Investigating the use of a genetic

algorithm to obtain numerical solutions to
the Moving Sofa Problem

Brian Tyrrell
July 2015

Contents

1 Abstract 3
2 Introduction 4
2.1 Problem Overview 4
2.2 Process & Terminology 4

3 The Unconstrained Genetic Algorithm 7
3.1 Making the initial population 7
3.2 Selection 10
3.2.1 Roulette wheel selection 10

3.2.2 Tournament selection oL 12

3.2.3 Chi Squared selection 14

3.3 CrosSsover 16
3.3.1 Two point crossover 16

3.3.2 Ome point CrosSOVEr v v v i 20

3.3.3 Uniform crossover 20

3.3.4 Cut-and-splice crossover 20

3.3.5 Three parent crossover L. 20

3.4 Mutation. 21
3.4.1 Reshaping Mutation 21

3.4.2 Addition mutation 23

3.4.3 Shift mutation 25

3.4.4 Comparison of 3 mutation operators 27

4 The Path Finding Algorithm 28
4.1 Building a path in S using a random walk 28
4.1.1 Routines & functions for checking if a sofa is inside the hallway 30

4.1.2 Routines & functions to make a random walk & build the path 31

4.1.3 Testing thecode 37

4.2 Brute force method o oL 39
4.2.1 Calculation of pointsin § 39

4.2.2 Dead-end fillingo 41

4.2.3 Wall following 45

5 The Constrained Genetic Algorithm 47
5.1 A change to the way area is calculated 48
5.2 The nullifying constraint L 0L 51
5.3 The DAM constraint, 52
5.4 Seeding the initial population00 54
5.4.1 Changes made to original code from Section 3 54

5.4.2 Seeding the population with the Circle sofa. 55

5.4.3 Seeding the population with the Hammersley sofa o7

6 Problems encountered & future modifications 58

Thanks & Acknowledgement
References

Select code used in project

9.1 The Unconstrained Genetic Algorithm
9.2 The Path Finding Algorithm
9.3 The Constrained Genetic Algorithm

1 Abstract

My objective in researching this topic was to:

a) investigate the terms used in evolutionary programming

b) using this knowledge, construct a genetic algorithm and

c¢) apply this algorithm to the Mowving Sofa Problem to obtain results in agreement
with the published literature.

In order to do this, I split the project into two parts - the first part being a
program to generate sofa shapes, and the second part being a program to determine
if a given sofa fits around the hallway. I wrote several algorithms in C++ for both
parts of the project and determined the two which worked best; the first was a genetic
algorithm used to 'breed’ sofa shapes, and the second a path finding algorithm which
used random walks to navigate a sofa around the hallway. To check all the codes
were functioning correctly I analysed their outputs at various stages, compared and
contrasted the results obtained from each algorithm to find a program best suited to
this problem.

My final result (given in Section 5.4.3) approximates the current lower bound sofa
(the Gerver sofa) though more research and time is needed to obtain more accurate
results.

2 Introduction

2.1 Problem Overview

The Moving Sofa Problem first appeared in the SIAM Review, Vol. 8, No. 3 (Jul.
1966) and was posited by Leo Moser;

What is the largest area region which can be moved through a ’hallway’
of width one?

Where we take the region to be rigid and the hallway, now referred to as the Moser
Hallway, is an L shaped hallway of constant width one. In 1970 James Sebastian put
forward an argument[5] that indicated the upper bound on the maximum area of a
sofa is 24/2 (this area corresponds to the Sebastian Sofa) whilst Joeseph Gerver in
1992 proved two theorems[3]; the first gives a ”strong condition which must hold for
at least one region of maximal area” and the second gives a region which satisfies
this condition. The Gerver Sofa has an area ~ 2.2195 and is bounded by 18 analytic
pieces.

Figure 1: The Gerver sofa (LHS)[6] and the Sebastian sofa (RHS)[4]

The area of the Gerver Sofa is the known lower bound, the area of the Sebastian
Sofa the known upper bound, and the ’Moving Sofa Problem’ is these two figures
don’t agree.

2.2 Process & Terminology

Genetic Algorithms are a type of evolutionary algorithm, which, as their name sug-
gests, imitate evolutionary biology in order to heuristically search a solution space for
an optimum. Evolution is driven by natural selection - a process whereby organisms
better adapted to their environment tend to survive and produce more offspring - and
this process is key to how a genetic algorithm generates solutions.

I will be using a genetic algorithm to explore the solution space of all sofas which
fit around the Moser Hallway, denoted by X. The terminology is as follows;

1. Population/farm: a subset of X.

2. Individual/animal: an element of the population.
3. Organism string: how an individual is represented using its alleles.

4. Genes/Alleles: each individual is composed of genes or alleles which
uniquely describe the individual in the solution space using the organism
string.

5. Allelic value: the value of a gene in an organism string (usually either 0 or
1) is known as the allelic value of the gene.

6. Parent: one of two sofas which contribute to form a child.

7. Child: a sofa produced by two parents which, as a collective, form the current
generation.

8. Allowed sofa: a sofa that fits around the hallway.

9. Disallowed sofa: a sofa that doesn’t fit inside the hallway or cannot be
maneuvered around the hallway.

For this problem, I used a grid! with 1,000,000 evenly spaced points on the square
{(z,y) : =2 < z,y < 2}, numbered the points 0 to 999,999 (with 0 being the bottom
left, 999,999 being the top right) and created a 1,000,000 bit long organism string
using the rule:

0 - there is not a corner in this position
1 - there is a corner in this position.

A genetic algorithm uses 3 main operators grouped under the term Reproduction;
Selection, Crossover, and Mutation.

1. Selection

Each member of the population is evaluated by a fitness function and assigned a
value (here, the area of the sofa). A new population is selected from the old
population where the probability of being selected is directly proportional to the
individuals fitness. In particular, an individual can be selected more than once for
the breeding population and I've had to take precautions to prevent both a sofa
breeding with itself and a sofa being too common in the breeding population?.

2. Crossover

The individuals are randomly paired and each pair is recombined in a particular
fashion - for one-point crossover, on each parent’s organism string a mutual
crossover point is randomly selected. Two children are generated from the parents
by swapping the alleles of both parents after the crossover point. This method has
variations such as two-point crossover, uniform crossover and the cut-and-splice

'From here on, this is referred to as the grid
2See Sections 3.2 & 7

method which are explained in more detail later®. Also, some research[2] in this area
suggests that using more than two parents to generate children can lead to ”higher
quality alleles”.

3. Mutation

The mutation operator acts on an organism string to switch the value of one (or
more) of it’s alleles; the biological equivalent being certain genes being switched on
and off. T've tested (amongst others)* a bit-string mutation which randomly selects
an allele on an organism string and inverts it.

I found the mutation operator the trickiest of the three to perfect - too low of a
mutation rate leads to genetic drift and problems converging on a solution[7]. Too
high of a mutation rate may lead to erratic changes from generation to generation
and loss of good solutions. However a suitable mutation operator can be used to
escape local optima to reach the global optimum.

3See Section 3.3
4See Section 3.4

3 The Unconstrained Genetic Algorithm

Using C++ I created a class Sofa which contains all the information required for each
sofa shape:

typedef class Sofa
{
public:
int c;
vector <int> orgstring;
double corn[1000][2], in[1000][2];
double area;

void modc(int);

void modarea(double);

void modorgstring (int);

void modcorn(int, double, double);
void modin(int, double, double);
void clearorgstring ();

void eraseorgstring (int);

void sortorgstring ();

int outnumec ();

double outarea ();
int outorgstring(in
double outcorn_x(in
double outcorn_y (in
double outin_x(int)
double outin_y (int)

} Sofa;

Where;
e ¢ is the number of corners (of a sofa)
e orgstring is the organism string
e the arrays corn and initial hold the x and y coordinates of the corners

e qarea is the area

3.1 Making the initial population

The initial population consists of 50 simple polygons of 10 sides contained in a circle
of radius 0.5. They are generated by removing an inner circle of radius r € (0, 0.25),
splitting the remaining annulus using 10 equally spaced lines, randomly choosing a
point on each line and finally joining all the points together (see figure 2):

Figure 2: An example of how a sofa shape is initially generated

void makepop(Sofa a[50])

{
double pos, r;
for(int i = 0; i < 50; ++i)
{
a[i].modc(10);
r = 0.25%ran ();
while (r = 0)
{ r = 0.25%ran ();
¥
for(int j = 0; j < 10; ++j)
{
pos = ((0.5 — r)xran() + r);
a[i].modcorn(j, search(posxcos((double) (2xpi/10)*j)),
search (posxsin ((double) (2xpi/10)xj)));
}
}
}

This uses the function search which finds the nearest point on the grid and chooses
that point as the corner:

double point[1000];

double search (double a)

{
double min = 10;
int cnt;
for(int i = 0; i < 1000; ++i)
{
if (abs(a — point[i]) < min)
cnt = i;
min = abs(a — point[i]);

return point[cnt];

Once I have a collection of corners I use the routine makecorners to sort them an-
ticlockwise (which is needed for computing the area using the Shoelace algorithm):

void makecorners(Sofa& p)
{
int pl, ql = 0;
double cornxl[p.outnumc ()], cornyl[p.outnumec ()];
double anglel = 0;
vector < pair < double, int > > vecl;

for(int jl1 = 0; jl < p.outnumc(); ++jl)

{
cornx1[jl] = p.outcorn_x(jl);
cornyl[jl] = p.outcorn_y(jl);
anglel = atan(cornyl[jl]/cornx1[jl]);
if (cornx1[jl] < 0 && cornyl[jl] > 0)
{ anglel += pi;
}
if (cornx1[jl] < 0 && cornyl[jl] <= 0)
{ anglel += pi;
}
if (cornx1[jl] >= 0 && cornyl[jl] < 0)
{ anglel += 2xpi;
}
vecl.push_back (make_pair (anglel , j1));
}
sort (vecl.begin (), vecl.end());
for (vector < pair < double, int > > :: iterator itl = vecl.begin();
itl != vecl.end(); ++itl)
{

pl = (xitl).second;
p.modcorn(ql, cornxl[pl], cornyl[pl]);
++ql;

}

double area = 0;
for(int n = 0; n < p.outnumc()—1; ++n)
{
area += abs(p.outcorn_x(n)*p.outcorn_y (n+1)
— p.outcorn_x (n+1)*p.outcorn_y(n));

p.modarea (0.5%area);

Finally, I use the corner information (which doesn’t need to be sorted for this step,
only for the area calculation) to form the organism string. For the organism sting, I
need to keep track of the position of only the 1’s, which is what the routine make-
orgstring does:

void makeorgstring (Sofa& p)

{
int temp;
for (int k = —500; k < 500; ++k)
{
for (int 1 = =500; 1 < 500; ++1)
{
for (int m = 0; m < p.outnumec (); ++m)
{
if (p.outcorn_x (m) = (double) 4xk/1000 &&
p.outcorn_y (m) = (double) 4x1/1000)
{
p-modorgstring (1000 (1+500)+(k+500));
break ;
}
}
}
}
}

3.2 Selection

I want to select a breeding population where the probability of an individual being
selected for breeding is directly proportional to that individuals fitness. For this
project I considered three common methods of selecting a breeding population:

1. Roulette wheel selection
2. Tournament selection

3. Chi Squared selection

3.2.1 Roulette wheel selection

I sort the population in descending order according to their area, and define a vector
of pairs sel, where the i element is

(sum of the first i areas, i sofa).

I randomly select a double con € (0, total area) and find which sofa con corresponds
to. This sofa becomes part of my breeding population (snew) and using concounter
I store which sofa has been selected for statistics later. The C++ code is:

10

int con?2;

int concounter [5000];

double sum = 0;

vector < pair < double, int > > areas;

for(int i = 0; i < 5000; ++i)
{ areas.push_back (make_pair(s[i].outarea(), 1));

}

sort (areas.rbegin (), areas.rend());

vector < pair < double, int > > sel;

for (vector < pair < double, int > > :: iterator it = areas.begin();
it != areas.end(); ++it)

{

sum += (xit). first;
sel.push_back (make_pair (sum, (xit).second));

}

for(int p = 0; p < 5000; ++p)

{
double con = sel.back (). firsts*ran();
con2 = 0;

for (vector < pair < double, int > > :: iterator itt = sel.begin();
itt != sel.end(); ++itt)
{

if(con < (xitt).first)

con2 = (xitt).second;
break;

}

else

{ con2 = sel.back().second;

}
}

concounter [p] = con2;
equatesofas(s[con2], snew[p]);
makecorners (snew [p]);

To test the code I have a population of 1000 sofas, running 5 times to ensure adequate
data spread (figure 8). There is a 'hump’ at about 0.4 to indicate the sofas of this
area are chosen most often, however the data doesn’t seem very spread out. This
is because the small differences in area mean the selection isn’t as well defined as it
would be if there were large differences in area - if all the areas are very similar to
each other, the selection will be less precise.

11

Frequency of selection vs Area (Roulette Wheel)

10

®

*

*
>
>

*
*
*
3$
$
*

Frequency of selection

N
*
$
$
3
*

$
®
$
’

Figure 3: Roulette Wheel selection

3.2.2 Tournament selection

For tournament selection, I randomly choose 100 sofas from the initial population of
1000, and the fittest sofa from those 100 is added to the breeding population. I found
this method to be almost too successful; the largest sofas would appear too often® in
the breeding population, leading to problems like inbreeding® and slow convergence
on a solution. To fix this, I used an array choices to keep track on how often a sofa
was used in the breeding population, and disallowed any sofa appearing more than
10 times:

vector < pair < double, int > > sel;
int choices[50] = {0};

int choosel, choose2;

for (int j = 0; j < 1000; ++j)

{
bool finishedsel = false;
while (! finishedsel)
{
for(int i = 0; 1 < 100; ++i)
{
choosel = 1000*ran ();
sel.push_back (make_pair (s[choosel].outarea(), choosel));
}
sort (sel.begin(), sel.end());
choose2 = sel.back().second;

For example, from a population of 50, 7 sofas occupied 31 spaces in the breeding population
6See Section 7

12

if (choices [choose2] < 10)

++choices [choose2];
finishedsel = true;
sel.clear ();

}
sel.clear ();
}
equatesofas (s[choose2], snew|[]]);

makecorners (snew [j]);

To test the code I have a population of 1000 sofas, running 5 times to ensure adequate
data spread (figure 4). It can be seen that the sofas with the largest areas are selected
the most often and the sofas with smaller area are selected least often.

However some sofas of area =~ 0.37 have been selected 10 times - this seems to
be because of the cap of 10; once the largest sofas have been selected 10 times they
are effectively removed from the initial population, meaning some smaller sofas get
relatively larger and will thus be selected more often.

Frequency of selection vs Area (Tournament)

10 + * 00 MR A o 4 g > —4

LR IR L 2% XX 2 L0 2 2 N J

8 + 0 S0 SBBBNISIS B +0 B 40 ++—

* SO STHEHIES HBONNSL ¢ ¥ *e &

RAE o L

Frequency of selection (capped at 10)

S0P 00 SOTIINPEINBDO-00 W © GIVOBY * * & *
4 - 0
4ot CIOGIIARNINLENIIID0 & Gt0F ¢0 00 *

2 1 * 46 4+ 4

* 4o *
0+ T
0.2 0.25 03 035 04 0.45 0.5 0.55

Area

Figure 4: Tournament selection

13

3.2.3 Chi Squared selection

For this method of selection I used a Chi-Squared distribution” with & = 4; the sofas
are sorted descendingly into a vector according to their area and an integer con is
selected using the chi squared distribution built into the header <random>. The
con™ element in the vector is then selected to be part of the breeding population
snew:

int con2, sel;
double sum = 0;
vector < pair < double, int > > areas;

for(int i = 0; i < 100; ++i)

{ areas.push_back (make_pair(s[i].outarea(), i));

}

sort (areas.rbegin (), areas.rend());

default_random_engine generator;
chi_squared_distribution <double> distribution (4.0);

for (int p = 0; p < 100; ++p)

{
con2 = (int) distribution (generator);
while (con2 < 0 || con2 > 99)
{ con2 = (int) distribution (generator);
}
sel = areas[con2].second;
equatesofas(s[sel], snew|[p]);

}

To test the code I have a population of 1000 sofas, running 5 times to ensure adequate
data spread (figure 5). Again it can be seen that the smaller sofas (still quite large
at area 0.43) are selected least often, and there is a definite peak in area selection at
0.49. The data is again more cluttered, but this is because of two reasons:

1. The difference in area between the smallest and largest sofas selected is small

2. Using this selection I get quite a small number of independent sofas in the
breeding population®. With Tournament selection 1 could cap the number of
times a sofa was selected, but I didn’t do that here. A future modification to
make to my code would then be some sort of limit on the number of times a
sofa could be selected for breeding.

"See figure 6 - image credit: Wikipedia, Chi-squared distribution
8For example, in a population of 1000 I could get 10 independent sofas in the breeding population

14

Frequency of selection

180

160

140

20

60

40

20

Frequency of selection vs Area (Chi-Squared)

* * *

* * e o
. -
*» *
+*e
0. * . *
* *
046 0.48
Area

Figure 5: Chi-squared selection

fi(z)
0.5 1

0.4t

0.31

0.2

0.1

0.0

-l il N

[T T
© O A W N

Figure 6: Chi-squared distribution

15

3.3 Crossover
3.3.1 Two point crossover

Two parents are randomly selected (and chosen that they’re not literally the same
sofa?) The organism strings of the two children are created like figure 7:

011010%001010102101011 01101000101110101011

e

111010500101110%000001 11101000101010000001

Figure 7: Two point crossover

The C++ code!? is as follows:

int aa = 0;
while (aa < 100)
{

int chol = 100*ran ();
int cho2 = 100*ran ();

while (chol = cho2)
{ cho2 = 100x*ran ();

}

snew [chol]. sortorgstring ();
snew [cho2]. sortorgstring ();

int crossl = 1000000%ran ();
while (crossl = 0 || crossl > 999980)
{ crossl = 1000000*ran ();

}

int cross2 = (1000000—crossl)«ran() + crossl;
while(cross2 = crossl || cross2 > 999995)

{ cross2 = (1000000—crossl)*ran() + crossl;
}

int countl = 0, count2 = O0;

for (int i = 0; i < snew[chol].outnumec (); ++i)

{

if (snew[chol]. outorgstring (i) <= crossl)

9A variation on this would be to ensure two sofas with identical organism strings are not chosen,
i.e. the two parents being genetically the same
10For a population of 100

16

schild [aa]. modorgstring (snew [chol]. outorgstring(i));
++countl;

}

for (int j = 0; j < snew[cho2].outnumc (); ++j)

{

if (snew[cho2].outorgstring (

j) > crossl &
snew [cho2]. outorgstring (]

) <= cross2)

schild [aa]. modorgstring (snew [cho2]. outorgstring(j));
++countl ;

}

for (int k = 0; k < snew[chol].outnumec (); ++k)

{

if (snew[chol]. outorgstring (k) > cross2)

schild [aa]. modorgstring (snew [chol]. outorgstring (k));
++countl;

}

for(int ii = 0; ii < snew[cho2].outnumec(); ++ii)
{

if (snew[cho2].outorgstring (ii) <= crossl)

schild [aa+1]. modorgstring (snew [cho2]. outorgstring (ii));
++count?2;

}

for (int jj = 0; jj < snew][chol].outnumc(); ++jj)

{

if (snew[chol].outorgstring(jj) > crossl &&
snew [chol]. outorgstring (jj) <= cross2)
{

schild [aa+1]. modorgstring (snew [chol]. outorgstring (jj));
++count?2;

}

for (int kk = 0; kk < snew[cho2].outnumc (); ++kk)
{

if (snew[cho2].outorgstring (kk) > cross2)

schild [aa+1]. modorgstring (snew [cho2]. outorgstring (kk));
++count?2 ;

}

schild [aa].modc(countl);

17

schild [aa+1].modc(count2);

schild [aa]. sortorgstring ();
schild [aa+1].sortorgstring ();

makecorners(schild [aa]);
makecorners(schild [aa+1]);

aa = aa+2;

See Section 3.1 for more information on the routine makecorners.

To test this code, I used a population of 10 sofas, and compared the children with
the parents after crossover had taken place (and selected three examples for display
in figure 8).

There are many reasons that a child would have only one parent:

1. In the breeding population, there are usually copies of the same sofa. It’s
possible for two different sofas with identical organism strings to breed and
produce a child which appears to have one parent.

2. Since there are only 10 corners, in the organism string there are 10 1’s and
999990 0’s - it’s possible for the crossover points to miss the corner alleles for
one sofa; thus only one parent contributes genetic information, whereas there
are in fact two parents.

18

/CHILDREN | : PARENT(S) OF CHILDREN |

0.432 0 0.432 0
0.356 0.256 ' 0.356 0.256
0.108 | 0.332] ' 0.108 0.332
-0.136 0.42 ' -0.136 0.42
-0.356 0.26 ' -0.356 0.26
-0.348 | 0| ' -0.348 0
-0.34 -0.248 ' -0.34 -0.248
-0.12 -0.368 ' -0.12 -0.368
0.128| -0.396/ ' 0.128 -0.396/
0.232 -0.168 : 0232 -0.168
0.388| 0| ' 0.388 0 | 0.488| 0
0.132] 0.404| ' 0.392 0284 | 0.124] 0.092
-0.144 0.444 ' 0.112 0.348 0.132| 0.404
-0.256 0.184| ' -0.096] 0292 | -0.144| 0.444 |
-0.34 0 ' -0.256 0.184 -0.32| 0.232
-0.392 -0.284 ' -0.34 0 -0.428| 0
-0.096 | 0.3 ' -0.392 0284 | -0.36| -0.26
0.096 -0.296 ' -0.096 03 -0.116 -0.356
0.276 -0.2 ' 0.096 -0.296 0.152| -0.464
' ' ' 0.276 02 | 0.084 | -0.06/
0.488 0l ' 0.488 0 | 0.388| 0
0.392] 0.284| ' 0.124 0.092 | 0.392] 0.284 |
0.124 | 0.092 ' 0.132| 0.404 | 0.112] 0.348 |
0.112 0.348 ' -0.144 0.444 -0.096 | 0.292
-0.096| 0.292| ' -0.32] 0232 | -0.256| 0.184
-0.32 0.232 ' -0.428 0o -0.34| 0
-0.428 0 ' -0.36 0.26 -0.392| -0.284
-0.36| -0.26/ ' -0.116 0.356 | -0.096 | 03
-0.116 -0.356 ' 0.152 -0.464 0.096 | -0.296
0.152 -0.464 ' 0.084 -0.06 0.276| -0.2
0.084 -0.06| ' ' [' '

Figure 8: Children and parents of the children, with their genetic contribution high-
lighted

19

Due to time constraints I was unable to test the following crossover methods in the
genetic algorithm code:
3.3.2 One point crossover

One point crossover is identical to two point crossover, except there is only one
crossover point:

01101000101010101011 01101000101110000001

R

11101000101110000001 11101000101010101011

Figure 9: One point crossover

3.3.3 Uniform crossover

The parents are selected in the same way as two point crossover'’ However a mixing
ratio p : 0 < p < 1is introduced, such that for any allele in a child, it has a probability
p of coming from the first parent, and a probability 7-p of coming from the second
parent, as shown in figure 10:

01101000101010101011 01101000101110100011

—_—

11101000101110000001 11101000101010001001

Figure 10: Uniform crossover

3.3.4 Cut-and-splice crossover

Two parents are selected in the usual way, and a single crossover point on each parent
is chosen. The alleles after the crossover point on each parent are swapped (which
could result in organism strings of different lengths).

3.3.5 Three parent crossover

This method is the same as one point crossover, except genetic information from three
parents is chosen (another variation of this would be three parent crossover done in
the style of two point crossover).

1 See section 3.3.1

20

0110102001010101010 011010011100000

—_——

111010001%011100000 111010001001010101010

Figure 11: Cut-and-splice crossover

01101000101010101011 10010111010110000001
11101000101110000001 01101000101111000011

10010111010111000011 11101000101010101011

Figure 12: Three parent crossover

3.4 Mutation

I tested and compared three different mutation operators for this genetic algorithm;
in this case, without constraint, the optimum solution would be a sofa which takes
up all of the grid (an area of 16). To test any of the operators, I compared the sofa I
input and the sofa output and I noted the difference(s). The three different styles I
tested were:

1. Adding and subtracting a corner randomly (to be known as reshaping mutation).

2. Adding in a corner randomly every generation (to be known as addition muta-
tion), every 10" generation and every 100" generation.

3. Shifting a corner slightly up, down, left or right (to be known as shift mutation).

3.4.1 Reshaping Mutation

I created a routine mutation to add and subtract a corner at random in each sofa;

void mutation(Sofa &p)

{

p.sortorgstring ();
int flipl = 1000000*ran ();
bool searchl = false;

int trackl, removel, count = p.outnumc();

for(int i = 0; i < p.outnumc(); ++i)

21

if(p.outorgstring (i) = flip1l)
searchl = true;
trackl = i;
break;
}
}
removel = p.outnumc()*xran ();

if (!searchl)

p.modorgstring (flipl);
p.eraseorgstring (removel);
p.sortorgstring ();

}

else

{
int flip2 = 1000000*ran ();
while (flip2 = flip1l)
{ flip2 = 1000000xran ();
}

bool search2 = false;

int track2;

for (int i = 0; i < p.outnumc (); ++i)
{

if (p.outorgstring (i) = flip2)

search2 = true;
track2 = i;
break ;

}

if (search2)

p.eraseorgstring (track?2);
p.modc(count —1);
p.sortorgstring ();

p.eraseorgstring (trackl);
p.modorgstring (flip2);
p.sortorgstring ();

The organism string is sorted (as a precaution) and a random integer flip1 € [0,999999]
is selected. The organism string is then searched to see if there is a corner at flipl. In

22

the unlikely occurrence there is, trackl notes the corner number and I select a ran-
dom corner removel to remove. If there is no corner at flip1, I make a corner there
and remove corner removel. If there is a corner at flipl, I choose a different integer
(flip2) and search the organism string to see if it’s there. In the extremely unlikely
event both flipl and flip2 note corner locations, I simply remove corner track2. In
the more likely event of flip2 not noting a corner location, I remove the corner track1
and add in the corner at flip2. Finally, in each case I sort the organism string again.

To indicate this is working, figure 13 shows an example sofa before and after mutation:

|Sect3.4.1 | 15
|Original | | Mutated .
1.464] 0 1.464 | 0
0.064 0.7 0.624 0.192 (added)
03 0.928 0.964 0.7
0.26] 0.808 | 0.3 0.928 ~#=Original
-1.196 0.868 -0.26/ 0.808 A5 15 —@=Mutated
-1.08 0 -1.196 0.868
0772 -0.564 -1.08] 0 [| 05
-0.288| -0.884 -0.772| -0.564 | |
0.232| -0.716| -0.288 | -0.884 _ _ | w |
0.32] -0.984] 0.232 0.716
0.66 -0.48 (subtracted) 0.32 -0.984
1.464| 0 1.464| 0 : : _ R

Figure 13: Adding and subtracting a corner

3.4.2 Addition mutation

Adding in a corner randomly is a small modification to the above code, namely not
removing any corners. [could also choose how often to call the routine, so I've
compared every generation, every 10® generation and every 100" generation;

void mutation (Sofa &p)

{

p.sortorgstring ();

int flip = 1000000%ran ();

bool search = false;
int track, count = p.outnumec();
for(int i = 0; i < p.outnumec(); ++i)
{
if (p.outorgstring (i) = flip)
search = true;
track = i;
break;
}
}

if (search)

23

p.eraseorgstring (track);
p.modc(count —1);

}

else

{
p.modorgstring (flip);
p.modc(count+1);
p.sortorgstring ();

}

One problem with this method, however, is how quickly it adds (sometimes unneces-
sary) corners to a sofa, and storage space for the corner coordinates soon becomes an
issue.

To indicate this is working, figure 1/ shows an example sofa:

Sect3.4.2 |
Original | | |Mutated
0.788| 0 | 0.788| 0
1.016 0.74 1.188 0.836
0.352 1.076 1.016 0.74 —o—Original
-0.38| 1.168 0.352| 1.076 w Mutated
-0.58| 042 _ -0.38| 1.168 15 s M
-0.82] 0 _ -0.58] 0.42
-1.004| -0.732| _ -0.82 0
0.36| -1.108| _ -1.004| -0.732
0.708] 0516 _ 0.36| -1.108
0.788| [_ 0.708] 0.516
0.788 0 e

Figure 14: Adding in a corner

To compare how the frequency of this mutation operator affected the average area
per generation, I ran 4 versions of the above code for 1000 generations. The result is
displayed in figure 15.

The effects can be seen as follows:

1. With every generation, the plateau is reached quicker, however the area obtained
(~ 14.66) is still far from the optimum of 16.

2. With every 10" generation, the plateau is reached slower, however the area
obtained (~ 14.9) is greater than the area obtained with the mutation operator
in use every generation.

3. With every 100*" generation, the use of the operator has become too sparse
and its effects no longer play as strong a role as previous, for the solution to
converge to an area of 16. The graph (in green) indicates the plateau will be
about 13.

4. With no mutation operator, the sofas fail to converge to area 16 and plateau
(near immediately) at area 4.87.

24

Frequency of mutation operator

==Every gen

—Every 10th gen
Every 100th gen
=—No mutation

Average area per generation
w

: -l‘ 3‘ 5' 7‘ 9‘ 11 13 15 ‘l? ‘l? IZl ‘23 ‘25 ‘17 29 31 33 35‘ 37‘ 39‘ ﬂ]: 43‘ 45‘ 47 49 51 ‘53 ‘55 ‘57 ISQ ‘Gl ‘63 65 67 59‘ 7]: 73I 75‘ 77‘ 79‘ 81 83 85 87 ISB ‘91 ;3 ;5 ;7 ;9

Generation (in 10s)
Figure 15: Using the mutation operator every generation, every 10" generation, every
100™ generation and not at all

3.4.3 Shift mutation

In order to shift a corner slightly, I randomly select a corner to shift and a direction
to shift it in (up, down, left or right), and erase that corner from the organism string.
I first try shift the corner in the direction dir, based on whether the grid has space to
shift a corner to the new position. If there is no space, I cycle through the remaining
directions. The organism string is sorted both before and afterwards any shifting
takes place. The C++ code is;

void mutation (Sofa &p)

{

p.sortorgstring ();

int shift = p.outnumc()=*ran ();
int flip = p.outorgstring (shift);
int dir = 4xran(), count = 0;

p.eraseorgstring (shift);

while (count < 4)

{
if (dir = 0)

if (flip < 998999)

p.modorgstring (flip +1000);
count = 5;

}

else

{

25

dir = 1;

++count;
¥
}
if (dir = 1)
if (flip > 1)
p.modorgstring (flip —1);
count = 5;
}
else
{
dir = 2;
“++count ;
}
}
if (dir = 2)
if (flip > 1001)
p.modorgstring (flip —1000);
count = 5;
}
else
{
dir = 3;
++count;
}
}
if (dir = 3)
if (flip < 999999)
p.modorgstring (flip +1);
count = 5;
}
else
{
dir = 0;
++count ;
}
¥

}

p.sortorgstring ();

To indicate this is working, figure 16 shows an example sofa:

26

|Sect3.4.3 [| [[15
iOriginaI iMutated y_ -
| | ~N
148 0 | 148 0 | Shifted here
0.368 0.268 0.368 0.268 0.5
0.22 0.676 0.224 0.676 |
-0.364 1124 | -0.364 1124 | N ~—Original
-0.9 0.652 | -0.9 0.652 | 15 05 5 3 =—E=Mutated
-1.124 o | -1.124 o |
-0.824 0.6 [-0.824 0.6 [0.5
-0.364 -1.116 | -0.364 -1.116 | \
0.284 -0.88 0.284 -0.88 4
0848 0616 | 0848 0616 : -
1.176 -0.852 1.176 -0.852 .
1.48 0 | 1.48 0 |

Figure 16: Shifting a corner

3.4.4 Comparison of 3 mutation operators

Figure 17 compares how the 3 different mutation operators converge to a maximum

areal?:

Comparison of 3 mutation operators

. lf\’\/\’v\/ﬂw\"‘\v@/—w
’ / =—=Sec 3.4.1

8 —=Sec 3.4.2
—=Sec 3.4.3

Average area per generation

0 4 o o e o o o e o o o o o o o
13 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Generation (in 10s)

Figure 17: Comparing Sections 3.4.1, 3.4.2, 3.4.3

The results indicate the best mutation operator to use is Sect 3.4.3; shifting a corner
slightly, which plateaus at an area of ~ 15.94!3. The worst operator is Sect 3.4.1;
randomly adding and subtracting a corner - it doesn’t plateau off and fluctuates about
the ~ 12.5 mark.

12Gect 3.4.2 here uses the mutation operator every generation
13In order to reach this area, the program needed to run for 10000 generations, rather than the
usual 1000

27

4

The Path Finding Algorithm

The other half of this project was to write code that could determine whether a sofa
fits around the hallway or not. To do this, I wrote several algorithms to navigate
through (what can be viewed as) a subset S of the space ® x R x [0, 27]. Define S to
be the box

S={(x,y,0):0<2x<2 0<y<2 0<0<2rn}

where each sofa can be described with the coordinates (z,y,), which correspond to
the x coordinate of the centre point, the y coordinate of the centre point, and the
angle through which the sofa has been rotated clockwise from its original position.

I tried 3 different algorithms with varying degrees of success:

1.

4.1

Building a path using a random walk

This method worked and it worked efficiently, so I used this in the final version'4

of the genetic algorithm with constraint. This algorithm would allow a sofa to
randomly wander through S - whenever it hit a 'wall’ the path would return a
step, and randomly move forward again.

Brute force evaluation of points in S, then using dead-end filling to
solve

This was the most time consuming algorithm, and problems with speed and
accuracy meant it was not useful. However once I had collected all the infor-
mation on points in S, I could use a 3 dimensional version of a maze solving
algorithm known as dead-end filling to find the path quickly (if it existed).

. Wall-following

Applying another maze solving algorithm in 3 dimensions, I also created a wall-
following algorithm that would creep along the ’left wall’ of the path in 5}
however I never got the chance to test it fully.

Building a path in S using a random walk

I created a class Path which contains all the information required for each path:

typedef class Path

{

public:
int num;
vector <double> initial;
vector <int> orgstring;

void modnum(int);

void modorgstring (int);

void eraseorgstring ();

void modinitial (double, double, double);

See Section 5

28

void clearpath ();

int outnum ();
int outorgstring(int);
double outinitial (int);

} Path;

void Path :: modnum(int a)

{ num = a;

}

void Path :: modorgstring(int a)
{ orgstring . push_back(a);

}

void Path :: eraseorgstring ()

{ orgstring .pop_back ();

}

void Path :: modinitial (double a, double b, double c¢)
{

initial .push_back(a);
initial.push_back(b);
initial.push_back(c);

}
void Path :: clearpath ()
{
num = 0;
initial.clear ();
orgstring.clear ();
}
int Path :: outnum ()
{ return num;
}
int Path :: outorgstring(int a)
{ return orgstring[a];
}
double Path :: outinitial (int a)
{ return initial[a];
}
Where;

e num is the number of points/length of walk
e initial is a vector which contains the starting point of the walk

e orgstring is a list of directions which construct the walk!®

5Note: even though this isn’t a genetic algorithm, I'm referring to this vector as an organism

29

4.1.1 Routines & functions for checking if a sofa is inside the hallway

I wrote various pieces of code to check if the sofal® is still inside the hallway at any
particular point in S. hallway checks if corner ¢ from sofa s lies inside the boundary
of the hallway, and returns true if it does, false if it doesn’t;

bool hallway(Sofa s, int i)

{
if (s.outcorn_x (i) > 2.01 || s.outcorn_y(i) > 2.01)
{ return false;
}
if (s.outcorn_x(i) < 0.99 && s.outcorn_y(i) < 0.99)
{ return false;
}
return true;
}

(Accuracy concerns mean I modified the width of the hallway to be 1.02 units, to
allow the path finding algorithm to complete in a reasonable amount of time). This
is used in conjunction with checks which first moves the sofa centre to a point (al,
a2, a3) in S, then checks if each of the corners lies inside the hallway at that point;

bool checks(double al, double a2, double a3, Sofa s)

{
rot (s, a3);
double templ, temp2;
for(int i = 0; i < s.outnumc(); ++i)
{
templ = s.outcorn_x(i);
temp2 = s.outcorn_y (i);
s.modcorn (i, (templ 4+ al), (temp2 + a2));
}
for (int j = 0; j < s.outnumc(); ++j)
{
if (Mhallway (s, j))
{ return false;
}
}
return true;
}

This in turn calls rot which rotates all the sofa coordinates by an angle a3, and before
each calling of checks, the sofa should be reinitialised to sit at (0, 0, 0) in S;

string
16GSee Section 3 for any details on the Sofa class

30

void rein (Sofa &s)

{
for(int i = 0; i < s.outnumec(); ++i)
{ s.modcorn(i, s.outin_x(i), s.outin_y(i));
}
makecorners(s);
}

4.1.2 Routines & functions to make a random walk & build the path

The routine makeneigh takes in a point (af0], /0], c[0]) in S and creates 8 different
directions for the path to travel in, as illustrated by figure 18:

3« 7

®

1% 2
A J .

X

oA

A

4 5

Figure 18: Neighbours of point 0

The C++ code is;

void makeneigh (double a[], double b[], double c[])

{

al[l] = a[0] + 0.001;
[1] = b[0] — 0.001;
c[1] = ¢c[0] + 0.001;
al[2] = a[0] + 0.001;
[2] = Db[O];

c[2] = ¢c[0] + 0.001;
a[3] = al0];

(3] = b[0] — 0.001;
c[3] = c[0] + 0.001;

31

al0] + 0.001;

[4] ib[o] ~ 0.001;
c[4] = c[0];
a[b] = a[0] + 0.001;
[5] = Db[O];
c[5] = c[0];
al6] = a[0];
(6] = b[0] — 0.001;
c[6] = c[0];
al7] = a[0];
[7] = b[O];
c[7] = ¢c[0] + 0.001;

}

Before the path is made, fits determines where the path should start;

bool fits (double nx[], double ny[], double nz[], Sofa s)
{

nx [0] = 0;
ny [0] = 1;
nz[0] = 0;
rein(s);
;f (!checks(nx[0], ny[0], nz[0], s))
rein (s);
?dnle (!checks(nx[0], ny[0], nz[0], s))
if (ny[0] > 2)
rein (s);
return false;
}
if (nz[0] > 2xpi)
ny [0] += 0.1;
nz[0] = 0;
rein (s);
}
else
{
nz[0] += 0.1;
rein(s);
}
}
return true;
}
else

32

{ return true;

This function will also return false if the sofa doesn’t fit in the hallway in any orien-
tation at the entrance. At the cost of time, this can be made more accurate by only
allowing ny/0] to increase in steps smaller than 0.1.

Using the routines and functions mentioned in Section 4.1.1, makewalk, constructs
a path for the sofa;

bool makewalk (Path &p, int r, double nx[], double ny[], double nz]],
Sofa s, bool first)

{
bool notfinished = true;
int dir, count, godir = 5, countdir = 0;
if(first)
nx[0] = p.outinitial (0);
ny[0] = p.outinitial (1);
nz [0] = p.outinitial (2);
count = 0;
notdir [r] = 0;
}
else
{
nx [0] = modwalk(p, nx, ny, nz)[0];
ny [0] = modwalk(p, nx, ny, nz)[1];
nz[0] = modwalk(p, nx, ny, nz)[2];
count = modwalk(p, nx, ny, nz)[3];
}
while (notfinished)
{

makeneigh (nx, ny, nz);

rein(s);

notfinished = checks(nx[godir], ny[godir], nz[godir], s);
if (notfinished)

{

nx [0] = nx[godir];
ny [0] = ny[godir];
nz [0] = nz[godir];
p.modorgstring (godir);
++count ;

if (ny[0] < —0.25)

p.modnum (count);
return true;

else

33

dir = 8xran();

while (dir = 0 || dir = notdir[r] || dir = godir)
{ dir = 8xran ();
}
makeneigh (nx, ny, nz);
rein(s);
notfinished = checks(nx[dir], ny[dir], nz[dir], s);
if (notfinished)
{
nx [0] = nx[dir];
ny [0] = ny[dir];
nz[0] = nz[dir];
p.modorgstring (dir);
if (dir = 7)
if (countdir < 10)
godir = dir;
4++countdir ;
}
else
{ godir = 5;
}
}
else
{ godir = dir;
}
notdir [r] = 0;
“++count ;
if (ny[0] < —0.25)
p.modnum (count);
return true;
}
}
else
{ notdir[r] = dir;
}

}

p.modnum (count);
return false;

This function first determines whether this is the first time it has been called. If so,
it loads an initial starting point from the vector initial in the class Path. If not, it

34

calls modwalk which returns the last point the path was at such that the sofa fit.

After this, makeneigh makes the neighbours of said point and checks checks if the
sofas fits in the hallway after travelling in the direction godir'”. If the sofa fits in the
hallway here, godir is added to the organism string for path p.

If the sofa doesn’t fit in the hallway at this point, a new direction to travel in is chosen
at random'® and the sofa tries to move in direction dir. If this works, dir becomes
godir'® and dir gets added to path p’s organism string. If this does not work, notdir
becomes dir and the function finishes (not having moved anywhere)®°.

There are two reasons this function would end without the sofa moving anywhere:

1. The function has chosen two unsuccessful directions to travel in: In this case,
calling the function multiple times ensures I will eventually find a successful
direction to travel in?!, unless;

2. There are no more successful directions, i.e. the sofa has hit a dead end.

In the case that a dead end is reached, the function atdeadend is set to be called every
10*" generation?! to assess if the sofa is at a dead end;

bool atdeadend(Path p, int r, double nx[], double ny[], double nz[],
Sofa s)
{

nx [0] = modwalk(p, nx, ny, nz)[0];
ny [0] = modwalk(p, nx, ny, nz)[1];
nz[0] = modwalk(p, nx, ny, nz)[2];
makeneigh (nx, ny, nz);

int count = 0;

rein (s);

if (I checks(nx[1], ny[1l], nz[1l], s))
{ ++count;

}

else
{ return false;

}

rein (s);

17This is the direction in which the sofa traveled in last that worked

18This direction is prevented from being godir and notdir, which is a direction the algorithm tried
previously

9As long as dir isn’t 7 - if it is, the sofa could just spin in circles continuously instead. The
routine counts how many times dir has been 7 in a row, and disallows godir becoming dir when dir
is 7 ten times in a row

20This is noted as the end of a ’generation’; a generation in this case being when makewalk is
called

2'Which is why in the full code, this routine is allowed run as many generations as it wants until
the sofa hits a dead end

35

if (!checks(nx[2], ny[2], nz[2], s))

{ ++count ;

}

else

{ return false;

}

rein(s);

if (checks(nx[3], ny[3], nz[3], s))
{ ++count ;

}

else

{ return false;

}

rein(s);

if (!checks(nx[4], ny[4], nz[4], s))
{ ++count ;

}

else

{ return false;

}

rein(s);

if (I checks(nx[5], ny[5], nz[5], s))
{ ++count ;

}

else

{ return false;

}

rein(s);

if (!checks(nx[6], ny[6], nz[6], s))
{ ++count ;

}

else

{ return false;

}

rein(s);

if (I checks(nx|[7], ny[7], nz[7], s))
{ ++count;

}

else

{ return false;

}

if (count = 7)

{ return true;

}

atdeadend calls modwalk which returns the point in § at which the sofa fit in the

36

hallway last. The program then checks every direction to see if the sofa can move. If
the sofa cannot, atdeadend returns true, if it can, false. If the sofa can indeed move
the program continues, if it cannot the program ends with an error message saying
the sofa is stuck.

4.1.3 Testing the code

To test the code I have the coordinates of 3 example sofas I know fit around the
hallway - the Square??, the Circle?® and the Hammersley sofa??.

Figure 19: The Hammersley sofa

For the Square sofa, the paths it can take through S and the path chosen are displayed
in figure 20.

z-value

A

<Y

y-value

x-value

X

Figure 20: Possible paths through S and path computed for Square sofa

For the Circle sofa, the paths it can take through S and the path chosen are displayed
in figure 21.

For the Hammersley sofa, the paths it can take through S and the path chosen are
displayed in figure 22:

22A 1 x 1 (unit) square
Z3A circe of radius 0.5
2Figure 19

37

Figure 21: Possible paths through S and path computed for Circle sofa

Ao —

\/ }j’
y-value

x-valug

Figure 22: Possible paths through S and path computed for Hammersley sofa

Running this code I get the following information in figure 23 (with the 5" run being
the data plotted above).

Note that the 4" run for the Circle sofa took only 13.97 seconds, quite faster than
the other run times of ~ 35 seconds. I believe this is because the 4" run resulted in
a path for the Circle sofa similar to the path computed in figure 20, which would be
faster to compute than the path computed in figure 21, which I believe takes ~ 35
seconds (because the length of the path is longer).

38

Sofa type: Square Circle Hammersley

Generation Time (sec) Generation Time (sec) Generation Time (sec)
0 11.12 0 34.87 80 119.31
0 11.14 0 35.04 97 147.95
0 11.13 0 34.9 99 159.02
0 11.07 0 13.97 92 135.69
0 11.19 0 35.16 89 117.38
Average: 0 11.13 0 30.788 91.4 135.87

Figure 23: Generations and run times for different sofa types

4.2 Brute force method

The brute force method evaluates (using checks) as many points as possible in S. It
stores the allowed points, from which algorithms such as dead-end filling and wall-
following can find the desired path.

4.2.1 Calculation of points in S

The C++ code has a similar structure to that of the code from Section 4.1?°, and
uses the same routines and functions from Section 4.1.1. The main difference is this
code includes a linked list structure®®. A linked list is a container to store data,
organised such that the first piece of data 'points’ to the second piece, the second
piece 'points’ to the third, and so on. I used this structure because of the large
amount of information I need to store in this program, and a linked list occupies very
little memory for this sort of task. In comparison, a vector, array or deque would
need to remember each piece of data separately, which, to gain any sort of level of
accuracy, leads to immediate memory problems.

The linked list code I use is;

class LinkedList

{

struct Node

double x;
Node *next;

}s

public:
LinkedList ()

Z5There is a major difference; in all of the following code I didn’t implement a Sofa class structure,
meaning the coordinates of the corners and the number of corners are two different arguments in
every routine and function

26Unless otherwise stated, all code relating to linked lists originates at
http://pastebin.com/yGh8hjnx (7th August 2015)

39

{ head = NULL;

}

void addValue(double val)

{
Node *n = new Node ();
n—>x = val;
n—>next = head;
head = n;

¥

double popValue ()

{
Node *n = head;
double ret = n—>x;
head = head—>next;
return ret;

¥

private:
Node xhead;

b

Where pop Value returns the value of the first (most recently added) element in the
linked list. Note that there is no destructor here - the purpose of this program was
to create a single linked list which contains all the path data for a particular sofa.

In theory, plotting all the points in the completed linked list should give graphs like
figures 20, 21, 22 with respect to the specific sofas, however it takes a large amount
of time to collect this data?”. To collect the data, I use the following code;

LinkedList xlist , ylist , zlist;

for(int i = 0; 1 < 200; ++1)

{
for(int j = 0; j < 200; ++j)
{
cent [0] = (double) i/100;
cent [1] = (double) j/100;
for (int k = 0; k < 628; ++k)
{

t = (double) k/100;
rot (s, ¢, t);

if (checks(cent, s, ¢) = 0)

xlist .addValue(cent [0]);
ylist .addValue(cent [1]);

27Tt would take approx. 9 days to run this program with 1,000,000 points per unit cube in S which
for some sofa shapes (like the Hammersley sofa) isn’t accurate enough

40

zlist .addValue(t);

output<<fixed <<setprecision(10)<<xlist .popValue()<<” "<<
ylist .popValue()<<” "<<zlist .popValue()<<endl;

}

rein(s, in, c¢);

Here T use 3 linked lists to store the x, y and z coordinates of any point that allows
the sofa to fit inside the hallway, centred at that point in S. For use in Sections 4.2.2
and 4.2.3, T output all the points (z, y, z) into an exterior file.

4.2.2 Dead-end filling

Dead-end filling[9] is a maze solving algorithm used when all the information about
the maze is known - when a full view of the maze is available (as it will be, using
data from Section 4.2.1). This algorithm identifies all dead ends in the maze, removes
them, then repeats until there are no more dead ends - where a dead end is defined
as having 0 or 1 neighbouring points (see figure 24). This should just leave a single
path which solves the maze - this is the path the sofa must take in S to manoeuvre
around the hallway (if it exists).

Figure 24: In the two dimensional case, an example of having 0 (LHS) and 1 (RHS)
neighbour(s) (where the green dot is a neighbour to the red, and the blue dots are
background)

In order to use this method, I need to have a clear idea on what the start and endpoints
of the path should be (so I don’t accidentally count them as dead ends). To do this,
I wrote the routine startfinish to identify the start and endpoints;

double aaa;

void startfinish (double a[], double strtpnt][], double endpnt][],
double s[][2], double in[][2], int n)

{

41

al0] = 0;
all] = 1;

bool finished = false;
while (! finished)
{ finished = fits(a, s, in, n, 1);

}

strtpnt [0] = a[0];
strtpnt [1] = a[l];
strtpnt [2] = aaa;
al0] = 1;

al[l] = 0;

aaa = 0;

bool finished2 = false;
while (! finished?2)
{ finished2 = fits(a, s, in, n, 0);

}

endpnt [0] = a[0];
endpnt [1] = a[l];
endpnt [2] = aaa;

This requires a modification to fits; it now takes an additional argument telling it
what direction it should be shifting in (0 for the z direction, 1 for the y direction)
once the sofa has done a full 360°rotation of being disallowed:

int cnt = 0;
bool fits (double a[], double s[][2], double in[][2], int n, int g)
{
rein(s, in, n);
aaa = (2xpi/10000)*cnt;
if (!checks(a, s, n))
{
rein(s, in, n);
while (!checks(a, s, n))
{
if (afg] > 2)
{ cout <<”’DOESN’T FIT”<<endl;

}

if (cnt > 10000)
rein (s, in, n);
alg] += 0.01;
cnt = 0;

return false;

else

42

rein(s, in, n);

rot(s, n, ((2xpi/10000)*cnt));
++cnt

return false;

}
}
return true;
}
else
{ return true;
}

With this framework, the code that determines where the dead end points are and

deletes them is?;

double a[7], b[7], c¢[7], rem[cnt][3];
int neigh, p = 0;
bool val, finished = false;

while (! finished)
{
val = true;
xxx = 0;
xlist .rewind ();
ylist .rewind ();
zlist .rewind ();

while (xxx < cnt)

{
neigh = 0;
al0] = xlist.getValue();
b[0] = ylist.getValue ();
c[0] = zlist.getValue ();

makeneigh(a, b, c);

if ((a[0] = strtpnt[0] && b[0] = strtpnt[1] &&
c[0] = strtpnt[2]) || (a[0] = endpnt[0] &&
b[0] = endpnt[1l] && c¢[0] = endpnt[2]))

{ neigh = 7;

}

else

{

for(int i = 1; 1 < 26; ++1)

{

E
)

xlist .rewind (
ylist .rewind (
zlist .rewind ();

while (xlist .hasValue())

{

)

28¢nt is the size of the linked lists zlist, ylist and zlist

43

if(a]i] = xlist.getValue() && b[i] =
i

ylist.getValue() && c[i] = zlist.getValue())
{
++neigh;
xlist .next ();
ylist .next ();
zlist .next ();
}
else
{
xlist .next ();
ylist .next ();
zlist .next ();
}

}

xlist .rewind ();
ylist .rewind ();
zlist .rewind ();

if (neigh = 0 || neigh = 1)
rem[p][0] = a[0];
rem|[p][1] = b[0];
rem[p][2] = c[0];
+=4p;

}

+HXXX

for(int j = 0; j < xxx; ++j)

{
xlist .next ();
ylist .next ();
zlist .next ();
}
}
for (int j = 0; j < p; ++j)
{
xlist .remove(rem[j][0]);
ylist .remove(rem[j]|[1]);
zlist .remove(rem[j][2]);
val = false;
}
if (val)
{ finished = true;
}

44

Note that a routine makeneigh is called - this is not the same makeneigh that ap-
peared in Section 4.1. This makeneigh makes 26 neighbours in a cube in S surrounding

a point (af0], bJ0], c[0]).

This code is untested due to the large amount of time it would take to collect the
necessary data required as input, but theoretically it works.

4.2.3 'Wall following

Another maze solving algorithm which has applications in this problem is wall-
following[9] - assuming the maze is simply connected, it is topologically equivalent to
a (closed) loop with an entrance and an exit. By using the rule 'move forward and
keep one hand on the wall to your left’ the maze can be successfully navigated.
Using this idea, I wrote a program that would determine where next to move
based on the sofas current position in S. I used the idea of neighbouring points from
Section 4.2.2; I labeled the points 1-26 and based on whether certain points were
disallowed? the program would determine where to move. In two dimensions, figure
25 provides a visual representation to some of the cases that need to be dealt with.

© @ @ © @ @

i

® © o ® © o

Figure 25: In two dimensions, 4 examples of allowed points (in blue) and disallowed
points (in red) and where the program determines where to move based on these points

29Gee figure 25

45

The dotted lines represent the 'wall’” of the maze - in reality, this is the boundary of
the path the sofa can take through S.

Since this was never fully tested, I don’t have results to display, however due to the

complexity of the code (and the number of different cases I would have to consider)

the method of building a path from a random walk (Section 4.1) is far superior®.

39Note that I don’t need to use the brute force calculation mentioned in Section 4.3.1 in order for
this code to function; at any point I just need to examine the 26 neighbours of the point in order
for the code to make a decision on where to move. However, I can use Section 4.3.1 as a database
of allowed points instead of preforming 26 calculations at every step in the path.

46

5 The Constrained Genetic Algorithm

In this section I combine code from Section 3 and Section 4.1 to create a genetic
algorithm subject to the constraint of fitting inside the hallway at all times; that is,
each sofa generated must have a path through S. This is the code which I use to
attempt the Moving Sofa problem. The reproduction operators I use are tournament
selection, two-point crossover and shift mutation.

There are many ways to implement this constraint in the genetic algorithm;

1. Setting the area of a sofa which doesn’t fit to 0

This effectively®' removes the sofa from the possible breeding population. The
disadvantage to this is the population becomes smaller each generation and
thus the members of the breeding population become less and less genetically
diverse. This method will be known as the nullifying constraint.

2. Halving & doubling the area

I implement the constraint of halving the area of any sofa which doesn’t fit
through the hallway, and doubling the area of any sofa that does. This has
an advantage over (1) in that no sofas are removed from the population - they
just become unlikely to be selected. This has the disadvantage however, of a
disallowed?®? sofa being selected over an allowed sofa if the area of the disallowed
sofa is particularly large®3. Note that this method falls victim to the same
problem as (1) - there is a small possibility of a disallowed sofa making it
into the breeding population if the group chosen in tournament selection are
all disallowed sofas. However I believe this method has an advantage over
(1) in that the population isn’t getting smaller each generation. Essentially
this method transforms the constrained genetic algorithm into an unconstrained
genetic algorithm - not only is the algorithm learning which sofas have a large
area, it also learns which sofas are best at fitting around the hallway. This
method will be known as the determined area modification (DAM) constraint.

3. Seeding the initial population

Some research[1] has shown that, since the space the genetic algorithm must
search for a global optimum?®* is so large, the algorithm finds an optimum faster
when placed in a region of the space that is known to be near the optimum - that
is, if the initial population is seeded with sofas close to the optimum, the genetic
algorithm can use these to converge to the optimum faster and more efficiently.

31Using tournament selection, it is possible for a sofa of area 0 to be selected for breeding, however
this will only happen when all the members of the group chosen for tournament have area 0 - an
event which tends to occur only when a large portion of the population has area 0 (see Section 3.2.2)
- in this case, this would mean the population is ’dying out’ or becoming too small to sustain itself

32Tn the sense that the sofa doesn’t fit around the hallway

33However this is unlikely to happen, as the area of the disallowed sofa would have to be at least
4 times larger than the area of the allowed sofa

34Tn this case the space is the set of all simple polygons which fit around the hallway

47

[1] evaluates the usefulness of seeding in the Travelling Salesman Problem and
the Job-Shop Scheduling Problem, but notes seeding works well with the former
and poorly with the later. With this in mind, I test the usefulness of seeding
for the Moving Sofa Problem.

5.1 A change to the way area is calculated

A major flaw in the routine makecorners® is it requires the sofa to be a star shaped

domain in order to accurately calculate the area®®. However the Hammersley (and
Gerver) sofa(s) are not star shaped domains and thus the genetic algorithm (as it
stands) would not realise this shape is close to the global optimum! There doesn’t
seem to be a universal method in calculating the area of an irregular simple polygon,
given an unordered list of its coordinates, so to fix this problem I instead calculate
the area of the convex hull®” of the sofa. The advantages of this method include;

e This method can always be done for any sofa shape I encounter.

e This method allows points to 'shrink’ back into the sofa with no negative effect
in the area; for example, the Hammersley sofa (using this method) has the same
area as a sofa with the centre filled in - however the former will fit around the
hallway whilst the later will not.

e This method broadens the set of possible sofas to test (both a good and bad
thing; more sofas mean a greater chance of finding the optimum, however more
sofas mean a longer computation time).

e In the case where a set of coordinates is ambiguous as to what sofa shape it
defines, this method would assign all possible sofa shapes the same area and
the only criterion to passing into the next generation would be whether it fits
around the hallway or not.

This method does have its disadvantages however;

e This method doesn’t actually calculate the area of a sofa (unless that sofa is
convex) and thus the selection operator will select those with the largest convex
hull, rather than largest area (which can be a good and bad thing; generally the
larger the sofa the larger the convex hull, however two sofas with points not in
the convex hull which look and act different have the same probability of being
selected).

e Only changing the corners in the convex hull has an effect on the area of the
sofa - thus changes to points which are not in the convex hull appears to have
no effect on the sofa’s selection probability, so points not in the convex hull
mightn’t be altered often.

35See Section 3.1
36Using the shoelace algorithm the points all need to be ordered clockwise or anticlockwise
3"The convex hull of a shape is the smallest convex set containing that shape

48

The new makecorners uses the gift-wrapping algorithm|8] to determine the convex
hull of a sofa, and then the shoelace algorithm to determine the area of the (now
ordered) convex hull. The C++ code is;

void rot(Sofa &s, double k);
void createin (Sofa &s);
void rein (Sofa &s);

double dist(Sofa p, int i, int j)

{ return ((p.outcorn_y(i) — p.outcorn_y(j))=*(p.outcorn_y (i) —
p.outcorn_y(j)) + (p.outcorn_x(i) — p.outcorn_x(j))x
(p.outcorn_x(i) — p.outcorn_-x(j)));

}

void makecorners(Sofa& p)

{

int w = 0;
int templ, temp?2;
p.sortorgstring ();

for (int i = 0; i < p.outnumec(); ++i)

{
templ = ((p.outorgstring(i)) % 1000) — 500;
temp2 = (p.outorgstring(i))/1000 — 500;
p.modcorn(w, (double) templ/250, (double) temp2/250);
=W
}

createin (p);

double miny = 100;
int county = 0;

for(int i = 0; i < p.outnumc (); ++i) //(1)
{
if (p.outcorn_y (i) <= miny)

if (p.outcorn_y (i) = miny)

if (p.outcorn_x (i) < p.outcorn_x(county))

{ county = 1i;
}
}
else
{
miny = p.outcorn_y (i);
county = i;
}
}
}
vector <int> cvexhull;
int temp2corn, tempcorn = county;

49

double angle, totangle = 0, minangle;
double cornx, corny;
bool finished = false;

while (! finished)
{

cvexhull.push_back (tempcorn);
minangle = 7;

for (int j = 0; j < p.outnumc (); ++j)

{

if(j !'= tempcorn)
cornx = p.outcorn_x(j) — p.outcorn_x(tempcorn)
corny = p.outcorn_y(j) — p.outcorn_y (tempcorn)
if (cornx = 0)

if (corny > 0)
{ angle = pi/2;

if (corny < 0)
{ angle = 3xpi/2;
}
}
else
{ angle = atan(corny/cornx);

}

if (cornx < 0)
{ angle += pi;

if (cornx > 0)

{
if (corny < 0)
{ angle += 2xpi;

if (angle <= minangle)
if (angle < minangle)

minangle = angle;
temp2corn = j;
}
else //(2)
{

if (dist (p, tempcorn, temp2corn) <
dist (p, tempcorn, j))

20

b

b

{ temp2corn = j;

}
}
}
}
}
tempcorn = temp2corn;
rein (p);

totangle 4= minangle;
rot(p, totangle);

if (tempcorn = county)
{ finished = true;
}
}
rein (p):
double area = 0;
for (int n = 0; n < cvexhull.size()—1; +4n)
{ area += abs(p.outcorn_x(cvexhull[n])*p.outcorn_y (cvexhull [n+1])
— p.outcorn_x (cvexhull [n+1])*p.outcorn_y (cvexhull [n]));
}

p.modarea(0.5%area);
cvexhull.clear ();

The routines rot, createin and rein respectively rotate the sofa by k radians, create
an initial sofa template before any modifications are made and reinitialise the sofa to
its template. Also note the central section marked by (1) which determines the point
with the minimum y coordinate (if this is not unique then the point with the minimal
z and y coordinate), which forms the starting point for the convex hull. Finally, if
three or more points are co linear whilst being chosen for the complex hull, the code
identifies this case (2) and chooses the further away point.

5.2 The nullifying constraint

This method isolates any sofa which doesn’t fit around the hallway (that is, 50 dif-
ferent random walks independently reach dead ends) and sets its area to 0. At the
end of each generation the program outputs every sofas area and the coordinates of
every sofa (separately).

Taking the average of every generations area I get the following graphs (figures 26
and 27) where figure 26 uses the original method to exactly calculate the area, and
figure 27 uses the gift wrapping algorithm to calculate the area of the convex hull.

o1

Average area per generation vs Generation

O

Generation

Average area per generation

Figure 26: On the LHS is the graph of average area per generation vs generation. On
the RHS is a sofa from the final generation with area 0.676992 and the Circle sofa in
the background

Although the graphs in figures 26 and 27 show the average area is increasing per
generation, this is actually the average area of allowed sofas and in reality after
generation 80 large numbers of sofas are being disallowed for reaching dead ends in
S. One possible way to combat this would be to have a larger initial population®® or
using a less totalitarian constraint.

Average area per generation vs Generation

age area per generation

\

\

= « =
Generation

Figure 27: On the LHS is the graph of average area per generation vs generation. On
the RHS is a sofa from the final generation with (denoted in green) the conver hull
area 0.76636 and the Circle sofa in the background

The difference in the two sofa shapes is apparent - as I predicted, the convex hull
method pays little attention to points not in the convex hull and thus they get ’left be-
hind’ as the sofa grows larger. In this scenario I believe the "old” method of calculating
the exact area works best.

5.3 The DAM constraint

This method isolates any disallowed sofa and halves (the number representing) the
area, whilst doubling (the number representing) the area of every allowed sofa. I tried

38The initial population here in both cases was 50 randomly generated (see Section 3.1) sofas

92

this version of the program with the convex hull method of calculating a sofas area
and found it didn’t work very well, so the data obtained here has used the previous
version of makecorners which calculates the exact area of a sofa. Like previous cases,
as the number of generations increase, the average area of a sofa also increases (figure
28):

Average area per generation vs Generation (all sofas)

25

<& PS4 ® ¢
2 . ..ﬁ: oo 0.0‘0.

S * * TR % e | e, T
» N

S S e 2 4% AN 0"’ s oe, e

g o0 o800, 0% Y0a W0OS0 L 0y Gt @ e AR I

.

51.5 * L, @ ‘A X ‘:"’0’ "’*”’

2 P ‘:\0‘5, ’: L . *

3 A

e oo * . .

© *

102

(]

[T

g

> p

<,

0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225
Generation

Figure 28: Average area of all sofas (allowed and disallowed) per generation vs Gen-
eration
The trend is perhaps better seen when I discard all disallowed sofas and take the

average area of just the allowed sofas (figure 29):

Average area per generation vs Generation (allowed sofas)

0.8 /
06

7~

Average area per generation

0.2 +

0 — . . B . . . - — ey e . .
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136 141 146 151 156 161 166 171 176 181 186 191 196 201 206 211

Generation

Figure 29: Average area of (allowed) sofas per generation vs Generation

Finally, the shape produced by the largest (allowed) sofas approximates (interest-
ingly) a rhombus, with an inradius of 0.5 (figure 30);

53

Figure 30: The largest allowed sofa, calculated with the DAM constraint, with the
incircle shown in red

5.4 Seeding the initial population

I ran the genetic algorithm twice with two different initial populations; the first
population composed of Circle sofas and the second composed of Hammersley sofas.
With both populations I use the convex hull method of calculating area®® and also I
use the DAM constraint from Section 5.3.

5.4.1 Changes made to original code from Section 3

Instead of using the routine makepop to randomly generate my population, I read
in data (the coordinates of the corners) from an external file then used search to
pizelize®® the sofas. From there I used the routines makeorgstring and makecorners
as usual. I made no modifications to the reproduction operators and path finding
algorithm™!.

The code to read in the data and pixelize the sofas is;

int numberofcorn;
double xxx, yyy;

cin>>numberofcorn;

for(int 1 = 0; 1 < 10; ++1)

{
s[1].modc(numberofcorn);
s[1].modcont (1.0);
s[1].modarea (0);

}

39With Hammersley sofas this is a necessity
40Modify the corners of a sofa so they fit on the grid
41To keep things fast I tried this method both times with a population of 10 sofas.

o4

double tempsearchl, tempsearch?2;

for(int i = 0; i < numberofcorn; ++i)
{

Cin >>XXX>>YYY ;

tempsearchl = search (xxx)

tempsearch2 = search(yyy);

for(int k = 0; k < 10; ++k)

{ s[k].modcorn(i, tempsearchl, tempsearch2);
}

}

Where:

e numberofcorn is the number of corners of the sofa (number of points of data to
be read in).

e scarch is the same search as is used in Section 3.1.

One change I did make to search, however, was for the Hammersley sofa initial popu-
lation; I found when the sofa was pixelized it could no longer turn around the corner
in the hallway - I believe the reason behind this is its edges are no longer smooth
enough to slide around the corner. To fix this, I made the grid 100 times more ac-
curate - that is, I made a 10,000 x 10,000 point grid in the same style as the 1,000 x
1,000 point grid.

5.4.2 Seeding the population with the Circle sofa
The resulting sofa I obtain is displayed in figure 31.

Due to the number of points (relatively) flat and close to the original Circle sofa at
the top, bottom, left and right sides of the sofa, I believe the genetic algorithm was
breeding a Square sofa from a Circle sofa. However more time and generations are
needed to explore this suspicion, as it could also be that the 2% increase in width in
the hallway from Section 4.1.1 is allowing a slightly bigger circle through.

95

s
I
e iy,
o i
i %
b 3
L *:;
e .
sl
e =
S %,
o)
i oy
£
Ty
we
b
) !
K
1
%
§)
o b
:
-
»
¥, 5 .
& =
iy i
2 1
i .3
4 i
L]
d
i
.
"
3
"
%
5,
L .
%
: ¥
. i
1 &
% “
i
LY
3 j
% «
1 tim
£ &
" i
y &
Y F
. A
s F
iy &
5, o
" §
. o
".. 3
& e
- 5
W)
P, i
CE
e -
Limng .
P S e
e B

Figure 31: The sofa (with corner points in blue) obtained by seeding the initial popu-
lation with Circle sofas (original circle sofa shown in red).

56

5.4.3 Seeding the population with the Hammersley sofa
The resulting sofa I obtained is displayed in figure 32 (TOP):

/ \

] \
i
|
]

Figure 32: (TOP) The sofa (with corner points in blue) obtained by seeding the initial
population with Hammersley sofas (original Hammersley sofa shown in red - neither
to scale). (BOTTOM) Close-up of the semicircular underside.

This is very close to the original Hammersley sofa (in red), mainly because the pro-
gram didn’t get to run for very long - running the program for a week it reached 60
generations*? - however some minor differences, mainly to the semicircular underside
(BOTTOM), have been made. The area of the convex hull of the original Hammers-
ley sofa inputted was 2.81812, whereas the area of the new genetically altered sofa is
2.83929 - this sofa exists with an area slightly greater than the Hammersley sofa but
smaller than the Gerver sofa.

More time for the program to run is clearly needed but I believe this program has made
a step in the right direction - with enough time this constrained genetic algorithm will
improve upon the Hammersley sofa and should approximate the Gerver sofa, which
is currently believed|[3] to be the optimum and solution to the Moving Sofa Problem.

42 As opposed to the ~ 500 generations the program ran with the Circle sofa in Section 5.4.2

o7

6 Problems encountered & future modifications

Various problems that I encountered along the way are;

1. Inbreeding

For the 3 types of selection I considered in Section 3.2, each time I would run into
the problem of inbreeding - that is, two parents having an identical organism
string. This results from the fact that a sofa can be selected more than once (i.e.
it can breed more than once) and thus there is a probability that a sofa can be
chosen to breed with itself during crossover. This itself doesn’t raise a problem,
however the two children produced are genetically identical to the parent. Thus,
without changing (so far) the parent sofa has been replicated twice into the next
generation®®. This will lead to a decrease in diversity and thus convergence on a
solution will occur slower. This problem is also similar to genetic drift which in
turn could lead to fization - meaning some (not necessarily the fittest) solutions
would dominate the population.

To try combat this, in the various selection algorithms I considered I've included
a counter that prevents any sofa from being in the breeding population more
than a fixed number of times. Since this can still lead to inbreeding (although
less often) in the crossover algorithms steps can be taken to prevent two parents
of ’similar’ genetic structure from breeding®*.

2. A better path finding algorithm

The current path finding algorithm I use (from Section 4.1) was the best one I
could create, but there could be a better path finding algorithms that are faster
or more accurate.

3. The constrained genetic algorithm

As mentioned in Section 5, applying a constraint to the genetic algorithm to get
it to function correctly was a tricky process with many (figurative and literal)
dead ends. It’s possible there is a different system of constraint that works
better with this problem and leads to a more accurate approximation of the
global optimum.

Modifications that I could make to the code in the future are;

1. Speed

Of course the modification that can always be made is speed. I would hope that
I could increase the code’s efficiency at points to make the overall generation
time lower (see (2) as well).

43The mutation operator will change the organism strings of both children uniquely (probably)
however not by a large amount

“4However this could lead to problems - the whole point of a genetic algorithm is for solutions to
converge to a single optimum

o8

. Parallel computing

Certain points in the code (such as crossover, mutation, testing a sofa to find a
path, transferring genetic information from the old children to the new parents)
can be run in parallel, thus reducing the running time of the code.

. Accuracy

The other modification that can always be made in algorithms like these is
accuracy. With more computing power, I could have a finer grid, a smaller step
size in Section 4.1.2, more accurate hallway dimensions, and of course a better
calculated optimum area.

. Better and more fitting reproduction operators

With more time to work on this project I could determine which of the various
operators mentioned in Section 3 work best together to solve this problem, and
explore more of the crossover operators from Sections 3.3.2 - 3.3.5.

. Variations on the Moving Sofa Problem

All the work and results obtained are specifically for the Moser (or L-shaped)
Hallway, but there are many variations[4] on this - the U-shaped Hallway, the
S-shaped Hallway, the double L-shaped Hallway, etc. Of course this problem
can be extended into the more practical 3 dimensions, but twisting and other
rotations will have to be accounted for.

29

7 Thanks & Acknowledgement

Thanks to the TCD School of Mathematics for providing the resources and funding
to allow me to do this project. Thanks to cplusplus.com, cppreference.com and
stackoverflow.com for answering my questions on the details of coding. Thanks to
Dr. Mike Peardon for being my supervisor for the duration of this project and giving
me literature, sources of information and guidance, and thanks to Sunny for making
the days off the best days of summer.

60

8
1]

2]

[7]
8]
[9]

References

Stephen Oman & Pédraig Cunningham. Using Case Retrieval to Seed Genetic
Algorithms. Dept. of Computer Science, Trinity College, Dublin 2, Ireland.

A. E. Eiben. Genetic algorithms with multi-parent recombination. PPSN III:
Proceedings of the International Conference on Evolutionary Computation. The
Third Conference on Parallel Problem Solving from Nature: 78-87, 1994.

Joeseph L. Gerver. On moving a sofa around a corner. Geometriae Dedicata, Vol.
42, No. 3, pp 267-283, 1992.

Kiyoshi Maruyama. An approzimation method for solving the sofa problem. 1971.

James D. Sebastian. Problem 66-11. SIAM Review, Vol. 12, No. 4, pp, 582-586,
1970.

Neal R. Wagner. The sofa problem. The American Mathematical Monthly, Vol.
83, No. 3, pp. 188-189, Mar. 1976.

Wikipedia. Genetic Algorithms.
Wikipedia. Gift wrapping algorithm.

Wikipedia. Maze solving algorithm.

61

9 Select code used in project

9.1 The Unconstrained Genetic Algorithm

For the unconstrained genetic algorithm, sofagen9.cpp approximates the grid:

#include <sys/time.h>
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <fstream>
#include <iomanip>
#include <utility >
#include <random>
#include <vector>
#include <cmath>
#include <ctime>
using namespace std;
static bool seeded = false;

#define pi 3.1415926535897932384626433832795028841971693993751
ofstream output (”RESULTS3”);
ofstream output2 (”RESULTS4”);

typedef class Sofa
{
public:
int c;
//number of corners
vector <int> orgstring;
//organism string
double corn[200][2];
//coordinates of cormners
double area;

//area

void modc(int);

//modifies c

void modarea(double);

//modifies area

void modorgstring (int);

//modifies allele with int

void modcorn(int, double, double);
//modifies corner locations

void clearorgstring ();

//clears organism string

void eraseorgstring (int);
//erases position int from orgstring
void sortorgstring ();

//sorts orgstring

int outnumec();
//outputs number of corners

62

double outarea ();

//outputs area

int outorgstring(int);
//outputs allele int

double outcorn_x(int);
//outputs x coord corner int
double outcorn_y (int);

//outputs y coord corner int
} Sofa;

void Sofa :: modc(int a)
{ c=a;

}

void Sofa :: modarea(double a)
{ area = a;

}

void Sofa :: modorgstring (int a)
{ orgstring .push_back(a);

}

void Sofa :: modcorn(int a, double b, double d)

{
cornfa][0] = b;
cornfa][l] = d;

}

void Sofa :: clearorgstring()
{ orgstring.clear ();

}

void Sofa :: eraseorgstring(int a)
{ orgstring.erase(orgstring .begin()+a);

}

void Sofa :: sortorgstring ()
{ sort (orgstring .begin (), orgstring.end());
}

int Sofa :: outnumc/()

{ return c;

}

double Sofa :: outarea()

{ return area;

}

int Sofa :: outorgstring(int a)
{ return orgstring[a];

}

double Sofa :: outcorn_x(int a)
{ return corn[a][0];

63

}

double Sofa :: outcorn_y(int a)
{ return cornfa][l];

}

static void seed()

{

struct timeval tv;
gettimeofday (&tv, NULL);
srand (tv.tv_usec);

}
double ran()
{
if (Iseeded)
seed ();
seeded = true;
}
return ((double) rand() / (RANDMAX + 1.0));
}

double point[1000];

double search (double a)

{
double min = 10;
int cnt;
for(int i = 0; i < 1000; ++i)
{
if (abs(a — point[i]) < min)
cnt = i;
min = abs(a — point[i]);
}
}
return point[cnt];
}
void makepop(Sofa a[50])
{

double pos, r2;
for(int i = 0; i < 50; ++i)
{

af[i].modc(10);

r2 = 0.25%ran ();

while (r2 = 0)

{ r2 = 0.25xran ();

}

for (int j = 0; j < 10; ++j)

64

pos = ((0.5 — r2)xran() + 12);
a[i].modcorn(j, search(posxcos((double) (2xpi/10)*j)),
search (posxsin ((double) (2xpi/10)%j)));

}
}
}
void makeorgstring (Sofa& p)
{
int temp;
for (int k = —500; k < 500; ++k)
{
for(int 1 = —500; 1 < 500; ++1)
{
for (int m = 0; m < p.outnumc (); +Hn)
{
if (p.outcorn_x(m) = (double) 4xk/1000 && p.outcorn_y (m)
— (double) 4x1/1000)
{
p. modorgstring (1000%(1+500)+(k+500));
break ;
}
}
}
}
}
void makecorners(Sofa& p)
{

int i = 0, w= 0;
int templ, temp?2;

for (int i = 0; i < p.outnumec(); ++i)

{
templ = ((p.outorgstring(i)) % 1000) — 500;
temp2 = (p.outorgstring(i))/1000 — 500;
p.modcorn(w, (double) templ/250, (double) temp2/250);
=W
}
int pl, ql = 0;
double cornxl [p.outnumc ()], cornyl[p.outnumec ()];

double anglel = 0;
vector < pair < double, int > > vecl;

for(int jl1 = 0; jl < p.outnumc(); ++jl)

{
cornxl[jl] = p.outcorn_x(jl);
cornyl[jl] = p.outcorn_y (jl);
anglel = atan(cornyl[jl]/cornx1[jl1]);

if (cornx1[jl] < 0 && cornyl[jl] > 0)
{ anglel 4= pi;

65

}

if (cornx1[jl] < 0 && cornyl[jl] <= 0)
{ anglel 4= pi;

}

if (cornx1[jl] >= 0 && cornyl[jl] < 0)
{ anglel += 2xpi;

}

vecl.push_back (make_pair (anglel, jl));

}

sort (vecl.begin (), vecl.end());

for (vector < pair < double, int > > :: iterator itl = vecl.begin();
itl != vecl.end(); ++itl)
{

pl = (%itl).second;
p.modcorn(ql, cornxl[pl], cornyl[pl]);

++al;
}
double area = 0;
for (int n = 0; n < p.outnumc()—1; ++n)
{ area += abs(p.outcorn_x(n)*p.outcorn_y(n+1) — p.outcorn_x (n+1)

*p.outcorn_y(n));

}

p.modarea (0.5%area);

}

void equatesofas(Sofa a, Sofa &b)

{
int count = 0;
for (int i = 0; i < a.outnumc (); ++i)
{
b.modorgstring (a.outorgstring (i));
++count ;

}

b.modc(count);

}

void mutation (Sofa &p)

{

p.sortorgstring ();

int shift = p.outnumc()*ran ();
int flip = p.outorgstring (shift);
int dir = 4xran(), count = 0;

p.eraseorgstring (shift);

while (count < 4)

66

if (dir = 0)
if (flip < 998999)

p.modorgstring (flip +1000);

count = 5;
¥
else
{
dir = 1;
++Hcount ;
}
¥
if (dir = 1)
if (flip > 1)
p.modorgstring (flip —1);
count = 5;
}
else
{
dir = 2;
“++count ;
}
}
if (dir = 2)
if (flip > 1001)
p.modorgstring (flip —1000);
count = 5;
}
else
{
dir = 3;
++count ;
¥
}
if (dir = 3)

if (flip < 999999)

p.modorgstring (flip +1);

count = 5;
}
else
{
dir = 0;
++count ;

67

}

p.sortorgstring ();

}

void emptysofa(Sofa &p)
{ p.clearorgstring ();

}

int main ()
{
clock_t start = clock ();
Sofa s[50], snew[50], schild[50];

for (int i = —500; i < 500; ++i)
{ point [i4+500] = (double) 4xi/1000;
}

makepop (s);
for (int j = 0; j < 505 ++j)
{
makeorgstring (s[j]);
makecorners(s[j]);

}

cout<<”Finished making initial population.”<<endl;

int generation = 0;
while (generation < 10000)

//*%Selection *x
vector < pair < double, int > > sel;
int choices[50] = {0};
int choosel, choose2;
for(int j = 0; j < 50; ++j)
{
bool finishedsel = false;
while (! finishedsel)
{
for (int i = 0; i < 5; ++i)
{
choosel = 50xran ();
sel .push_back (make_pair (s [choosel].outarea(),
choosel));

}

sort (sel.begin(), sel.end());

choose2 = sel.back().second;

if (choices[choose2] < 3)
++choices [choose2];

finishedsel = true;

68

sel.clear ();

}

sel.clear ();

}

equatesofas (s[choose2], snew|[j]);
makecorners (snew [j]);

}

//**xCrossover *x

int aa = 0;

while (aa < 50)

{
int chol = 50%ran ();
int cho2 = 50%ran ();

while (snew [chol]. outarea () = snew[cho2].outarea())

{
chol = 50x*ran ();

cho2 = 50*ran();

}

snew [chol]. sortorgstring ();
snew [cho2]. sortorgstring ();

int crossl = 1000000*ran ();
while (crossl = 0 || crossl > 999980)
{ crossl = 1000000*ran ();

}

int cross2 = (1000000—crossl)*ran() + crossl;
while (cross2 = crossl || cross2 > 999995)

{ cross2 = (1000000—crossl)sran() + crossl;
}

int countl = 0, count2 = 0;

for(int i = 0; i < snew[chol].outnumec(); ++i)

{

if (snew[chol].outorgstring(i) <= crossl)

schild [aa]. modorgstring (snew [chol]. outorgstring (i));
4++countl ;

}

for (int j = 0; j < snew[cho2].outnumec (); ++j)
{
if (snew[cho2]. outorgstring (

j) > crossl &
snew [cho2]. outorgstring (]

) <= cross2)

schild [aa]. modorgstring (snew [cho2]. outorgstring (j));
++countl;

69

}

}

for (int k = 0; k < snew|[chol].outnumec(); ++k)
{
if (snew[chol].outorgstring (k) > cross2)
{
schild [aa]. modorgstring (snew [chol]. outorgstring(k));
++countl;

}

for (int ii = 0; ii < snew][cho2].outnumec(); ++ii)

{

if (snew[cho2]. outorgstring(ii) <= crossl)

schild [aa+1]. modorgstring (snew [cho2]. outorgstring (ii));
++count?2 ;
}

}

for (int jj = 0; jj < snew][chol].outnumec(); ++jj)
{
if (snew[chol].outorgstring(jj) > crossl &&
snew [chol]. outorgstring(jj) <= cross2)

schild [aa+1]. modorgstring (snew [chol]. outorgstring (jj));
++count?2 ;
}

}

for (int kk = 0; kk < snew[cho2].outnumec (); ++kk)

{

if (snew|[cho2].outorgstring (kk) > cross2)

{

schild [aa+1]. modorgstring (snew [cho2]. outorgstring (kk));
++count?2;

}
}

schild [aa].mode(countl);
schild [aa+1].modec(count2);

schild [aa].sortorgstring ();
schild [aa+1].sortorgstring ();

makecorners (schild [aa]);
makecorners (schild [aa+1]);

aa = aa-+2;

//*xMutation s
for (int hh = 0; hh < 50; ++hh)

{

70

mutation (schild [hh]);
makecorners(schild [hh]);

}

//**xNew generation s
for (int qq = 0; qq < 50; ++qq)
{ emptysofa(s[qq]);

}

for (int ss = 0; ss < 50; ++ss)
{ equatesofas (schild [ss], s[ss]);

}

for (int tt = 0; tt < 50; ++tt)
{ makecorners(s[tt]);

}

for (int uu = 0; uu < 50; +tuu)
{ emptysofa (snew [uu]);

}

for (int vv = 0; vv < 50; +4vv)
{ emptysofa(schild [vv]);

if (generation % 10 = 0)

cout<<"End of generation "<<generation<<” time for
generation is ”"<<(double) (clock() — start)
/CLOCKS_PER_SEC<<” seconds”<<endl;

for (int iiii = 0; iiii < 50; ++iiii)
{ output2<<fixed<<setprecision(10)<<s[iiii].outarea()<<” ”;

}

output2<<endl;

for (int jjjj = 05 jjjj < 505 ++jjjj)

{
for (int kkkk = 0; kkkk < s[jjjj].outnumec(); ++kkkk)
{ output<<s[jjjj|.outcorn_x (kkkk)<<” "<<
s[jjjj].outcorn_y (kkkk)<<endl;
}
output<<endl;
}
}
++generation ;

}

cout<<”’Total program time: "<<(double) (clock () —
start) /CLOCKS_PER-SEC<<” seconds”<<endl;
return 0;

71

9.2 The Path Finding Algorithm

Building a

path using a random walk; sofagenpath4.cpp:

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<sys/time.h>
<functional >
<algorithm >
<iostream>
<iterator>
<cstdlib >
<fstream>
<iomanip>
<utility >
<vector>

#include <cmath>

#include <ctime>

using namespace std;

static bool seeded = false;

#define pi 3.1415926535897932384626433832795028841971693993751
ofstream outputx (”RESULTSZ”);

typedef class Path
{
public:

int num;

//length and number of points in path

vector <double> initial;

//starting point of path

vector <int> orgstring;

//organism string of path

void modnum(int);

//mod num

void modorgstring (int);

//adds int to orgstring

void eraseorgstring ();

//erase element int from orgstring

void modinitial (double, double, double);
//modify inital point of path

int outnum ();

//outputs num

int outorgstring(int);

//outputs allele int

double outinitial (int);

//outputs coordinate int of initial point of path
} Path;

void Path
{ num = a;

}

modnum (int a)

72

void Path :: modorgstring(int a)
{ orgstring . push_back(a);

}

void Path :: eraseorgstring ()
{ orgstring . pop_back ();
}

void Path :: modinitial (double a, double b, double c¢)

{
initial .push_back(a);
initial.push_back(b);
initial.push_back(c);

}

int Path :: outnum ()

{ return num;

}

int Path :: outorgstring(int a)
{ return orgstring[al;

}

double Path :: outinitial (int a)
{ return initial [a];

}

static void seed()

{
struct timeval tv;
gettimeofday (&tv, NULL);
srand (tv.tv_usec);

}

double ran()

{
if (!seeded)

seed ();
seeded = true;

}

return ((double) rand() / (RANDMAX + 1.0));
}

bool hallway(double a[][2], int i)

if(ali][0] > 2.01 || a[i][1] > 2.01)

{ return false;

}

if(ali][0] < 0.99 && a[i][l] < 0.99)
{ return false;

}

73

return true;

}
void rot(double b[][2], int n, double k)
{
double j = 0;
while (j < k)
for(int i = 0; i < n; 4++i)
{
b[i][0] = (cos(2xpi/10000)xb[i][0] +
sin (2% pi/10000)«b[i][1]);
b[i][1] = (cos(2xpi/10000)«b[i][1] —
sin (2% pi/10000)*b[1][0]);
j += 2xpi/10000;
}
}

bool checks(double al, double a2, double a3, double b[][2], int n)
{
rot (b, n, a3);
for(int i = 0; i < n; ++i)

{
b[i][0] = al + b[i][0]
b[i][1] = a2 + b[i][1]
}
for(int j = 0; j < n; ++j)
{
if (thallway (b, j))
{ return false;
}
}
return true;
}
void rein (double a[][2], double c[][2], int n)
{
for(int i = 0; i<n; ++i)
{
ali][0] = c[i][0]
ali][1] = c[i][1]
}
}

void makeneigh (double a[], double b[], double c[])
{

al[l] = a[0] + 0.001;
[1] = b[0] — 0.001;
c[1] = ¢[0] + 0.001;

al[2] = a[0] + 0.001;

4

}

w
I

¢[0] 4+ 0.001;

b[0] — 0.001;

¢[0] 4+ 0.001;

al0] + 0.001;

b[0] — 0.001;

al0] + 0.001;

b[0] — 0.001;

[0] + 0.001;

bool fits (double nx[], double ny[], double nz[], double b[][2],

{

nx [0]
ny [0]
nz [0]

double in[][2], int n)

0;
1;
0;

makeneigh (nx, ny, nz);
rein(b, in, n);

if

(!checks(nx[0], ny[0], nz[0], b, n))

rein(b, in, n);
while (!checks(nx[0], ny[0], nz[0], b, n))

{
if (ny[0] > 2)

cout << "DOESN’'T FIT” << endl;
rein(b, in, n);
return false;
}
if (nz[0] > 2xpi)
ny[0] += 0.1;
nz [0] = 0;

rein(b, in, n);

else

5

nz[0] += 0.1;
rein(b, in, n);
}
}

return true;

{ return true;

vector <double> modwalk(Path &p, double nx[], double ny[], double nz[])
{

nx[0] = p.outinitial (0);

ny [0] = p.outinitial (1);
nz[0] = p.outinitial (2);
int temp;
vector <double> a;
a.clear ();

for(int i = 0; i < p.outnum (); ++i)
{
temp = (p.outorgstring(i));
makeneigh (nx, ny, nz);
nx[0] = nx[temp];
ny [0] = ny[temp];
nz [0] = nz[temp];

.push_back

(1)
.push_back (

(

(

0]);
0]);
0]);:

utnum ());

n

ny
.push_back (nz
.push_back (p

[
[
[

SRR

X

return a;

}

int notdir [20];

bool makewalk (Path &p, int r, double nx[], double ny[], double nz[],
double b[][2], double in[][2], int n, bool first)
{

bool notfinished = true;
int dir, count, godir = 5, countdir = 0;
if(first)

nx[0] = p.outinitial (0);

ny[0] = p.outinitial (1);

nz [0] = p.outinitial (2);

count = 0;

notdir [r] = 0;

else

76

nx [0] = modwalk(p, nx, ny, nz)[0];
ny [0] = modwalk(p, nx, ny, nz)[1l];
nz[0] = modwalk(p, nx, ny, nz)[2];
count = modwalk(p, nx, ny, nz)[3];

}

while (notfinished)
{
makeneigh (nx, ny, nz);
rein(b, in, n);
notfinished = checks(nx[godir], ny[godir], nz[godir], b, n);
if (notfinished)
{

nx [0] = nx[godir];
ny [0] = ny[godir];
nz [0] = nz[godir];
p.modorgstring (godir);
4++count ;

if (ny[0] < —0.25)

p.modnum (count);
cout <<"DONE’<<endl ;
return true;

}

else

{
dir = 8xran ();
while (dir = 0 ||
{ dir = 8*ran();
}

dir = notdir[r] || dir = godir)

makeneigh (nx, ny, nz);

rein (b, in, n);

notfinished = checks(nx[dir], ny[dir], nz[dir], b, n);
if (notfinished)

{

nx [0] = nx[dir];
ny [0] = ny[dir];
nz[0] = nz[dir];
p.modorgstring (dir);

if (dir = 7)
if (countdir < 100)

godir = dir;
4++countdir ;

}

else
{ godir = 5;
}

7

}

else
{ godir = dir;

}

notdir [r] = 0;
++Hcount ;

if(ny[0] < —0.25)

p.modnum (count);
cout <<"DONE’<<endl ;
return true;

else
{ notdir [r] = dir;

}

p .modnum (count);
return false;

}

void printpath(Path p, double nx[], double ny[], double nz[])

{

int temp;

nx [0] = p.outinitial (0);
ny [0] = p.outinitial (1);
nz[0] = p.outinitial (2);

for(int j = 0; j < p.outnum (); ++j)
{
makeneigh (nx, ny, nz);
temp = p.outorgstring (j);
outputx<<fixed<<setprecision (10)<<nx [temp]<<” "<<ny [temp]
<<” 7<<nz[temp]<<endl;

nx [0] = nx[temp];
ny [0] = ny[temp];
nz[0] = nz[temp];
}
outputx<<endl;

}

bool atdeadend (Path p, int r, double nx[], double ny[], double nz[],
double b[][2], double in[][2], int n)
{

nx [0] = modwalk(p, nx, ny, nz)[0];

ny [0] = modwalk(p, nx, ny, nz)[1];

nz[0] = modwalk(p, nx, ny, nz)[2];
y

makeneigh (nx, ny, nz);
int count = 0;

78

rein(b, in, n);

if (!checks(nx[1],
{ +tcount;

}

else

{ return false;
}

rein(b, in, n);
if (! checks(nx[2],
{ +4+count;

}

else
{ return false;

}

rein(b, in, n);

if (!checks(nx[3],
{ ++count ;

}

else

{ return false;
}

rein(b, in, n);
if (! checks(nx[4],
{ ++count ;

}

else

{ return false;

}

rein(b, in, n);

if (! checks(nx[5],
{ +tcount;

}

else

{ return false;
}

rein(b, in, n);
if (! checks(nx[6],
{ +4+count;

}

else
{ return false;

}

rein(b, in, n);
if (checks(nx|[7],
{ ++count;

}

else

{ return false;

ny [2],

ny [4],

ny [6],

nz[1],

nz[2],

nz[3],

nz 4],

nz[5],

nz|[6],

nz[7],

79

}

}

if (count = 7)
{ return true;

}

int main ()

{

int ¢, generation = 0;
cin>>c;
double s[c][2], in[c][2];

for (int iii = 0; iii < c¢; 4++iii)
{
cin>>s [111][0]>>s[iii][1];
in[iii][0] = s[iii][0];
in[iii][1] = s[iii][1];

}

double neighx [8], neighy[8], neighz[8], tneighx[8], tneighy[8],
tneighz [8];

Path p[50];

bool start = true;

bool finished = false;

clock_t startt = clock ();
if (! fits (tneighx, tneighy, tneighz, s, in, c¢))

cout<<’Sofa doesn’t fit at start of hallway — exiting
program”<<endl ;
return —1;

}

for(int i = 0; i < 50; ++i)
{ pl[i]. modinitial (tneighx [0], tneighy[0], tneighz[0]);
}

while (! finished)
{
for(int r = 0; r < 50; 4++r)
{
if (makewalk(p[r], r, neighx, neighy, neighz, s, in, c,
start))
{

finished = true;

printpath (p[r], neighx, neighy, neighz);

cout<<”Finished on generation "<<generation<<” with time
"<<(double) (clock() — startt)/CLOCKS_PERSEC<<”
seconds”’<<endl;

break;

30

}

return

start

false;
f(!finished)

if (generation % 10 = 0)
{ cout <<"GENERATION "<<generation<<endl;

}
if (generation % 10 = 0)
int dedend = 0;
for (int t = 0; t < 50; ++t)
{
if (atdeadend (p[t], t, neighx, neighy, neighz, s, in,
c))
{ +4+dedend;
¥
}
if (dedend = 50)
{
cout <<’DEAD END’<<endl;
for(int i = 0; i < 50; ++i)
{ printpath (p[i], neighx, neighy, neighz);
}
finished = true;
}
}

++generation;

0;

9.3 The Constrained Genetic Algorithm
Here I seed the initial population and use the DAM constraint; (sofapath8.cpp)

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<sys/time.h>
<functional >
<algorithm >
<iostream>
<iterator>
<cstdlib>
<fstream>
<iomanip>
<utility >
<random>
<vector>
<cmath>

81

#include <ctime>
using namespace std;
static bool seeded = false;

#define pi 3.1415926535897932384626433832795028841971693993751

ofstream output (?RESULTS”);
ofstream output2 (?RESULTS2”);

typedef class Sofa
{
public:
int c;
//number of corners
vector <int> orgstring;
//organism string

double corn[500][2], in[500][2];
//coordinates of corners & initial

double area, cont;
//area, cont

void modc(int);

//modifies ¢

void modcont (double);
//modifies cont

void modarea(double);
//modifies area

void modorgstring (int);
//modifies allele with int

void modcorn(int, double, double);

//modifies corner locations

void modin(int , double, double);
//modifies initial corner locations

void clearorgstring ();
//clears organism string
void eraseorgstring (int);

coordinates

//erases position int from orgstring

void sortorgstring ();
//sorts orgstring

int outnumec ();

//outputs number of corners
double outcont ();

//outputs cont

double outarea ();

//outputs area

int outorgstring (int);
//outputs allele int

double outcorn_x(int);
//outputs x coord corner int
double outcorn_y (int);
//outputs y coord corner int
double outin_x(int);
//outputs initial x coord int
double outin_y (int);

82

//outputs initial y coord int
} Sofa;

void Sofa :: modc(int a)
{ ¢ =a;

}

void Sofa :: modcont(double a)
{ cont = a;

}

void Sofa :: modarea(double a)
{ area = a;

}

void Sofa :: modorgstring (int a)
{ orgstring . push_back(a);

}

void Sofa :: modcorn(int a, double b, double d)
{
corn[a][0] = b;
cornla][l] = d;

}

void Sofa :: modin(int a, double b, double d)
{
in[a][0] = b;
infa][l] = d;
}

void Sofa :: clearorgstring ()
{ orgstring . clear ();

}

void Sofa :: eraseorgstring(int a)
{ orgstring.erase (orgstring .begin()+a);

}

void Sofa :: sortorgstring()
{ sort (orgstring.begin (), orgstring.end());

}

int Sofa :: outnumc/()

{ return c;

}

double Sofa :: outcont ()
{ return cont;

}

double Sofa :: outarea()
{ return area;

}

33

int Sofa :: outorgstring(int a)

{ return orgstring|al;

}

double Sofa :: outcorn_x(int a)
{ return corn[a][0];

}

double Sofa :: outcorn_y(int a)
{ return cornfa][l];

}

double Sofa :: outin_x(int a)
{ return infa][0];

}

double Sofa :: outin_y(int a)
{ return infa][1];

}

typedef class Path
{
public:

int num;

//length and number of points in path

vector <double> initial;

//starting point of path

vector <int> orgstring;

//organism string of path

void modnum(int);

//mod num

void modorgstring (int);

//adds int to orgstring

void eraseorgstring ();

//erase element int from orgstring

void modinitial (double, double, double);
//modify inital point of path

void clearpath ();

//clears path information

int outnum ();

//outputs num

int outorgstring(int);

//outputs allele int

double outinitial (int);

//outputs coordinate int of initial point of path
} Path;

void Path :: modnum(int a)
{ num = a;

}

84

void Path :: modorgstring(int a)
{ orgstring . push_back(a);

}

void Path :: eraseorgstring ()
{ orgstring . pop_back ();

}

void Path :: modinitial (double a, double b, double c¢)
{
initial .push_back(a);
initial.push_back(b);
initial.push_back(c);

}

void Path :: clearpath ()

{
num = 0;
initial.clear ();
orgstring.clear ();

}

int Path :: outnum ()

{ return num;

}

int Path :: outorgstring(int a)
{ return orgstring[a];

}

double Path :: outinitial (int a)
{ return initial[a];

}

static void seed()

{

struct timeval tv;
gettimeofday (&tv, NULL);
srand (tv.tv_usec);

}

double ran ()

{
if (!seeded)

seed ();
seeded = true;

}

return ((double) rand() / (RANDMAX + 1.0));
}

double point[10000];

85

double search(double a)
{

double min = 10;

int cnt;

for(int i = 0; 1 < 10000; ++i)
{

if (abs(a — point[i]) < min)

cnt = i;
min = abs(a — point[i]);

}

return point[cnt];

}

void makeorgstring (Sofa& p)

{

int temp;
for (int k = —5000; k < 5000; ++k)
{
for (int 1 = —5000; 1 < 5000; 4+1)
{
for (int m = 0; m < p.outnumc (); ++m)
{
if (p.outcorn_x (m) = (double) 4xk/10000 &&
p.outcorn_y (m) = (double) 4x1/10000)
{

p.modorgstring (10000 (1+5000)+(k+5000));
break ;

}

void rot(Sofa &s, double k);
void createin (Sofa &s);
void rein(Sofa &s);

double dist(Sofa p, int i, int j)

{ return ((p.outcorn_y(i) — p.outcorn_y(j))*(p.outcorn_y (i) —
p.outcorn_y(j)) + (p.outcorn_x(i) — p.outcorn_x(j))
x(p.outcorn_x (i) — p.outcorn_x(j)));

}

void makecorners(Sofa& p)

{

int w = 0;
int templ, temp2;
p.sortorgstring ();

for(int i = 0; i < p.outnumc(); ++i)

{

36

templ = ((p.outorgstring(i)) % 10000) — 5000;

temp2 = (p.outorgstring(i))/10000 — 5000;

p.modcorn(w, (double) templ/2500, (double) temp2/2500);
+HHw;

}

createin (p);

double miny = 100;
int county = 0;

for (int i = 0; i < p.outnumec(); ++i)

{

if (p.outcorn_y (i) <= miny)
if (p.outcorn_y (i) = miny)

if (p.outcorn_x(i) < p.outcorn_x(county))
{ county = ij;
}
}
else
{
miny = p.outcorn_y(i);
county = i;

}

vector <int> convexhull;

int temp2corn, tempcorn = county;
double angle, totangle = 0, minangle;
double cornx, corny;

bool finished = false;

while (! finished)
{

convexhull.push_back (tempcorn);
minangle = 7;

for(int j = 0; j < p.outnumc(); ++j)

{

if (j '= tempcorn)
cornx = p.outcorn_x(j) — p.outcorn_x (tempcorn);
corny = p.outcorn_y(j) — p.outcorn_y (tempcorn);
if (cornx = 0)

{

if (corny > 0)

{ angle = pi/2;
if (corny < 0)

{ angle = 3xpi/2;

87

}

else
{ angle = atan(corny/cornx);

}

if (cornx < 0)
{ angle += pi;

if (cornx > 0)

if (corny < 0)
{ angle += 2xpi;

if (angle <= minangle)
if (angle < minangle)

minangle = angle;
temp2corn = j;

}

else

{
if (dist (p, tempcorn, temp2corn) <
dist (p, tempcorn, j))
{ temp2corn = j;

}

}

tempcorn = temp2corn;

rein(p);
totangle += minangle;
rot (p, totangle);

if (tempcorn = county)
{ finished = true;
}

}

rein(p);

double area = 0;
for (int n = 0; n < convexhull.size()—1; ++n)

38

{ area += abs(p.outcorn_x(convexhull[n])=x
p.outcorn_y (convexhull [n+1]) — p.outcorn_x(convexhull [n+1])
*p.outcorn_y (convexhull [n]));

}

double tempcont = p.outcont ();
p.modarea (0.5% areaxtempcont);
convexhull. clear ();

}

void equatesofas(Sofa a, Sofa &b)

{
int count = 0;
for (int i = 0; i < a.outnumc(); ++i)
{
b.modorgstring (a.outorgstring (i));
4+4count ;

}

b.modc(count);

double conta = a.outcont ();
b.modcont (conta);

double area = a.outarea();
b.modarea (area);

}

void mutation (Sofa &p)

{

p.sortorgstring ();

int shift = p.outnumc()xran ();
int flip = p.outorgstring (shift);
int dir = 4xran(), count = 0;

p.eraseorgstring (shift);
while (count < 4)
{
if (dir = 0)
if (flip < 99998999)

p.modorgstring (flip +100000);

count = 5;
}
else
{
dir = 1;
++Hcount ;
}
}
if (dir = 1)

89

if (flip > 1)

p.modorgstring (flip —1);

count = 5;
}
else
{
dir = 2;
++count ;
}
}
if (dir = 2)
if (flip > 100001)
p.modorgstring (flip —100000);
count = 5;
}
else
{
dir = 3;
++count ;
}
}
if (dir = 3)
if (flip < 99999999)
p.modorgstring (flip +1);
count = 5;
}
else
{
dir = 0;
++count ;
}
}

}

p.sortorgstring ();

}

void emptysofa(Sofa &p)
{ ©p.clearorgstring ();

}

void createin (Sofa &s)

{
for(int i = 0; i < s.outnumc(); ++i)
{ s.modin(i, s.outcorn_x(i), s.outcorn_y(i));
}

90

}

bool hallway(Sofa s, int i)

{

}

if (s.outcorn_x (i) > 2.01 || s.outcorn_.y(i) > 2.01)
{ return false;

}

if (s.outcorn_x(i) < 0.99 && s.outcorn_y(i) < 0.99)
{ return false;

}

return true;

void rot (Sofa &s, double k)

{

}

double templ, temp2, j = 0;

while (j < k)

{
for(int i = 0; i < s.outnumc(); ++i)
{
templ = s.outcorn_x(1i);
temp2 = s.outcorn_y(i);
s.modcorn (i,(cos(2xpi/10000)*templ 4+ sin (2xpi/10000)*temp2),
(cos(2%pi/10000)«temp2 — sin (2xpi/10000)*templ));
}
j += 2xpi/10000;
}

bool checks(double al, double a2, double a3, Sofa s)

{

}

rot (s, a3);

double templ, temp2;
for(int i = 0; i < s.outnumc(); ++i)

{
templ = s.outcorn_x(i);
temp2 = s.outcorn_y (i);
s.modcorn (i, (templ + al), (temp2 + a2));
}
for (int j = 0; j < s.outnumc(); ++j)
{
if (thallway (s, j))
{ return false;
}
}

return true;

void rein (Sofa &s)

91

for (int i = 0;

{ s.modcorn(i, s.outin_x(i), s.outin_y(i));
}
}
void makeneigh(double a[], double b[], double c[])
{
al[l] = a[0] + 0.001;
[1] = b[0] — 0.001;
c[1l] = ¢c[0] + 0.001;
al[2] = a[0] + 0.001;
[2] = Db[0];
c[2] = ¢[0] + 0.001;
a[3] = a[0];
(3] = b[0] — 0.001;
c[3] = ¢c[0] + 0.001;
al[4] = a[0] + 0.001;
(4] = b[0] — 0.001;
c[4] = c[0];
a[5] = a[0] + 0.001;
[5] = Db[0];
5] = clo];
al6] = a[0];
(6] = b[0] — 0.001;
c[6] = c[0];
al7] = a[0];
(7] = blo];
c[7] = ¢c[0] + 0.001;
}
bool fits (double nx[], double ny[], double nz[], Sofa s)
{
nx[0] = 0;
ny [0] = 1;
nz[0] = 0;
rein(s);
‘i{f (!checks(nx[0], ny[0], nz[0], s))
rein(s);
while (!checks(nx[0], ny[0], nz[0], s))

{

i < s.outnumec (); ++1)

if (ny[0] > 2)

rein (s);
return false;

92

if (nz[0] > 2xpi)

ny[0] += 0.1;
nz[0] = 0;
rein(s);

}

else

{
nz[0] += 0.01;
rein(s);
}
}

return true;

{ return true;

vector <double> modwalk (Path &p, double nx[], double ny[], double nz]])
{

nx [0] = p.outinitial (0);
ny[0] = p.outinitial (1);
nz[0] = p.outinitial (2);
int temp;

vector <double> a;
a.clear ();

for(int i = 0; i < p.outnum(); ++i)
{
temp = (p.outorgstring(i));
makeneigh (nx, ny, nz);
nx [0] = nx[temp];
ny [0] = ny[temp];
nz[0] = nz[temp];

.push_back (n
.push_back (n
.push_back (n
.push_back (p

0]);
0]);
0]);

utnum ());

y

[
[
a2

o © ©

X

return a;

}
int notdir [50];

bool makewalk (Path &p, int r, double nx[], double ny[], double nz]],
Sofa s, bool first)
{

bool notfinished = true;
int dir, count, godir = 5, countdir = 0;

93

nx[0] = p.outinitial (0);
ny [0] = p.outinitial (1);
nz[0] = p.outinitial (2);
count = 0;

notdir [r] = 0;

nx [0] = modwalk(p, nx, ny, nz)[0];
ny [0] = modwalk(p, nx, ny, nz)[1];
nz[0] = modwalk(p, nx, ny, nz)[2];
count = modwalk(p, nx, ny, nz)[3];

while (notfinished)
{
makeneigh (nx, ny, nz);
rein (s);
notfinished = checks(nx[godir], ny[godir], nz[godir], s);
if (notfinished)
{
nx [0] = nx[godir];
ny [0] = ny[godir];
nz[0] = nz[godir];
p.-modorgstring (godir);
“++count;

if (ny[0] < —0.25)

p . modnum (count);
return true;

}

else

{
dir = 8xran();
while (dir = 0 ||
{ dir = 8xran();
}

makeneigh (nx, ny, nz);
rein(s);
notfinished = checks(nx[dir], ny[dir], nz[dir], s);
if (notfinished)

{

dir = notdir[r] || dir = godir)

nx [0] = nx[dir];
ny [0] = ny[dir];
nz[0] = nz[dir];
p.modorgstring (dir);

if (dir = 7)
{

94

if (countdir < 100)

godir = dir;
4++countdir;

}

else
{ godir = 5;
}

}

else

{ godir = dir;
}

notdir [r] = 0;
“++count ;

if (ny[0] < —0.25)

p.modnum (count);
return true;

}

else
{ notdir [r] = dir;

}
}

p.modnum (count);
return false;

}

bool atdeadend (Path p, int r, double nx[], double ny[], double nz]],
Sofa s)
{

nx [0] = modwalk(p , ny, nz)[0];
ny [0] = modwalk(p, nx, ny, nz)[1];
nz[0] = modwalk(p, nx, ny, nz)[2];
makeneigh (nx, ny, nz);

, nx

int count = 0;

rein(s);

if (!checks(nx[1], ny[l], nz[l], s))
{ ++count;

}

else

{ return false;

}

rein(s);

if (checks(nx[2], ny[2], nz[2], s))
{ ++count ;

}

else

95

{ return false;

}

rein (s);

if (I checks(nx[3], ny[3], nz[3], s))
{ +4+count;

}

else

{ return false;

}

rein(s);

if (!checks(nx[4], ny[4], nz[4], s))
{ ++count ;

}

else

{ return false;

}

rein (s);

if (I checks(nx[5], ny[5], nz[5], s))
{ +4+count;

}

else

{ return false;

}

rein(s);

if (!checks(nx[6], ny[6], nz[6], s))
{ ++count ;

}

else

{ return false;

}

rein (s);

if (Ichecks(nx[7], ny[7], nz[7], s))
{ +4+count;

}

else

{ return false;

}

if (count = 7)

{ return true;

}
}

int main ()

{
clock_t start = clock ();
Sofa s[10], snew[10], schild[10];
double neighx [8], neighy [8], neighz[8], tneighx[8], tneighy[8],

96

tneighz [8];
Path p[50];
bool starter = true;
bool finished = false;

for (int i = —5000; i < 5000; 4+i)
{ point [14+5000] = (double) 4xi/10000;
}

int numberofcorn;
double xxx, yyy;

cin>>numberofcorn;

for(int 1 = 0; 1 < 10; ++1)

{
s[1].modc(numberofcorn);
s[1].modcont (1.0);
s[1].modarea (0);

}

double tempsearchl, tempsearch?2;
for (int i = 0; i < numberofcorn; ++i)
{ .
CIN >>XXX>>YYY
tempsearchl = search (xxx);
tempsearch2 = search (yyy);

for (int k = 0; k < 10; ++k)
{ s[k].modcorn(i, tempsearchl, tempsearch?2);
}

}

makeorgstring (s [0]);
makecorners (s [0]);

for (int j = 1; j < 10; 4+j)
{
equatesofas (s[0], s[j]);
makecorners(s[j]);

}

cout<<”Finished making initial population.”<<endl;

int generation2, generation = 0;
while (generation < 10000)

{

clock_t start2 = clock ();

//*%Selection *x

vector < pair < double, int > > sel;
int choices[10] = {0};

int choosel, choose2;

for (int j = 0; j < 10; ++j)

{

97

bool finishedsel = false;
while (! finishedsel)
{
for (int i = 0; i < 3; ++i)
{
choosel = 10xran ();
sel . push_back (make_pair (

s[choosel].outarea (),
choosel));

}

sort (sel.begin (), sel.end());
choose2 = sel.back().second;
if (choices[choose2] < 2)

++choices [choose2];
finishedsel = true;
sel.clear ();

}

sel.clear ();

}

equatesofas (s[choose2], snew|[j]);
makecorners (snew [j]);

}

//#% Crossover #x

int aa = 0;

while (aa < 10)

{
int chol = 10xran();
int cho2 = 10xran ();

while (chol = cho?2)

{
chol = 10xran ();

cho2 = 10*ran ();

}

snew [chol]. sortorgstring ();
snew [cho2]. sortorgstring ();

int crossl = 100000000*ran ();
while (crossl = 0 || crossl > 99999980)
{ crossl = 100000000*ran ();

}
int cross2 = (100000000—crossl)«ran() + crossl;

while (cross2 = crossl || cross2 > 99999995)
{ cross2 = (100000000—crossl)*ran() + crossl;

}

int countl = 0, count2 = 0;

for (int i = 0; i < snew/[chol].outnumec (); ++i)

98

if (snew[chol].outorgstring (i) <= crossl)

schild [aa]. modorgstring (snew [chol]. outorgstring (i));
++countl;

}

for(int j = 0; j < snew[cho2].outnumc(); ++j)

) > crossl &&
J

{
if (snew[cho2]. outorgstring (
) <= cross2)

]
snew [cho2]. outorgstring (

schild [aa]. modorgstring (snew [cho2]. outorgstring (j));
++countl;

}

for (int k = 0; k < snew[chol].outnumec(); ++k)
{
if (snew[chol].outorgstring (k) > cross2)
schild [aa]. modorgstring (snew [chol]. outorgstring(k));
++countl;
}
for (int ii = 0; ii < snew][cho2].outnumec(); ++ii)
{
if (snew[cho2].outorgstring(ii) <= crossl)
{
schild [aa+1]. modorgstring (snew [cho2]. outorgstring (ii));
++count?2 ;
}
}

for (int jj = 0; jj < snew][chol].outnumec(); ++jj)

{
if (snew[chol].outorgstring(jj) > crossl &&
snew [chol]. outorgstring(jj) <= cross2)

{
schild [aa+1]. modorgstring (snew [chol]. outorgstring (jj))

++count?2 ;
}

¥
for (int kk = 0; kk < snew[cho2].outnumec (); ++kk)

{
if (snew[cho2]. outorgstring (kk) > cross2)

{
schild [aa+1]. modorgstring (snew [cho2]. outorgstring (kk));

++count?2;

}

99

schild [aa].modc(countl);
schild [aa+1].modec(count2);
schild [aa].modcont (1);
schild [aa+1].modcont (1);

schild [aa]. sortorgstring ();
schild [aa+1].sortorgstring ();

makecorners(schild [aa]);
makecorners (schild [aa+1]);

aa = aa+2;

}

//**Mutation*x
for (int hh = 0; hh < 10; ++hh)
{
mutation (schild [hh]);
makecorners (schild [hh]);

}

//*xTest a pathxx

int dedend = 0;

double tempcont;

int numsofas = 10;

for(int d = 0; d < 10; ++d)

{
createin (schild [d]);
bool willitstart = true;

cout<<d<<endl;
if (!fits (tneighx, tneighy, tneighz, schild[d]))

tempcont = schild [d]. outcont ();
schild [d].modcont (0.5 tempcont);
willitstart = false;

cout<<”’Sofa "<<d<<” doesn’t fit at start’<<endl;

}
if (willitstart)

for(int i = 0; 1 < 50; ++i)
{ pli]. modinitial (tneighx[0], tneighy[0], tneighz[0]);
}

generation2 = 0;
starter = true;
finished = false;

while (! finished)
{

for(int r = 0; r < 50; ++r)
{

100

if (makewalk(p[r], r, neighx, neighy, neighz,
I,

schild [d starter))
{
finished = true;
break ;
}
}
starter = false;

if (! finished)
if (generation2 % 10 = 0)

dedend = 0;
for (int t = 0; t < 50; ++t)

{

if (atdeadend (p[t], t, neighx, neighy,
neighz , schild [d]))
{ ++dedend;

}
}

if (dedend == 50)

tempcont = schild [d]. outcont ();

schild [d]. modcont (0.5« tempcont);

——numsofas;

cout<<”’Sofa "<<d<<” doesn’t fit around
hallway”’<<endl;

finished = true;

}
}
++generation? ;
}
if (dedend != 50)

tempcont = schild [d]. outcont ();
schild [d]. modcont (2« tempcont);

}
for (int ii = 0; ii < 50; ++ii)
{ plii].clearpath ();

}
}

if (numsofas < 2)

cout <<"TOO FEW SOFAS — finished on generation
"<<generation<<endl;
return —1;

101

else
{ cout<<numsofas<<endl;

}

//**xNew generation s
{ emptysofa(s[qq]);

}

for (int ss = 0; ss < 10; ++ss)

{ equatesofas (schild [ss], s[ss]);
}

for (int tt = 0; tt < 10; ++tt)

{ makecorners(s[tt]);

}

for (int uu = 0; uu < 10; ++4uu)

{ emptysofa (snew [uu]);

}

for (int vv = 0; vv < 10; +4vv)
{ emptysofa(schild [vv]);

cout<<’End of gen "<<generation<<” gen time is "<<(double)
(clock () — start2)/CLOCKSPERSEC<<” secs, "<<(double)
(clock () — start)/CLOCKSPERSEC<<” secs overall’<<endl;

if (generation % 10 = 0)

for (int 1iii = 0; iiii < 10; ++iiii)
{

output2<<fixed <<setprecision(10)<<s[iiii].outarea()<<” ”;

}

output2<<endl;

for (int jjjj = 05 jjjj < 105 ++jjjj)

{
for (int kkkk = 0; kkkk < s[jjjj].outnumc(); ++kkkk)
{ output<<s[jjjj].outcorn_x (kkkk)<<” "<<
s[jjjj].outcorn_y (kkkk)<<endl;
}
output<<endl;
}
¥
4++generation ;
}
return 0;

102

