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Abstract. In this essay we introduce higher category theory through one

definition of ‘n-category’, using opetopic sets. We then briefly showcase some
applications of higher category theory to topology and physics (amongst other

subjects) and conclude by conjecturing a connection to natural language pro-

cessing.

1. Introduction

There is a well-worn joke that is appropriate for our setting:

x3
1 and x7

2 are sitting in a bar, chatting to pass the time. Eventually, the
question of religion arises. Are you religious? asks x3

1. Well, x7
2 replies, I

do believe in higher powers.

To the author it seems belief is already a fundamental component of higher cat-
egory theory: so much is unknown yet so much is expected to be discovered in the
coming decades. Crucially, as its stands there are several approaches available to us
in defining what an n-category is, and we are unsure if the definitions we produce
are all equivalent! Cheng & Lauda [CL04] liken higher categories to conquering a
mountain and say “intrepid explorers have made the ascent, each taking a different
route” but most importantly we are undecided if “we are even climbing the same
mountain”. Moving in this direction, Baez [Bae97] describes “preliminary chores”
which first must be completed before applications to geometry, homotopy theory,
type theory and even physics (such as topological quantum field theory, or more
generally n-categorical physics [BL09]) can be fully realised. Such applications the
author will mention briefly in §3 and we will reference these ‘preliminary chores’
again at the start of §4. Before this we will spend some time introducing Baez &
Dolan’s definition of a weak n-category [BD98] in §2, though the reader should be
forewarned that (for the sake of understanding) some corners will be cut; full details
are available in [BD98], our definition will be plucked from [Bae97], and a straight-
forward presentation without technicalities can be found in [CL04, Chapt. 4]. The
reader is also encouraged to ‘test their faith’ and explore other chapters of [CL04]
(in particular, [CL04, Appendix A.1]) and Leinster’s survey [Lei02] for alternate
definitions of n-category.

2. What is an n-Category?

In some sense, this is the £1,000,000 question. Though the basic intuition and
idea is clear amongst authors listed in [CL04] and [Lei02], approaches to formalise
this concept can take radically different paths. For us, we will follow the programme
outlined in [Bae97]1.

Date: Michaelmas 2018.
1The author is no set theorist, so concerns about the ‘sizes’ of sets are largely swept under the

rug and dealt with elsewhere (cf. [Zhe14, ML78]).
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Very simply, we can recursively build the definition of n-category as follows:
a 0-category is a set. A 1-category is a category; a collection of ‘objects’ and
‘morphisms’ between those objects, obeying composition laws. A 2-category is
a collection of ‘objects’, ‘morphisms’ between those objects, and ‘2-morphisms’
between those morphisms, all obeying “reasonable” composition laws - which we
will specify later. This process continues, all the way up to n-morphisms for n-
categories. The crux of the matter is the notion of “sameness” in each of these
types of category. In a set (a 0-category) objects are either the same (they are
equal) or they are not. Life is simple. In a category (a 1-category) objects can
either be equal or isomorphic. What about morphisms? In a category they can
either be the same map, or not. There is no notion of ‘isomorphic’ morphisms - for
this level of detail, we must turn to higher categories!

Consider the category Cat whose objects are categories and whose morphisms
are functors. Here we do have a concept of ‘isomorphic morphisms’; that of a
natural transformation. Let us represent objects in this category by boxes and
morphisms as arrows between these points:

v w x z
f g h

Cat obeys the usual composition law of h◦(g ◦f) = (h◦g)◦f . Between morphisms
in this category we can have a natural transformation (2-morphism), represented
as follows:

v w

f

g

a

There are two ways to compose 2-morphisms corresponding to our geometrical
intuition; vertically and horizontally.

a

b

c

d

Cat also obeys the following natural composition law:

(1) (d ◦v c) ◦h (b ◦v a) = (d ◦h b) ◦v (c ◦h a),

where “◦v” denotes vertical composition, and “◦h” denotes horizontal composition.
This makes Cat a strict 2-category:

Definition 2.1. A strict 2-category consists of a collection of objects, for every two
objects a collection of morphisms between them, and for every two morphisms a col-
lection of 2-morphisms between them, such that the objects and morphisms satisfy
the usual rules holding in a category and the 2-morphisms satisfy the composition
rule (1) in addition to the expected axioms of associativity and identity.

We can weaken this definition to be a bit more useful by instead requiring the
equations of associativity, identity for morphisms to hold only up to natural iso-
morphism:

Definition 2.2. A weak 2-category or bicategory consists of a collection of objects,
for every two objects a collection of morphisms between them, and for every two
morphisms a collection of 2-morphisms between them, such that the 2-morphisms
satisfy the composition rule (1) in addition to the expected axioms of associativity
and identity, and for each triple of morphisms f, g, h, instead of an associative law
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there exists an invertible associator 2-morphism ah,g,f : h ◦ (g ◦ f) ⇒ (h ◦ g) ◦ f
such that the following diagram commutes:

(i ◦ h) ◦ (g ◦ f)

i ◦ (h ◦ (g ◦ f)) ((i ◦ h) ◦ g) ◦ f

i ◦ ((h ◦ g) ◦ f) (i ◦ (h ◦ g)) ◦ f

aih,g,fai,h,gf

idi ◦af,g,h

ai,hg,f

ai,h,g◦idf

In addition there are invertible left & right identity morphisms lf : f ◦ idx ⇒ f ,
rf : idy ◦f ⇒ f satisfying a diagram of their own (cf. [Bae97, §2]).

Remark 2.3. In Definition 2.2 we still require the 2-morphisms to satisfy a ‘strict’
law, such as the equation (1) or the equations for associativity and identity. If
we wished to ‘weaken’ this structure and accept 2-morphisms that satisfy, say,
associativity “up to isomorphism” we would need to turn to 3-categories; there
the notion of ‘isomorphism’ for 2-morphisms exists, as it does not in the original
2-categorical structure. �

As [Bae97] remarks, the definition of bicategory seems initially to be more
“clumsy” than that of a strict 2-category, however it is (arguably) a more use-
ful notion as in many applications typically “everything is true up to something”
which is reflected more in the second type of structure. As Baez notes, “. . . the
whole point of introducing (n + 1)-morphisms is to allow n-morphisms to be iso-
morphic rather than merely equal. From this point of view, it was inappropriate
to have imposed equational laws between 1-morphisms in the definition of a strict
2-category, and the definition of a bicategory corrects this problem”.

Example 2.4. For an example of a strict (weak) 3-category one can consider 2Cat,
the category with objects that are strict (weak) 2-categories, whose morphisms
are (somewhat) structure-preserving (pseudo)functors, whose 2-morphisms are, as
expected, (pseudo)natural transformations and whose 3-morphisms are known as
(pseudo)modifications.

In the case of a strict 3-category, these satisfy naturality conditions, composition
conditions, associativity laws and identity laws. (In the case of a weak 3-category,
pseudofunctors preserve structure only up to 2-isomorphism, which in turn most
satisfy some “coherence” laws involving 3-morphisms, e.g. see the above pentagon
diagram. In a 3-category only the 3-morphisms satisfy equational laws, as there is
no room for weakening.)

The reader is invited to consult [Bae97, §3.1] for some diagrams which possibly
clarify the role of natural transformations and modifications. �

2.1. Opetopes. We will now present Baez & Dolan’s definition of a weak n-
category via opetopic sets. We will begin with the notion of an opetope (a port-
manteau of “operation” and “polytope”): the category of opetopes has a somewhat
involved definition which can be found in [Bae97] and [BD98] so we will instead
present a brief description of what exactly an opetope looks like, more in the style
of [CL04]. The motivation for opetopes is that the basic shapes of j-morphisms
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correspond to the j-dimensional opetopes, and the permitted styles of gluing to-
gether j-dimensional opetopes (i.e. composing j-morphisms) and the coherence laws
satisfied correspond to higher dimensional opetopes still.

Definition 2.5. The only 0-dimensional opetope is the box . The only 1-

dimensional opetope is the arrow
A−→ . There are many ways to glue together

1-dimensional opetopes:

etc.A A A A

These form the 2-dimensional opetopes. An example of a 3-dimensional opetope
is the following:

≡≡A≡≡V

This is a three dimensional shape whose front are the left opetopes and whose
rear is the right opetope; the dotted lines denote that the indicated boxes and
edges should be glued together (picture the right opetope as a flat base and the left
opetopes as curved faces above the base, with the triple arrow V between the two
faces).

Each of these shapes is known as a cell. In all of these examples the ‘base’ (what
the arrow with the most lines is pointing to) is known as the outface and all other
faces of the shape are infaces. In general, a (n + 1)-opetope has any number of
infaces and one outface.

Definition 2.6. An opetopic set is a presheaf on the category Op of opetopes2.

Very simply, a weak n-category is an opetopic set satisfying two important prop-
erties, which we shall cover next.

2.2. Niches. Let us represent a j-dimensional cell A in an opetopic set as

(a1, . . . , ak)
A−→ a′,

where a1, . . . , ak are the infaces and a′ is the outface. We will write this as
(A; a1, . . . , ak; b).

Definition 2.7. A frame is a cell (?; a1, . . . , ak; a′) with the data of A missing. A
niche is a frame (?; a1, . . . , ak; ?) with the outface missing. A punctured niche is a
niche (?; a1, . . . , ai−1, ?, ai+1, . . . , ak; ?) with one inface missing.

To the author these are formal constructions; the important definition is the
next:

Definition 2.8. If a frame, niche, or punctured niche can be extended to a cell,
the cell is called an occupant of the frame/niche/punctured niche.

In addition, occupants of the same niche are called niche competitors.

2Whose objects are j-dimensional opetopes for all j ≥ 0 and whose morphisms describe how
one opetope is included as a face of another opetope.
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2.3. Universality. As [Bae97] remarks, the “main role” of universality (in this
context) is in the definition of a composite outface, which we shall give now:

Definition 2.9. Given a universal occupant U of a j-dimensional niche

(a1, . . . , ak)
U−→ b,

we call b a composite of a1, . . . , ak.

The idea of universality is one we are already familiar with from a standard
category-theoretic context:

Definition 2.10. (Sketch) A j-dimensional niche occupant U is universal if all
of its niche competitors factor through it, “up to equivalence”.

This definition is a sketch as “up to equivalence” is a tricky thing to capture and
explain to full satisfaction: the reader is welcome to skip Definition 2.11 & Remark
2.12 to avoid technicalities.

To start with, we will fix an n ∈ N and define universal (and balanced) relative
to an n-category. The definitions of these two types of niche structures are given
inductively in an interdependent way however care has been taken so the definitions
are not circular.

Definition 2.11.

(1) A j-dimensional niche occupant (U ; a1, . . . , ak; b) is universal if and only if
either j > n and U is the only occupant of its niche, or j ≤ n and for any
frame competitor b′ of b the (j + 1)-dimensional punctured niche(

?; (U ; a1, . . . , ak; b), (?; b; b′); (?; a1, . . . , ak; b′)
)

and its mirror image(
?; (?; b; b′), (U ; a1, . . . , ak; b); (?; a1, . . . , ak; b′)

)
are balanced.

(2) A l-dimensional punctured niche (?; a1, . . . , ai−1, ?, ai+1, . . . , ak; ?) is bal-
anced if any only if either l > n + 1 or
• Any outface extension (?; a1, . . . , ai−1, ?, ai+1, . . . , ak; b) extends fur-

ther to (U ; a1, . . . , ai−1, ai, ai+1, . . . , ak; b) with U universal, and
• For any universal occupant (U ; a1, . . . , ak; b) and frame competitor a′i

of ai the (l + 1)-dimensional punctured niche(
?; (?; a′i; ai), (U ; a1, . . . ak; b); (?; a1, . . . , ai−1, a

′
i, ai+1, . . . , ak; b)

)
and its mirror image(

?; (U ; a1, . . . , ak; b), (?; a′i; ai); (?; a1, . . . , ai−1, a
′
i, ai+1, . . . , ak; b)

)
are balanced.

Remark 2.12. A n-dimensional niche occupant (U ; a1, . . . , ak; b) is universal if and
only if for any frame competitor b′ of b, any outface extension(

?; (U ; a1, . . . , ak; b), (?; b; b′); (B; a1, . . . , ak; b′)
)

extends to a unique occupant
(
U ′; (U ; a1, . . . , ak; b),(A′; b; b′);(B; a1, . . . , ak; b′)

)
(and

the same for the mirror image). Pictographically3,

3In reality this picture should be three dimensional with the outface a ‘base’ as described in
Definition 2.5 (or [Bae97, p. 19]), but the author has suggestively drawn this as a two dimensional
figure.
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extends to

ak

b

b′

ak

b

b′
a1

b′

a1

b

a1

b′

a1

b

ak

U

B

?
??

ak

U

B

A′

U ′U ′

where the occupant to the right is unique, and the same diagram can be drawn
for the mirror of the left opetope. Colloquially this expresses “n-dimensional niches
are universal if and only if the composite of the infaces equals the outface”. �

We are finally ready for Baez & Dolan’s definition of a weak n-category. Recall
Definition 2.9 of a composite; in light of the definition of universality we see that
an outface is really only a composite if and only if it is literally a composite of the
infaces “up to equivalence” (cf. [BD98, Prop. 55] too).

Definition 2.13. A weak n-category is an opetopic set such that every niche has
a universal occupant and composites of universal cells are universal.

3. Some Applications of Higher Category Theory

As has already been mentioned in the introduction, there exists applications
of higher category theory to many active areas of mathematics. To geometry
there is so-called ‘higher geometry’ (in particular homotopical algebraic geometry
[TV04, TV06] concerns itself with certain kinds of (ω, 1)-categories4 which gen-
eralise algebraic geometry, derived algebraic geometry and spectral algebraic ge-
ometry - through studying the category of sets, the (ω, 1)-category of simplicial
commutative rings, and the (ω, 1)-category of spectra, respectively). In the inter-
section of mathematical logic and category theory there is homotopy type theory
(cf. [Sch16, Uni13]) which deals with (ω, 0)-categories (also known as∞-groupoids)
in an effort to interpret types, which initially seem to be objects cataloguing certain
data of variables according to rules of formation, elimination, introduction, etc. but
are now considered as ∞-groupoids due to their nontrivial iterative structure (this
is particularly evident in the case of the identity type5, which is explained at the
beginning of [Uni13, Chapt. 2]).

Of course there is the application to category theory itself: (n+1)-categories can
be understood through the study of n-categories. The category nCat has as objects
the n-categories, has as 1-morphisms the n-functors (which are functors between n-
categories), has as 2-morphisms the natural transformations (between n-functors),
has as 3-morphisms the modifications (between natural transformations), etc. This
is a strict (n+1)-category; one can also consider the weak (n+1)-category which for
n = 2 is known as BiCat, the category of bicategories. The morphisms in this tri-
category are pseudofunctors, which might not necessarily preserve all the structure
between bicategories but do so ‘up to equivalence’ (in this case, up to an invertible
2-morphism which in turn satisfies some coherence laws). Bicategories themselves
are useful objects of study, as [Lan00] expounds. Landsman demonstrates one can
form a bicategory of rings (with bimodules as morphisms), a bicategory of C∗-
algebras (with Hilbert bimodules as morphisms), and a bicategory of integrable

4An (ω, k)-category is an ω-category (an n-category for arbitrarily high n) with all m-
morphisms equivalences (in the higher-morphism sense) for m > k.

5Given a type A, “the identity type of x and y over A”, written idA(x, y), can be considered
as the collection of pieces of ‘evidence’ that x is the same as y, where x, y are variables of type A.
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Poisson manifolds (with regular symplectic bimodules as morphisms - see [Lan00,
§8]).

The other main application of higher category theory we will mention is to
algebraic topology in the form of homotopy theory.

Definition 3.1. Given two topological spaces X,Y and two continuous maps f, g
between them, a homotopy from f to g is a continuous map h : [0, 1]×X → Y such
that

h(0,−) = f, h(1,−) = g.

Moreover two continuous maps f and g are called homotopy equivalent if there
are homotopies between fg−1 and idY , and f−1g and idX .

This is to say we have turned the category Top of topological spaces into a
2-category with homotopies acting as the 2-morphisms. Of course, we can take
homotopies between homotopies, and homotopies between homotopies between ho-
motopies, etc. which amounts to viewing Top now as an ω-category. The study
of homotopy theory should benefit higher category theory, and vice versa, which is
exactly what Grothendieck [Gro83] argued. Grothendieck pursued weak ω-functors
between Top and the category ∞Grp of weak ∞-groupoids, aiming to show Top
and ∞Grp are equivalent as objects of ωCat. Alas, a fundamental obstruction
to this conjecture is that any solution is highly dependant on what one takes as
the definition of ‘weak ∞-groupoid’, which leads back to our earlier comments on
the multitude of definitions for n-category and one’s belief in their equivalence.
For instance, if one believes Henry’s definition [Hen16] of ∞-groupoid is equiva-
lent to every other definition, then one can prove true this homotopy hypothesis of
Grothendieck ([Hen16, Theorem 5.2.12]).

The final mention of applications of higher category theory we shall make are
those to physics: Baez & Lauda [BL09] have an extensive catalogue of contributions
of higher category theory to what they call “n-categorical physics” in the form of
Feynman diagrams (ibid. p. 15), string theory (ibid. p. 40), loop quantum gravity
(ibid. p. 73), and topological quantum field theory, amongst others. On this last
subject Baez details (in [Bae97, §3.3]) how higher category theory can be used to un-
derstand the collection of n-dimensional manifolds embedded in (n+k)-dimensional
spacetime, by describing these manifolds using “n-categories with duals” (a very
thorough introduction on how this goes is given in [BD04]). Also in this area Baez
has worked on “2-Hilbert Spaces” [Bae96] which are Hilbert-space-like categories
obtained by “categorifying the various ingredients in the definition of Hilbert space”
([Bae96, §1]). These are fundamentally relevant to quantum field theory as Hilbert
spaces are used to represent ‘states’ of a quantum system.

4. Conclusion

In this essay we have given one (of many) definitions of an n-category and seen
some applications of higher category theory to mathematics and physics. As Baez
remarks in [Bae97, §5], there are still preliminary tasks to be completed regarding
the verification that the popular approaches to the definition of ‘n-category’ are all
equivalent; once this is done, he says, “there should be many exciting things we can
do with n-categories”. To conclude this essay the author would like to pen some
thoughts regarding a future application of higher category theory.

Category theory itself is an extremely wide-reaching area of mathematics, stretch-
ing all the way to natural language processing. In their landmark paper, Coecke
et. al. [C+10] propose a categorical framework for unifying the meaning of words in
a corpus with the algebraic structure of grammar, to compose the full meaning of
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a given sentence. Essentially the authors use the product of FVect (the category
of R-vector spaces) and Preg (a partially ordered set, viewed as a category, with
specific types corresponding to nouns, verbs, etc. as objects) to combine semantics
and syntactics in a compositional fashion.

Specifically, if one has the sentence “Alice likes Bob” one can determine the
meaning of this sentence by understanding the meaning of “Alice”, “likes”, “Bob”
(which are vectors in some vector space) and the grammar (which is a reduction6 of
types nvn ` s according to some given rules) and how these preform in the sentence
together. If N is an R-vector space of nouns and V an R-vector space of verbs, then
the meaning of the sentence “Alice likes Bob” is given by a meaning morphism in
FVect×Preg, from the total data of the words to their aggregate meaning:

−−−→
Alice

−−−→
likes

−−→
Bob

−−−−−−−−−−−−→
Alice likes Bob

(N ⊗ V ⊗N,nvn)
(f, `)−−−−→ (S, s),

where S is the ‘meaning space’ of sentences and s is a type returned when the com-
posed sentence is grammatically correct. This explanation of the relevance of cat-
egory theory to natural language processing has been rather terse, but fortunately
[C+10] gives a gentle introduction and a detailed procedure for exactly calculating
the meaning of a sentence (cf. [C+10, §3.5]) and the author has examples of this
principle in action, in [Tyr18, §3].

This is relevant to the topic of higher categories as it may be possible to view
FVect×Preg as a 2-category and possibly calculate the meaning of ambiguous
sentences. Recall that homonyms are words that are spelled and pronounced the
same, yet have different meanings. Now consider two homonymous sentences, which
are composed of the same words in the same order yet have different meanings (such
as “Grothendieck devised many schemes”, which changes depending on the meaning
of the word “scheme”). Such a sentence is ambiguous as its meaning is unclear
until its context is examined. Adding a 2-categorical structure to FVect×Preg
is therefore useful as 2-morphisms in FVect×Preg can determine when meaning
morphisms are equivalent. In the example

Σ = “Grothendieck devised many schemes” = “w1 w2 w3 w4”,

where wi is an element of the vector space Wi (a word), and Σ has grammar
type reduction p1p2p3p4 ` s, there are two meaning morphisms (f“plan”, `) and
(f“structure”, `) for the corresponding two meanings of the word “scheme”:

(W1 ⊗W2 ⊗W3 ⊗W4, p1p2p3p4) (S, s)

(f“plan”, `)

(f“structure”, `)

E

The 2-morphism E : (f“plan”, `) ⇒ (f“structure”, `) can be used to show (f“plan”, `)
is not equivalent to (f“plan”, `), assuming E is built from data which distinguishes
the two meanings of “scheme”. Of course, depending on the context an ambiguous
sentence may remain ambiguous, in which case E would be an equivalence. These
2-morphisms could also have applications to language translation as they serve to
compare the meaning morphisms of sentences up to equivalence, which is indepen-
dent of the underlying language(s). (This is the motivation for [Tyr18], and more
generally [B+18].)

In either occurrence, higher category theory is used to take the context of a
sentence and provide information about that sentence, which is the next natural
step in developing this “distributional” model of meaning.

6We are slightly abusing notation, using “`” for “reduction”.
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