
The University of Oxford
MSc (Mathematics and Foundations of Computer Science)

FLATNESS IN ALGEBRAIC GEOMETRY
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Abstract. In this essay it is our goal to reconcile two definitions of flat
morphism - one algebraic and one geometric - then demonstrate through
examples and non-examples that ‘flat’ morphisms are aptly named; the di-
mensions of the fibers of a flat morphism must be constant. We conclude via
Grothendieck’s Generic Flatness Theorem that flat families are a common
presence in algebraic geometry and are well motivated from a topological
standpoint.
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2 BRIAN TYRRELL

1. Introduction

Mumford [9] begins his section on flat and smooth morphisms with the remark:

The concept of flatness is a riddle that comes out of algebra, but which
technically is the answer to many prayers.

In this essay, it is our aim to explore this riddle, untangle the algebra, then
recount the favourable (and prayer-answering) properties of flat morphisms. We
begin by presenting two definitions of flat morphism that we shall later prove
are special cases of a more general definition in scheme-theoretic terms.

Definition A. A morphism of projective varieties f : X → Y is flat if the fibers
Xa = f−1(a) have the same Hilbert polynomial.

Definition B. A morphism of projective varieties f : X → Y is flat if the
induced map on stalks is a flat map of rings.

In §2 we begin by arranging our algebraic backdrop and formalising Definition
B, then setting out some of the algebraic properties of flat maps. We progress to
§3 where we give two examples and two (and a half) non-examples of flat mor-
phisms, and bring in formally for the first time a connection to dimension. The
equivalence of Definition A and Definition B is proven in §4 (for the simplest
case) then we retrospectively examine why some of our examples worked while
the non-examples failed. The author has titled the theorem giving the equiv-
alence of Definitions A and B the Hilbert Polynomial (HP)-Flatness Theorem
(Theorem 4.1). Finally in §5 we give the last piece of motivation for flat fami-
lies in algebraic geometry then wrap up with a remark on the Generic Flatness
Theorem.

For the reader unaccustomed to notions from homological algebra, the author
recommends the classic text An Introduction to Homological Algebra by Weibel
[13] as a starting point. We will be continuously making reference and leaving
algebraic details to Lang [6] throughout the course of this essay, and much of
our development follows the treatment of Eisenbud & Harris [4].

2. A Riddle That Comes Out Of Algebra

We shall first lay an algebraic foundation that later shall lead to a geometric
presentation of flatness.

Definition 2.1. [9, III.10] Let R be a commutative, unital ring. Given an
R-module M and an exact sequence of R-modules,

0→ N1 → N2 → N3 → 0,

M is called exact if the sequence

0→ N1 ⊗RM → N2 ⊗RM → N3 ⊗RM → 0

remains exact.

Note that we are really only asking the functor −⊗RM to be left exact, as it
is naturally right exact1. In particular to this definition we obtain the following
lemma:

1N1
f−→→ N2 implies N1 ⊗R M →→ N2 ⊗R M via n1 ⊗R m 7→ f(n1)⊗R m.
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Lemma 2.2. Let I ⊂ R be an ideal. The multiplication map I ⊗RM → IM is
injective if and only if M is a flat R-module.

Proof. Using Definition 2.1, if N1 = I, and N2 = R, then M flat implies

0→ I ⊗RM → R⊗RM → N3 ⊗RM → 0

is exact, thus I ⊗RM → R⊗RM is injective. As I ↪→ R was the inclusion map,

I ⊗RM → R⊗RM ∼= M via i⊗R m 7→ i⊗R m ∼= im,

hence I ⊗RM → IM is injective.
Conversely, an injectivity assumption of I ⊗R M → IM allows us to show

the functor − ⊗R M preserves injective maps N1 ↪→ N2, making M flat. This
is proven using homological algebra (exploiting the fact Tori(M,N) = 0 for all
i > 0 when M is a flat R-module and N is any R-module) however the proof of
this would take us too far afield [7, Theorem 1.4]. �

We conclude that the ‘injectivity of tensor multiplication’ property is equiv-
alent to flatness, and moreover the derived functor Tori allows us to conclude
another crucial characterisation of flat modules:

Lemma 2.3. Let R be a principal ideal domain. Then an R-module M is flat
if and only if it is torsion free.

Proof. As [7] notes, M is torsion free if and only if for all elements m ∈ M ,
multiplication by m is an injection on M . Hence as R is a PID, if we can show
Tor1(M,R/I) = 0 by the proof of [7, Theorem 1.4] we can conclude I ⊗RM →
IM is injective thus by Lemma 2.2, M is flat.

The calculation of Tor1(M,R/I) is quite straightforward: take a projective
resolution

0 R R/I 0π 0

of R/I. Apply the (right exact) functor −⊗RM :

R⊗RM R/I ⊗RM 0π∗ 0

which is just

M R/I ⊗RM 0π∗ 0

then calculate Tor1(M,R/I) = Kerπ∗/Im 0 = Kerπ∗ = 0 as π∗ embeds M into
R/I ⊗RM . We conclude Tor1(M,R/I) = 0, as required. �

We shall make use of the following purely algebraic reformulation of flatness
in §4:

Corollary 2.4. [2, I §4, Prop. 3] If R is a domain, and M is a flat R-module,
then M is torsion-free. �

Let us now define a flat map:

Definition 2.5. Let φ : R→ S be a map of rings. The map φ is called flat if S
is flat as an R-module.

From this the natural definition to make for projective varieties is as follows:
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Definition 2.6. Let X,Y be projective varieties. A morphism f : X → Y is
called flat if for all points p ∈ X, the induced map on stalks

f# : k[Ŷ ]f(p) → f∗k[X̂]p, g 7→ g ◦ f,

is flat, i.e. k[X̂]p is a flat k[Ŷ ]f(p)-module.

At this point it is more useful to talk about schemes and view them as a
generalisation of varieties for what we are about to do. For an introduction
to scheme theory, there are several well known and classical texts though the
author shall be employing definitions and ideas mostly from Eisenbud & Harris
[4] and Hartshorne [5].

In order to define flatness in this context we must first make clear what a
morphism of schemes is, and how the stalk of a sheaf is formulated.

Definition 2.7. [4, I.2.3] Let X = (X,OX) and Y = (Y,OY ) be schemes. A
morphism Ψ : X → Y consists of a pair of maps (ψ,ψ#) where ψ : X → Y is a
continuous map fromX to Y viewed as topological spaces, and ψ# : OY → ψ∗OX
is a map of sheaves such that the following compatibility condition is satisfied:

For any point p ∈ X and any neighbourhood U of ψ(p) ∈ Y , a section
f ∈ OY (U) vanishes as ψ(p) if and only if the section ψ#f of ψ∗OX(U) =
OX(ψ−1U) vanishes at p.

Whilst the stalk Fx of a sheaf F is formally defined via a direct limit of groups
F(U) over all open neighbourhoods x ∈ U ⊂ X [4, I], for our purposes we shall
define this concept at a lower level as follows:

Definition 2.8. Given a sheaf S on a topological space X, the stalk at p ∈ X,
denoted Sp, is the ring of germs of sections at p.

Piecing together Definitions 2.7 and 2.8, we obtain a reformulation of 2.6:

Definition 2.9. Let X ,Y be schemes. A morphism f : X → Y is called flat if
for all points p ∈ X the induced map on stalks

f# : OY,f(p) → f∗OX,p
is flat, i.e. OX,p is a flat OY,f(p)-module.

The concepts here should not be so foreign to us; after all, the modern ap-
proach to algebraic geometry views schemes as a generalisation of varieties. This
generalisation is well founded in this instance by the following remark:

Remark 2.10. From Definition 2.9 we can recover Definition 2.6; that is, a flat
morphism of schemes is a generalisation of a flat morphism of varieties.

The crux of the argument is the following theorem:

Theorem 2.11. [5, II Prop. 2.6] Let k be an algebraically closed field. There is
a natural fully faithful functor

t : Bar(k)→ Sch(k), (X,OX) 7→ (Spec(k[X]),OSpec(k[X])),

where Bar(k) is the category of varieties over k, Sch(k) is the category of
schemes over k, and (X,OX) is a variety with a structure sheaf of regular func-
tions.
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With this in mind, re-examining Definition 2.6 we see this is Definition 2.9
noticing OSpec(k[X]) = k[X]2. ♦

Jumping off this idea, we preform a quick sanity check:

Lemma 2.12. A map of rings ψ : A→ B is flat if and only if the corresponding
spectra map Ψ : Spec(B)→ Spec(A) is flat.

Proof. Suppose ψ : A→ B is flat. Given p ∈ Spec(B), consider

Ψ# : OSpec(A),Ψ(p) → Ψ∗OSpec(B),p.

By definition of OSpec and Ψ(p), this becomes Ψ# : Aψ−1(p) → Bp. As f is flat,
B is a flat A-module, and by extending this to the localisation we see Bp is a

flat Aψ−1(p)-module, making Ψ# flat. Hence the induced map from Ψ on stalks
is flat, meaning Ψ is flat.

Conversely suppose Ψ : Spec(B) → Spec(A) hence Ψ# : Aψ−1(p) → Bp is
flat. As for all p ∈ Spec(B), Aψ−1(p) is a flat A-module, hence A → Aψ−1(p) is
a flat map. By transitivity (Lemma 2.13 (2)) we deduce A → Bp is flat for all
p ∈ Spec(B). We conclude A→ B is flat, as desired. �

Another few ‘natural’ algebraic facts that will useful in our understanding are
below.

Lemma 2.13.

(1) Base Extension: If M is a flat R-module and R → S is a homomor-
phism then S ⊗RM is a flat S-module.

(2) Transitivity: If N is a flat R-module, and M is a flat N -module, then
M is a flat R-module.

(3) Localisation: If M is an R-module, then M is flat over R if and only
if for all prime ideals ℘ ∈ R, the localisation M℘ is flat over R℘.

Proof. While these properties are mentioned in the major texts [4, 5, 9] they
are proven in [2, 8]. Hartshorne and Mumford [5, 9] go so far as to translate
these properties into “geometric terms” concerning flat morphisms, which have
the same properties as above. �

As we have covered the basic algebraic notions, we are now ready for some
examples.

3. Examples & Non-Examples

We begin with specifying a type of subscheme:

Definition 3.1. Let X = SpecR be an affine scheme. A closed subscheme of
X is a scheme Y that is the spectrum of a quotient of R. (Thus the closed
subschemes Y of X are in 1-to-1 correspondence to ideals I in the ring R, as
Y = SpecR/I.)

2Also we must consider the fact we are working with projective varieties in 2.6, hence we use

k[X̂] as the coordinate ring, and elements p ∈ Spec k[X] correspond to prime ideals ℘ ⊂ k[X]
which (almost!) correspond exactly to elements of X.
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This definition can be extended to general schemes, replacing the ideal I with a
sheaf of ideals I . In general we can identify closed subschemes with topologically
closed subsets of our original scheme, together with a compatibility condition on
its sheaf of rings.

Definition 3.2. A family of schemes is a morphism ϕ : X → Y of schemes.
The individual schemes in the family are simply the fibers of ϕ over points of Y.

We shall state the next definition in terms of projective space and projective
schemes in preparation for §4 however the analogous definitions can be made for
affine space, and used in Example 3.4.

Definition 3.3. [4, III.2] A family of closed subschemes of Pr over the base
S = SpecA is a closed subscheme of PrA := ProjA[x0, . . . , xr].

As there is a canonical morphism PrA = ProjA[x0, . . . , xr]→ SpecA given by
A → OPr

A
(PrA)“=”A[x0, . . . , xr], the morphism X → SpecA naturally given by

restriction for X ⊂ PrA allows us to view X as a family over the base SpecA via
the fibers.

Our first example of a flat family appears in Hartshorne [5, III.9]:

Example 3.4. Let X ⊂ P3 be the twisted cubic curve; a closed subscheme of
P3. The projection map

P3 ⊃ X π−→ π(X ) ⊂ P2, π(X ) a nodal cubic curve in P2,

will be useful in our analysis of X .

(See the image to the right for a rough picture).
We shall show that the family {Xa}a∈A\{0}
given by σa(X ) = Xa (for a ∈ A \ {0}),
σa : [x0 : · · · : xn] 7→ [x0 : · · · : xn−1 : axn],

forms a flat family parameterized by A \ {0},
where X1 = X and X0 = π(X ) (as sets). In fact
the fiber at 0, X0, consists of the nodal cubic
π(X ) together with some nilpotent elements at
the double point.
Take affine patches of P3,P2. Since we only
care about the behaviour of {Xa}a∈A\{0} near
the origin, we will from this point forth work

X

π(X )

Figure 1. Image: [1].

solely in A3,A2. X is given by the parametric equations

x = t2 − 1,

y = t3 − t,
z = t,

in the affine coordinates on A3. For any a 6= 0, consider Xa given by the equations

x = t2 − 1,

y = t3 − t,
z = at.
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{Xa}a∈A\{0} is indeed a family of schemes as the whole family is isomorphic to
X1 × (A \ 0) which by the canonical projection map ensures each Xa is indeed
a fiber and the family is flat; the dimension of each fiber is the same due to
the scheme-isomorphism Xa ∼= X1, hence the Hilbert functions agree and by
Definition A the family is flat.

As X ⊂ A3
A\{0} is a closed scheme which is flat over A \ {0}, it has a well

defined scheme-theoretic closure which remains flat [5, III Prop. 9.8]. Let X̄
be this closure, called the total family extended over A. As this is a closed
subscheme, it has an ideal I ⊂ k[a, x, y, z] associated to it. We find

I = (a2(x+ 1)− z2, a3y + a2z − z3, xz − ay, y2 − x2(x+ 1)).

As we are interested in the family at a = 0, X0 is given by the ideal

I0 = Ia=0 = (z2, z3, xz, y2 − x2(x+ 1)).

Set-theoretically, X0 should agree with the projection of X1, which is the nodal
cubic y2 = x2(x + 1). From I0, we see in fact X0 is a scheme with the same
underlying space as π(X1), but in the local ring OX0,(0,0,0) = k[x, y, z]/I0 we
have a nilpotent element z of degree 2. According to Hartshorne, “[i]t seems
as if the scheme X0 is retaining the information that it is a limit of a family of
space curves, by having these nilpotent elements which point out of the plane”.
See Figure 2 for an illustration of this example. ♦

Figure 2. The flat family Xa of subschemes of P3. Image: [5].

Our first non-example is a bit of a cheat; we know from the beginning it will
not be a flat map for dimension reasons.

Non-example 3.5. [10, 5, I §4] The blow-up of A2 at the origin O is defined
as:

B0A2 = {Any line through O in A2, together with any choice of point on the line}
= V(xu− yt) ⊂ A2 × P where the affine coordinates are (x, y)

and the projective coordinates are [t : u].

This also leaves us with a map π : B0A2 → A that is the restriction to B0A2 of
the projection map A2 × P→ A2.
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From this we define the blow-up of a variety Y (also at O) to be Ỹ =

π−1(Y \ {O}) (where · · · is the closure inside A2 × P).
Take for example Y = V(y2 − x2(x+ 1)). The blow-up of Y at O is given in

Figure 3.

P
π

Figure 3. Ỹ is defined by u2 = x + 1, y = xu. Image: [5].

If p ∈ Y ⊂ A2, p 6= O, then π−1(p) consists of just one point; moreover
π : B0Y → Y is an isomorphism on the complement of π−1(O). However at
p = O, the preimage jumps from being one point to π−1(O) ∼= P. The dimension
of π−1(p) jumps at p = O, hence the degree of the Hilbert polynomial also
jumps at this point. Thus the fibers of π at p ∈ Y definitely do not have the
same Hilbert polynomial. We conclude the family π : B0Y → Y is not flat3. ♦

π

Figure 4. Image: [12].

Remark 3.6. In fact, if the purpose of Non-
example 3.5 was to demonstrate the blow-up
map is not flat, we do not need the variety
V(y2 − x2(x+ 1)); looking at the blow-up of the
entire space at O

π : B0A2 → A2,

by the same calculation as in Non-example 3.5 we
see the dimension of the fibers surges at O (left).
The purpose of Non-example 3.5 is to serve in
contrast to Example 3.4; the latter is a case where
the twisted cubic is part of a flat family, and the
former a case where the twisted cubic (somehow
given by blowing-up y2 = x2(x + 1)) is not part
of a flat family. The key take-away here is that
in a flat family, it is not the inherent space that
makes it flat, rather the map from the space to
the ‘parameter space’ of the fibers. ♦

To understand our next few examples we need to introduce the notion of
finiteness.

3As is perhaps expected when dealing with a construction known as blowing-up.
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Definition 3.7. [4, III.1.1] A morphism of schemes ϕ : X → Y is called finite
if for every y ∈ Y there is an open affine neighbourhood y ∈ V = SpecB ⊂ Y
such that ϕ−1(V ) = SpecA is itself affine, and if via the pullback map

ϕ|#V : B = OY (V )→ A = OX(ϕ−1V ),

A is a finitely generated B-module.

According to Eisenbud & Harris [4, III.1], this is a “very stringent condition”
that forces all the fibers of such a morphism to be finite.

We have not yet defined what a fiber of a scheme morphism actually is, instead
relying on the reader’s intuition regarding fibers in §3. Let us correct that now.

Definition 3.8. If ϕ : X → Y is a morphism of schemes, the fiber of y ∈ Y is
the fiber product X ×Y Speck(y), where k(y) is the residue field of the point y,
defined as A℘/℘ ·A℘ where U = SpecA is an affine neighbourhood of y ∈ Y and
℘ is the prime ideal of A corresponding to y.

This more general definition is to account for the generic points of a scheme;
a non-closed point might not have a well defined preimage.

One immediate consequence of these definitions is that it provides us with our
first theorem in connection to dimension:

Theorem 3.9. (Precursor to the HP-Flatness Theorem). Let ϕ : X → Y be
a finite morphism of affine schemes. Assume Y is Noetherian, reduced and
irreducible4. Then ϕ is flat if and only if the integer

dimk(y)[ϕ∗OX ⊗OY
k(y)]

is independent of y ∈ Y .
Moreover, if Ay = ϕ∗OX ⊗OY

k(y) then SpecAy is the fiber of f over y.

Proof. See [9, III.10]. �

Example 3.10. [9, III.10 Ex. Q] Let k be an algebraically closed field and define

f : A→ A, x 7→ x2,

over k. Viewing A as a scheme we see it is indeed Noetherian, reduced and
irreducible (all in the scheme-theoretic sense). Note that for any y ∈ A, A itself
is an open affine neighbourhood, hence the pullback map

f# : k[x]→ k[x], x 7→ x2,

trivially leaves k[x] a finitely generated k[x]-module. We are thus in a position
to apply Theorem 3.9.

Given a ∈ A, the fiber of f over x = a is simply Spec(k[x]/(x2 − a)) via [10,
§6.4]. As dimk k[x]/(x2−a) = 2 for any a, and the residue field at a point is just
k, we conclude

dimk(y)[ϕ∗OX ⊗OY
k(y)] = 5 dimk k[x]/(x2 − a) = 2,

hence f is flat. ♦

4Terms all clarified in [4, I.2]
5[4, I.3 Exercise I-46 (g)]



10 BRIAN TYRRELL

Non-example 3.11. [9, III.10 Ex. R] Let k be an algebraically closed field and
define

v2 : A2 → Y = V(x1x3 − x2
2) ⊂ A3, (x, y) 7→ (x2, xy, y2),

the affine two-dimensional Veronese map. The variety V(x1x3 − x2
2) (viewed as

a scheme) is Noetherian, reduced and irreducible. The pullback map

v#
2 : k[x, y, z]/(xz − y2)→ k[x, y], g(x, y, z) 7→ g(x2, xy, y2),

leaves k[x, y] a finitely generated k[x, y, z]/(xz − y2)-module indeed.
If p = (a, b, c) ∈ Y the fiber of v2 over p is then given by6

Spec(k[x, y])⊗Spec(k[x,y,z]/(xz−y2)) Spec(k(p)) Speck(p)

A2“=” Spec(k[x, y]) Y = V(xz − y2)“=” Spec(k[x, y, z]/(xz − y2))

π2

π1

i

v2

By definition,

SpecA⊗SpecB SpecC = Spec(A⊗B C),

therefore we obtain:

Spec(k[x, y]) ⊗Spec(k[x,y,z]/(xz−y2)) Spec(k(p))

= Spec(k[x, y]⊗k[x,y,z]/(xz−y2) k(p))

= Spec(k[x, y]/(x2 − a, xy − b, y2 − c)),

via v2(x, y) = (x2, xy, y2). So by this sketch the fiber of v2 over p is

Spec(k[x, y]/(x2 − a, xy − b, y2 − c)).

If a = c = 0 necessarily b = 0 so the fiber becomes Spec(k[x, y]/(x2, xy, y2))
and

dimk((0,0,0))[v2∗OA2 ⊗OY k((0, 0, 0))] = dimk k[x, y]/(x2, xy, y2) = 3,

However if a 6= 0 and b = c = 0, then

dimk((a,0,0))[v2∗OA2 ⊗OY k((a, 0, 0))] = dimk k[x, y]/(x2 − a, xy, y2) = 2,

as k is algebraically closed.
Therefore by Theorem 3.9 we conclude v2 is not flat. ♦

Mumford [9] includes illustrations for these two morphisms which give an
indication of the origin of the term ‘flat’:

6We should technically be writing things of the form A2 = Specm(k[x, y]) however it is
generally the convention not to worry about the generic points and work with Spec instead.
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Figure 5

(a) Example 3.10. (b) Non-example 3.11.

As has been indicated by this example and non-example pair, the geometric
notion of dimension is very important to flatness. Indeed our first definition of
flatness, Definition A, was based on the idea of the Hilbert polynomial, the degree
of the leading term of which is the dimension of the space we are considering.
We shall now reconcile Definition B with Definition A, and the reader is invited
to consult [4, 5, 7, 9, 11] should more examples of flat families be desired.

4. An Invariant Of Hilbert’s

Recall Definitions 3.1 - 3.3 regarding subschemes. We are now in a position
and sufficiently motivated to give the main theorem of the essay.

Theorem 4.1. The HP-Flatness Theorem. A family X ⊂ PrB of closed
subschemes of a projective space over a reduced connected base B is flat if and
only if all fibers have the same Hilbert polynomial.

Proof. We shall prove this theorem for the case B = SpecK[t](t), where K is
a field, following [4, Prop. III-56].

As Definition 3.1 indicates, the closed subscheme X is given by an ideal
I of K[t](t)[x0, . . . , xr] which for our projective case must be homogeneous in
x0, . . . , xr. Note that each graded piece

Rm = (K[t](t)[x0, . . . , xr]/I)m = K[t](t)[x0, . . . , xr]/Im

is a (finitely generated) K[t](t)-module.
From Lemma 2.4, the family X → B is flat if and only if the local ring OX,p

is K[t](t)-torsion-free for each point p ∈ X. If this is the case, then the torsion
submodule of R = K[t](t)[x0, . . . , xr]/I, denoted TR, vanishes if we invert any xi:

If g ∈ R is an element of TR, then f(t)g = 0 for some f(t) ∈ K[t](t). Then for
some point x ∈ X, g and some open neighbourhood U 3 x are members of OX,x.
Restricting to a basic open set Dxi , we see OX(Dxi) = Rxi . So by inverting xi
in R, we recover g ∈ OX,x and as OX,x is K[t](t)-torsion-free at x, we conclude
g = 0, hence the torsion submodule of R vanishes if we invert xi.

Therefore TR is killed by some power of I+ = (x0, . . . , xr) and thus TR meets
only finitely many Rm, that is to say meets only finitely many graded components
of R.
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By Lemma 2.3, over a principal ideal domain finitely generated modules are
torsion free if and only if they are free. If Rm is a graded component of R,
as K[t](t) is a principal ideal domain and Rm is finitely generated as a K[t](t)-
module, it is torsion free if and only if it is free. As we have just demonstrated,
it is certainly torsion free for all but finitely many m. Furthermore, Rm is free
if the number of its generators:

dimK Rm/(t)Rm = dimK Rm ⊗K[t](t) K by Nakayama’s Lemma,

(as K is the residue field) is equal to its rank:

dimK(t)Rm ⊗K[t](t) K(t) by definition of rank [8],

where the field of fractions of K[t](t) = K(t).
A quick calculation of the fibers of X → B over the two points of SpecK[t](t) =

{(0), (t)} gives us

The fiber over (0) : X(0) = Spec(R⊗K[t](t) K),

The fiber over (t) : X(t) = Spec(R⊗K[t](t) K(t)),

hence

hX(0)
(m) = dimK Rm ⊗K[t](t) K = dimK(t)Rm ⊗K[t](t) K(t) = hX(t)

(m).

By our argument above these Hilbert functions agree for all but at most finitely
many m, thus for m0 large enough

hX(0)
(m) = hX(t)

(m) for all m ≥ m0.

Therefore all fibers of B have the same Hilbert polynomial, as required. �

Returning to the simpler language of varieties (via Theorem 2.11), a corollary
of this theorem is the following:

Corollary 4.2. The Hilbert polynomial is constant across the fibers in a flat
family X → Y of projective subvarieties parameterized by a connected base Y .

�

Remark 4.3. As a consequence of the HP-Flatness Theorem and Corollary 4.2,
Definition A and Definition B are equivalent. ♦

We can intuitively see why Example 3.10 was flat while Non-example 3.11
was not. In fact, Non-example 3.11 gives an explicit computation of the Hilbert
function and demonstrates it is not constant over the fibers, while Example 3.10
calculates the Hilbert function to take value 2 for any fiber, and is hence constant.

A more general proof of the HP-Flatness Theorem can be found in [11, 4.3]
or [5, III.9] (in particular, Hartshorne produces a homological algebraic proof).
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5. The Answer To Many Prayers

“I call our world Flatland, not because we call it so, but to make its
nature clearer to you, my happy readers, who are privileged to live in
Space.”
- Edwin A. Abbott, Flatland: A Romance of Many Dimensions

In the 1880’s Edwin Abbott wrote Flatland - the tale of a square who attempts
to understand and share the existence of three dimensions while living in a strict,
classist society set in a two dimensional plane - as both a commentary on his
current Victorian setting and also as a means of playing with our conception of
dimension. Just as dimension is key in the minds of Flatlanders in an attempt
to understand their reality, so too is dimension a key concept in mathematics as
an attempt to understand the geometry of structures. In the previous section
we proved our initial definitions of flatness agreed with each other; the algebraic
formulation over modules agrees with the geometric notion that the Hilbert
polynomial of the fibers remains the same. We now turn to the application of
flatness in scheme theory: allowing the idea of a ‘continuously varying’ family of
schemes.

As it stands, the definition of a family of schemes is quite general: it is a
morphism of schemes, where ‘family’ is interpreted as the collection of fibers
under this morphism. If we wish to determine how the fibers relate to each
other, what they have in common and how that varies across the parameter
space, we must first introduce the counterpart of continuity: limits.

Let B be a non-singular one-dimensional scheme - e.g. SpecK[t](t) from the

HP-Flatness Theorem. Let 0 ∈ B be some closed7 point and define B∗ = B\{0}.
Consider (as in the HP-Flatness Theorem but now for affine space) a closed
subscheme X ⊂ AnB∗ , which again is a family Xb = π−1(b) of closed subschemes
parameterised by B∗ given by the fibers of π : X → B∗. To get a sense of how
continuously these fibers vary, we ask for the limit of the schemes Xb as b→ 0.
To answer this we take the closure X ⊂ AnB of X in AnB

8 and define

lim
b→0

Xb = X0 = fiber of X over the point 0 ∈ B.

Obviously if we want the fibers of our family to relate to each other in the smooth,
continuous fashion we wish for, in a general family of schemes π : X → B, the
limit limb→0Xb should actually equal the fiber X0 = π−1(0). In a flat family, we
have exactly that.

Theorem 5.1. [4, Prop. II-29] Let B = SpecR be a non-singular, one dimen-
sional affine scheme with a closed point 0 ∈ B. Let X ⊂ AnB be any closed
subscheme and π : X → B the standard projection. Then π is flat (over 0) if
and only if the fiber X0 is the limit of the fibers Xb as b→ 0. �

Recall Example 3.4: this is a nice example of the theorem in action. Taking
the limit of Xa as a→ 0 we could obtain the fiber X0 as we computed it explic-
itly. The isomorphism Xa ∼= X1 mentioned in Example 3.4 is also evidence that

7The closure of a point p is {q : q ⊃ p} ⊂ SpecB. Hence p is closed if and only if it is
maximal.

8Note B∗ has become B.
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the family {Xa}a∈A varies continuously and the fibers ‘look like’ one another.
In short: if some mathematician prayed for a condition that determines when
families of schemes vary continuously, flatness is the answer to that prayer.

To conclude this essay, we shall make mention of the connection of flatness
to topology. Rather than being an involved connection concerning topological
objects or maps, and the flatness of them, we instead are going to draw a parallel
between the two subjects in an effort to vaguely indicate our notion of flat is
already present elsewhere in the topography of mathematics.

Definition 5.2. A fiber bundle is a tuple (E,B, π, F ) where E,B, F are topo-
logical spaces, B is connected and π : E → B is a continuous surjection such
that for any point x ∈ E, there exists an open neighbourhood π(x) ∈ U ⊂ B
such that the following diagram commutes:

π−1(U) U × F

U

φ

π
π1

where φ is a homeomorphism and π1 is the canonical projection map.

Notice the similarity between this definition and Definition 3.3 of a family
of closed subschemes. If we are trying to make the point that a flat family
and a fiber bundle are analogous in definition, we should have some result that
reinforces this idea. Thankfully we do, due to Grothendieck:

Theorem 5.3. Generic Flatness Theorem. [3, §14.2] If π : X → B is a
reasonable9 family of schemes over a reduced base, then there is an open dense
subset U ⊂ B such that the restricted family π−1U → U is flat. �

This we see is similar to the topological result:

Theorem 5.4. If f : M → N is a differentiable map of compact C∞ manifolds,
then there is a dense collection of open subsets U ⊂ N such that the restriction
f |f−1(U) is a fiber bundle. �

We conclude that although flat morphisms come from a heavy algebraic back-
ground, through examples and the HP-Flatness Theorem we see they have a
strong connection to uniformity in dimension and by the Generic Flatness The-
orem are a frequent and fundamental feature of families of schemes.

In short: our geometrical expectations do not fall flat.

9Explained further in [3].
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