 1
i1 iN π 0

This follows as:

• As i1, iN are the standard inclusion maps, Im i1 = 1 = Ker iN .
• As π is the canonical projection mapping, Im iN = N = Kerπ.
• By definition the zero map 0 : G/N → 1 sends all elements to 1, so

Imπ = Ker 0.

♦

Definition 2.15. A short exact sequence

0 X Y Z 0
f g

splits if there is a map h : Z → Y such that g ◦ h is the identity on Z. This
is equivalent to saying Y ∼= X ⊕ Z, by the Splitting Lemma ([4, Theorem
1.18]).

Remark 2.16. Short sequences which split are exact. If

0 X X ⊕ Z Z 0
f π

is a sequence, we can make it exact by setting Kerπ = X where π is the
projection map. ♦
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3. Leading to Derived Functors

As we make our way to derived functors, we first speak about projective
and injective resolution. Parts of this section and the next were obtained
from [2], other parts [9], and largely from [8] and [1].

Remark 3.1. We will assume all categories are abelian and all functors
additive, unless stated otherwise. ♦

Definition 3.2. Let C, C′ be categories and T a functor between them. Let

0 X Y Z 0
f g

be a short exact sequence. We say T is

• left exact if

0→ T (X)
T (f)−−−→ T (Y )

T (g)−−−→ T (Z)

is exact.
• right exact if

T (X)
T (f)−−−→ T (Y )

T (g)−−−→ T (Z)→ 0

is exact.
• exact if

0→ T (X)
T (f)−−−→ T (Y )

T (g)−−−→ T (Z)→ 0

is exact.

Example 3.3. ([5, Theorem 3.1]) Let C be an abelian category, and let
A ∈ ObC. Define

FA(X) = HomC(A,X) (also written HomC(A,−))

This defines a (covariant) left exact functor from C to Ab. We let FA act on
morphisms in HomC in the natural way; by composition. Given f : X → Y ,

FA(f) = HomC(A, f) : HomC(A,X)→ HomC(A, Y )

by

FA(f)(β) = f ◦ β
♦

If we wish to construct functors repairing the failed exactness of the se-
quences in Definition 3.2 there a few definitions a category must satisfy
first.

Definition 3.4. An object I in a category C is injective if given an injective
morphism f : A → B ∈ HomC and a map α : A → I there exists a map β
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making the following diagram commute:

(2)

0 A B

I

f

α
β

One can state the idea of this in simpler terms; ‘objects are highly embed-
dable in I’.

Definition 3.5. An object P in a category C is projective if given a surjective
morphism g : A→ B ∈ HomC and a map γ : P → B there exists a map β
making the following diagram commute:

(3)

P

A B 0

β
γ

g

Again one can state the idea of this in simpler terms; ‘P is highly pro-
jectable”.

Remark 3.6. The existence of β in Definitions 3.4, 3.5 is known as the
universal lifting property. ♦

Example 3.7. All free modules are projective.
Let F be a free A-module;

F =
⊕
j∈J

xjA

Using (3), the basis {xj}j∈J gets mapped to {γ(xj)}j∈J and as g is surjective,
for all j ∈ J there is an element aj ∈ A such that g(aj) = γ(xj). Defining β
such that xj 7→ aj means (3) commutes, making F projective, as required.

♦

Definition 3.8. A category C has enough injectives if ∀A ∈ ObC there is
an injective morphism A→ I where I is an injective object.

Definition 3.9. A category C has enough projectives if ∀A ∈ ObC there is
a surjective morphism P → A where P is an projective object.

Definition 3.10. Let M ∈ ObC. An injective resolution is an exact se-
quence of injective objects Ij of the form:

0 M I0 I1 I2 · · ·f d0 d1 d2

Definition 3.11. Let M ∈ ObC. A projective resolution is an exact se-
quence of projective objects P j of the form:

· · · P 2 P 1 P 0 M 0d3 d2 d1 d0

Remark 3.12. [8, Lemma 2.2.5] If C has enough injectives then every object
has an injective resolution. Similarly, if C has enough projectives then every
object has a projective resolution. ♦
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Example 3.13. Let C be an abelian category. By Example 3.3 the functor
HomC(A,−) is a left exact functor. We can show if A is projective then
HomC(A,−) is exact.
Let

0 X Y Z 0
f g

be a short exact sequence in C. We wish to show

0 HomC(A,X) HomC(A, Y ) HomC(A,Z) 0
f∗ g∗ 0

is an exact sequence. Assuming Example 3.3 we just need to show Im g∗ =
Ker 0 = HomC(A,Z); that is, g∗ is surjective. Given γ ∈ HomC(A,Z) the
universal lifting property of A gives β ∈ HomC(A, Y ) such that the following
diagram commutes:

A

Y Z 0

β
γ

g

which means γ = g ◦ β = g∗(β), i.e. g∗ is surjective, as required. ♦

A more general idea of Definitions 3.10, 3.11 is that of a chain complex.
We are interested mainly in the abelian category ModA, for A a K-algebra,
so we will define complexes (and homologies) in this context:

Definition 3.14. A chain complex is a sequence

C• : . . . Cn+1 Cn Cn−1 . . . C0 0
dn+1 dn d1 d0

where the Ci are right A-modules and the di are A-homomorphisms such
that dn ◦ dn+1 = 0.

Definition 3.15. A cochain complex is a sequence

C• : 0 C0 · · · Cn−1 Cn Cn+1 · · ·d−1 d0 dn−1 dn

where again the Ci are right A-modules and the di are A-homomorphisms
such that dn+1 ◦ dn = 0.

As dn ◦ dn+1 = 0, Im dn+1 ⊆ Ker dn. We can then define, for n ≥ 0, the
nth homology A-module of C• (and the nth cohomology A-module of C•) to
be

Hn(C•) = Ker dn/ Im dn+1 and Hn(C•) = Ker dn/ Im dn−1

respectively. This provides some sort of measure of how ‘nonexact’ the
complex is.

Definition 3.16. Let C• and D• be chain complexes of right A-modules.
A chain morphism u : C• → D• (commonly referred to as a morphism) is a
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family of A-module homomorphisms un : Cn → Dn such that the following
diagram commutes:

(4)

. . . Cn+1 Cn Cn−1 . . .

. . . Dn+1 Dn Dn−1 . . .

un+1

dn+1

un

dn

un−1

d′n+1 d′n

Definition 3.17. A chain morphism u : C• → D• is known as a quasi-
isomorphism (or by Bourbaki as a homologism) if the homology maps
hn : Hn(C•)→ Hn(D•) are isomorphisms for all n.

Remark 3.18. If u : C• → D• is a chain morphism, the morphisms
un : Cn → Dn induce the maps hn : Hn(C•) → Hn(D•) due to the fact (4)
commutes, i.e. d′n ◦ un = un−1 ◦ dn.
For example, if x ∈ Ker dn, then

un−1(dn(x)) = un−1(0) = 0 = d′n(un(x))⇒ un(x) ∈ Ker d′n

And if y ∈ Im dn+1 then ∃x s.t. dn+1(x) = y meaning

un(y) = un(dn+1(x)) = d′n+1(un+1(x))⇒ un(y) ∈ Im d′n+1

♦

Lemma 3.19. Let C• be a chain complex of right A-modules. The following
are equivalent:

(1) C• is exact (that is, exact at every Cn).
(2) C• is acyclic (that is, Hn(C•) = 0 for all n).
(3) The map 0• → C• is a quasi-isomorphism, where 0• is the chain

complex of zero modules and zero maps.

Proof. This follows from the definitions of exact, homology module and
quasi-isomorphism:

(1)⇒ (2)⇒ (3)⇒ (2)⇒ (1)

�

4. Chain Homotopies

Before we construct derived functors we must first build some machinery,
presented in [8] and [1], that will allow us to prove the construction of derived
functors is valid.

Definition 3.17 defined a quasi-isomorphism between two chain complexes,
however we can expand this notion of ’similarity’ between chain complexes
by introducing the definition of ’similar up to a null map’ - namely, chain
homotopy equivalence.
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Definition 4.1. Let A be an additive category, and let C•, D• be two chain
complexes. Suppose f, g : C• → D• are chain morphisms. Define a chain
homotopy from f to g to be a collection of morphisms hn : Cn → Dn+1 such
that

fn − gn = dD•n+1 ◦ hn + hn−1 ◦ dC•n
By setting d = dC•n and d′ = dD•n for clarity and dropping the subscripts we
can rewrite this as nicely as

f − g = d′h+ hd

We can visualise these maps with the diagram below, however it should
be stressed that this diagram does not commute:

. . . Cn+1 Cn Cn−1 . . .

. . . Dn+1 Dn Dn−1 . . .

d

hn+1

fn+1 gn+1

d

hn
fn gn

d

hn−1

fn−1 gn−1

d

hn−2

d′ d′ d′ d′

Definition 4.2. Two chain morphisms f , g are chain homotopic if there is
a chain homotopy between them.

Remark 4.3. The map d′h+ hd is itself a chain morphism:

d′(d′h+ hd) = d′d′h+ d′hd = d′hd = d′hd+ hdd = (d′h+ hd)d

Namely, the following diagram commutes:

. . . Cn+1 Cn . . .

. . . Dn+1 Dn . . .

d

d′h+hd d′h+hd

d′

as dd = d′d′ = 0. This map is called null homotopic. Then Definition 4.2
can be restated as “f , g are chain homotopic if f − g is null homotopic”. ♦

Finally we define:

Definition 4.4. A chain morphism f : C• → D• is a chain homotopy
equivalence (known by Bourbaki as a homotopism) if there is a map
g : D• → C• such that f ◦ g and g ◦ f are chain homotopic to the identity
maps of D• and C• respectively.
The complexes C•, D• are said to be homotopy equivalent if there is a chain
homotopy equivalence between them.

As a demonstration of the similarity of chain homotopic morphisms we
have the following lemma:
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Lemma 4.5. ([1, Chapter IX, §4]) If f, g : C• → D• are chain homotopic
morphisms then f and g induce the same homology maps Hn(C•)→ Hn(D•)
for all n.

Proof. We will prove this statement element-wise, by taking an element
a ∈ Hn(C•) and mapping it into Hn(D•), for a fixed n.

Suppose a as an equivalence class is represented by a ∈ Ker dC•n , and its
images in Hn(D•) are given by fn(a), gn(a) from the morphisms f and g.
As f and g are homotopic, there are morphisms hn such that

fn(a)− gn(a) = dD•n+1(hn(a)) + hn−1(dC•n (a))

Since a ∈ Ker dC•n the latter term vanishes, so we conclude fn(a)−gn(a) ∈
Im dD•n+1. As in Hn(D•) we take elements modulo Im dD•n+1, fn(a)−gn(a) = 0.
We conclude f and g induce the same homology maps, as required. �

Another idea that will be useful in §5 is that a morphism of objects can be
extended to a chain morphism of the projective resolutions of these objects
which is unique up to chain homotopy:

Lemma 4.6. Suppose M,N ∈ ObA and f is a morphism between them. If
ε : P• → M is a projective resolution of M , and η : P ′• → N a projective
resolution of N then there is a chain morphism f ′ : P• → P ′• ’lifting’ f , in
the sense f ◦ ε = η ◦ f ′0.
Moreover this chain morphism is unique up to chain homotopy, that is, if
g′ is another chain morphism satisfying the same conditions as f ′, then f ′

and g′ are chain homotopic.

Proof. (Adapted from [7, Proposition 3.3.1])
We wish to first prove the existence of the f ′i in the following diagram:

. . . Pn+1 Pn . . . P1 P0 M 0

. . . P ′n+1 P ′n . . . P ′1 P ′0 N 0

f ′n+1

dn+1

f ′n

dn

f ′1

d1

f ′0

ε

f

d′n+1 d′n d′1 η

We do so by induction, and it nearly immediately follows from the universal
lifting property.
For n = 0, by the universal lifting property f ′0 exists, making the following
diagram commute:

P0

M

P ′0 N 0

f ′0

ε

f

η
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We now assume f ′0, . . . , f
′
n have been defined. Note that, by exactness,

x ∈ Im dn+1 ⇒ dn(x) = 0⇒ d′nf
′
n(x) = f ′n−1dn(x) = 0

Here we also use the fact

Pn Pn−1

P ′n P ′n−1

dn

f ′n f ′n−1

d′n

is (inductively) commutative. We can conclude f ′n(Im dn+1) ⊆ Ker d′n =
Im d′n+1 and again by the universal lifting property f ′n+1 exists, making the
following diagram commute:

Pn+1

Im dn+1

P ′n+1 Im d′n+1 0

f ′n+1

dn+1

f ′n
d′n+1

This finishes the induction. We now need to prove f ′ is unique up to chain
homotopy:

Suppose there is another morphism g′ : P• → P ′• satisfying the conditions
of the lemma. We will construct the maps hn to make f ′ and g′ homotopic,
and again do so by induction:

Note η ◦f ′0 = f ◦ ε = η ◦g′0 meaning η ◦ (f ′0−g′0) = 0. So the map (f ′0−g′0)
takes elements into Ker η = Im d′1. By the universal lifting property there
exists a map h0 making the following diagram commute:

P0

P ′1 Im d′1 0

h0 f ′0−g′0
d′1

This satisfies the base case of the induction. Now assume h0, . . . , hn have
been constructed. Note by our induction we can also assume

f ′n − g′n = d′n+1 ◦ hn + hn−1 ◦ dn

In the same style as before, we will want f ′n+1 − g′n+1 − hn ◦ dn+1 to take
values in Ker dn+1 = Im dn+2. This follows as:
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d′n+1 ◦ (f ′n+1 − g′n+1 − hn ◦ dn+1)

= d′n+1f
′
n+1 − d′n+1g

′
n+1 − d′n+1hndn+1 (Dropping the ◦ for clarity)

= f ′ndn+1 − g′ndn+1 − d′n+1hndn+1 (Using commutativity of f ′ and g′)

= (f ′n − g′n − d′n+1hn)dn+1

= (hn−1dn)dn+1 (By induction)

= 0 (As dndn+1 = 0)

Hence hn+1 follows as before by the universal lifting property making the
following diagram commute:

Pn+1

P ′n+2 Im d′n+2 0

hn+1
f ′n+1−g′n+1−hndn+1

d′n+2

Therefore by construction f ′ and g′ are chain homotopic, so f ′ is unique up
to chain homotopy, as required. �

Remark 4.7. Anything proven about chain morphisms, projective resolu-
tions or homologies in this section can also be proven about cochain mor-
phisms, injective resolutions and cohomologies. In particular, Lemma 4.5
and Lemma 4.6 will in §5 use cohomologies and injective resolutions respec-
tively. ♦

5. Derived Functors

We now turn to the construction of right derived functors for left exact
sequences using the tools we have built in the previous sections.

Let C be a category with enough injectives, and F a left exact functor.
Begin with M ∈ ObC. As C has enough injectives, there is an injective
resolution of M

0 M I0 I1 I2 · · ·f d0 d1 d2

which is a long exact sequence. We rewrite this as two cochain complexes

M• : 0 M 0 0 · · ·

I• : 0 I0 I1 I2 · · ·

f

d−1 d0 d1

where the two complexes are ’similar’ in the sense that their cohomologies
at (almost) every point agree. We will work with the I• cochain complex
(in essence suppressing the M object), and we keep in mind it might not be
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fully exact.
Applying the left exact functor F we obtain

F (I•) : 0 F (I0) F (I1) F (I2) · · ·F (d−1) F (d0) F (d1)

We then compute its cohomology at the ith spot and call the resulting object
RiF (M):

RiF (M) := H i(F (I•)) = KerF (di)/ ImF (di−1)

and note in particular as F is left exact we have the exact sequence

0 F (M) F (I0) F (I1)
F (f) F (d0)

and as f : M → I0 is an injection we conclude

R0F (M) = KerF (d0)/ ImF (d−1) = ImF (f)/0 ∼= F (M)

We say F has been derived to form RiF , namely RiF is a derived functor.

Remark 5.1. In a similar way we can construct the left derived functors
for right exact sequences by:

(1) Assuming C has enough projectives.
(2) Taking a projective resolution of N ∈ ObC, and forming the chain

complex K•.
(3) Computing the ith homology and defining

LiF (N) = Hi(F (K•)) = KerF (di)/ ImF (di+1)

♦

Remark 5.2. There is a correspondence between right and left derived
functors:

RiF (M) = (LiF
op)op(M)

which follows from the correspondence between injective resolutions in C
and projective resolutions in Cop. ♦

We now need to prove that the constructed functor ’fixes’ exactness. First,
two lemmas which ensure the derived functors are well defined:

Lemma 5.3. RiF (M) does not depend on the injective resolution of M .
That is, if J• is a second resolution of M , then

H i(F (I•)) ∼= H i(F (J•))

Proof. By Lemma 4.6 there is a cochain morphism f : I• → J• lifting the
identity map on M , idC, that is unique up to cochain homotopy. However by
Lemma 4.5 all homotopic cochain morphisms induce the same cohomology
map f∗ : H i(F (I•))→ H i(F (J•)), so this map is canonical. Similarly there
is a cochain morphism g : J• → I• lifting idC and a corresponding canonical
map g∗. Since g ◦ f and idI• are cochain morphisms of I• → I• lifting idC,
they are homotopic and we conclude

g∗ ◦ f∗ = (g ◦ f)∗ = (idI•)
∗ = identity on H i(F (I•))
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Similarly f∗ ◦ g∗ = (idJ•)
∗. Thus f and g are quasi-isomorphisms and

H i(F (I•)) ∼= H i(F (J•))

as required. �

Lemma 5.4. RiF is a functor. In particular, a morphism f : M → N
yields a morphism RiF (f) : RiF (M)→ RiF (N).

Sketch proof. If I•M , I•N are injective resolutions of M and N respectively,
there is a cochain morphism f ′ : I•M → I•N lifting f unique up to cochain
homotopy. Thus by the same reasoning as Lemma 5.3 the map

f ′∗ : H i(F (I•M ))→ H i(F (I•N ))

is canonical. This will be the map we want; RiF (f) = f ′∗.
The other properties of a covariant functor (preservation of the identity and
composition) follow naturally in suit. �

We now wish to show right derived functors turn the sequences formed
by left exact functors on short exact sequences into long exact sequences.

Theorem 5.5. Suppose C and F are as previously given. Given a short
exact sequence

(5) 0 X Y Z 0
f g

the following is a long exact sequence:

(6)

0 F (X) F (Y ) F (Z)

R1F (X) R1F (Y ) R1F (Z)

R2F (X) R2F (Y ) · · ·

f0 g0

h0

f1 g1

h1

f2 g2

Proof. This theorem is proven in the context of left derived functors and
projective resolutions, however by Remark 5.2 we can convert between left
and right derived functors and projective and injective resolutions. Thus,
we will prove the corresponding result for left derived functors instead. We
need to use two lemmas to prove this statement:

Lemma 5.6. Horseshoe Lemma. Given (5) in C with P •X , P
•
Z the projec-

tive resolutions of X,Z respectively, there exists a projective resolution P •Y
of Y such that

(7) 0 P •X P •Y P •Z 0

is an exact sequence.
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Sketch proof. Set P iY = P iX ⊕ P iZ . This will form a projective resolution of
Y , and all rows of the following diagram will be exact:

(8)

0 X Y Z 0

0 P 0
X P 0

X ⊕ P 0
Z P 0

Z 0

0 P 1
X P 1

X ⊕ P 1
Z P 1

Z 0

0 P 2
X P 2

X ⊕ P 2
Z P 2

Z 0

...
...

...

�

Lemma 5.7. Given (7) and F an additive functor of abelian categories,
then

(9) 0 F (P •X) F (P •Y ) F (P •Z) 0

is an exact sequence.

Proof. Since P iZ is projective,

(10)

P iZ

0 P iX P iY P iZ 0

id
β

f g

there is a map β : P iZ → P iY that composes with g to form the identity id -
i.e. β = g−1. Thus P iY can be written as P iX ⊕ P iZ , meaning the sequence
(10) splits. Then

0 F (P iX) F (P iY ) F (P iZ) 0

splits, as F is additive. By Remark 2.16, this sequence is exact thus (9) is
exact, as required. �

Returning to the proof of Theorem 5.5:
Given (5), we obtain (7) by taking the correct projective resolutions. This
is exact by Lemma 5.6 and by Lemma 5.7, (9) is exact. Expanding (9) we
obtain:
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(11)

0 F (X) F (Y ) F (Z) 0

0 F (P 0
X) F (P 0

Y ) F (P 0
Z) 0

0 F (P 1
X) F (P 1

Y ) F (P 1
Z) 0

0 F (P 2
X) F (P 2

Y ) F (P 2
Z) 0

...
...

...

We note that the homology objects of the column complexes of (11) are
exactly the left derived functors of F , as we defined them.

Finally, by a diagram chase ([1, Chapter IX, Theorem 3.5]) of these ho-
mology objects, we obtain the long exact sequence

F (X) F (Y ) F (Z) 0

L1F (X) L1F (Y ) L1F (Z)

· · · L2F (X) L2F (Y ) L2F (Z)

f0 g0

f1 g1

h1

f2 g2

h2

using the Snake Lemma. Thus, based on these results, we can conclude (6)
is a long exact exact sequence too, as required. �

Lemma 5.8. If A is injective then RiF (A) = 0 for i ≥ 1.

Proof. If A is injective, it has an injective resolution

X• : 0 A A 0 0 · · ·

so

RiF (A) = H i(F (X•)) = 0

for i ≥ 1, by induction on the length of X•. �

Corollary 5.9. If A is projective then LiF (A) = 0 for i ≥ 1. �
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Remark 5.10. The famous Snake Lemma can be viewed as a ’special case’
of Theorem 5.5 - it should be noted this is not a proof of the Snake Lemma,
rather a way to rewrite it to demonstrate the previous theorem. Recall the
Snake Lemma says for a commutative diagram of exact rows

(12)

0 L M N 0

0 L′ M ′ N ′ 0

u

f

v

g h

u′ v′

there is a connecting homomorphism δ

(13)

Kerf Kerg Kerh

0 L M N 0

0 L′ M ′ N ′ 0

Cokerf Cokerg Cokerh

u v

δ

u

f

v

g h

u′ v′

u′ v′

making the sequence

0 Kerf Kerg Kerh

Cokerf Cokerg Cokerh 0

u v

δ

u′ v′

exact. If we view the columns of (12) as complexes

L• : 0 L L′ 0 · · ·

M• : 0 M M ′ 0 · · ·

N• : 0 N N ′ 0 · · ·

f

g

h

then (12) is the expansion of the short exact sequence

0 L• M• N• 0

of these complexes. The Snake Lemma then tells us there is an exact se-
quence

0 H0(L•) H0(M•) H0(N•)

H1(L•) H1(M•) H1(N•) 0

δ
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which we can see is a special case of (6). ♦

5.1. Applications: the Ext functor. A popular example of derived func-
tors are the Ext functors obtained by deriving the Hom functors. We have
already come across Hom functors before; in Example 3.3 we defined the
Hom functor on abelian categories:

HomC(A,−) : C→ Ab X 7→ HomC(A,X)

and found it was a left exact functor. Using the results of §5 we obtain the
ith right derived functor of HomC(A,−) as

ExtiC(A,−) := Ri HomC(A,−)

If A is a K-algebra we can similarly define the functor HomK(M,−) over
ModA and obtain the nth derived functor

ExtnK(M,−) : ModA→ ModK

of HomK(M,−) (for a fixed A-module M).
There are two functors associated with Hom - the covariant HomK(M,−)

and the contravariant HomK(−,M). This leads to covariant and contravari-
ant nth right derived functors ExtnK(M,−) and ExtnK(−,M), obtained from
taking injective and projective resolutions respectively2. We might expect
these two derived functors to be very different in behaviour, however the
bifunctor ExtnK(−,−) (which is contravariant in the first variable and co-
variant in the second) surprisingly works as a derived functor for both the
covariant and contravariant Hom functors3.

Example 5.11. We will compute ExtnZ(−,Z)(Zp) = ExtnZ(Zp,Z).
First, take a projective resolution of Zp:

0 Z Z Zp 0
×p ≡p

Applying the right exact contravariant functor HomZ(−,Z), we get the
exact sequence:

0 HomZ(Z,Z) HomZ(Z,Z) HomZ(Zp,Z)
(×p)∗ (≡p)∗

Since HomZ(Z,Z) ∼= Z and HomZ(Zp,Z) = 0 we get the following:

0 Z Z 0
(×p)∗ (≡p)∗

Finally,

• Ext0
Z(Zp,Z) = HomZ(Zp,Z) ∼= 0

• Ext1
Z(Zp,Z) = Ker(×p)∗/Im(≡p)∗ = Zp/0 ∼= Zp

• Ext2
Z(Zp,Z) = 0 for i ≥ 2.

2Applying a contravariant functor to a projective resolution also leads to a right derived
functor.

3 This correspondence is explored in more detail in [1, Chapter VIII, §6.4].
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Note that by Corollary 5.9 this means Zp isn’t projective as a Z-module.
♦

Remark 5.12. If G is a finitely generated abelian group, then Ext1
Z(G,Z) ∼=

G. This follows from the Fundamental Theorem of Finitely Generated Abelian
Groups, which states G can be written as a direct sum involving Zn and Zp.

♦

Remark 5.13. By Lemma 5.8 if N is an injective module we can immedi-
ately conclude

∀M , ExtnK(M,−)(N) = ExtnK(M,N) = 0

for all n ≥ 1. ♦

6. Closing remarks

Definition 6.1. A (covariant) cohomological δ-functor between abelian cat-
egories A and B is a collection of additive functors Tn : A → B (indexed
by nonnegative integers) together with a family of morphisms
δn : Tn(C)→ Tn+1(A) for each short exact sequence

(14) 0 A B C 0

in A, such that the following two properties hold:

(1) For each short exact sequence (14) there is a long exact sequence

0 T 0(A) T 0(B) T 0(C)

T 1(A) · · · Tn(C)

Tn+1(A) Tn+1(B) · · ·

δ0

δn

(2) Each morphism of short exact sequences

0 A B C 0

0 A′ B′ C ′ 0

gives rise to a commutative diagram

Tn(C) Tn+1(A)

Tn(C ′) Tn+1(A′)

δn

δn

(This property is known as naturality.)
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This definition generalises the notion of right derived functors; by Theo-
rem 5.5 they satisfy (1) and their naturality is proven in [8, Theorem 2.4.6]4.
Similarly the concept of a homological δ-functor can be defined to generalise
left derived functors.

Introduced by Grothendieck [3] in his famous Tôhoku paper, this context
is intended to be the appropriate setting in which to treat and further the
development of derived functors.

We have thus plotted the course of derived functors from their roots in
categories and exact sequences to the point where we see they are part of
a much larger, more general framework, and it is at this point we leave the
reader to explore [8, Chapter 2] and [3] for more information on the subject.
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