1 Kronecker delta

The Kronecker delta function is defined by
\[\delta_{ab} = \begin{cases} 1 & \text{if } a = b, \\ 0 & \text{if } a \neq b. \end{cases} \]

Typically, the indices \(a \) and \(b \) take integer values.

Here is one example of an application. For an indexed set \(\{a_i, i \in S\} \),
\[\sum_{i \in S} a_i \delta_{ik} = a_k, \]
assuming that \(k \in S \). If \(k \notin S \), then the series is 0. We often see applications where \(S \) is the set of nonnegative integers, or all integers.

2 Complex numbers

The space of complex numbers is denoted by \(\mathbb{C} \). Any complex number can be written in the form \(a + ib \), where \(a \) and \(b \) are real numbers \((a, b \in \mathbb{R}) \) and \(i^2 = -1 \) by definition.

If \(z = a + ib \) is a complex number, with \(a, b \in \mathbb{R} \), then its complex conjugate is \(z^* = a - ib \). Its magnitude is \(|z| = \sqrt{zz^*} = \sqrt{a^2 + b^2} \), which is a nonnegative real number. The magnitude of any nonzero complex number is strictly positive. The complex conjugate is sometimes denoted by \(\bar{z} \).

2.1 Quadratic formula

The quadratic equation \(ax^2 + bx + c = 0 \) has two solutions, also called roots,
\[x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \quad x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}. \]
The two roots coincide if the discriminant \(b^2 - 4ac \) is 0.
Suppose that \(a, b, \) and \(c \) are real. We identify three cases:

- If \(b^2 - 4ac > 0 \), then there are two distinct real roots.
- If \(b^2 - 4ac = 0 \), then there is a real-valued double root.
- If \(b^2 - 4ac < 0 \), then the roots are distinct and complex, and they are complex conjugates of each other.

2.2 Roots of polynomials

In general, a polynomial of degree \(n \) has \(n \) roots, which are complex numbers that may not all be distinct. This statement can be expressed in the equation
\[a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 = a_n (x - x_1)(x - x_2) \cdots (x - x_n). \]
Here, \(x_1, \ldots, x_n \) are the roots. The statement is true regardless of whether the coefficients \(a_i \) are real or complex.
If any of the roots are known, the problem of finding the rest of the roots can be reduced to analyzing a polynomial of lower degree. Suppose that \(p_n(x) \) is a given polynomial of degree \(n \), and \(x_n \) is a number satisfying \(p_n(x_n) = 0 \). Then
\[
p_n(x) = (x - x_n) \left(b_{n-1}x^{n-1} + \cdots + b_1x + b_0 \right),
\]
and the coefficients \(b_i \) can be found by multiplying out the right-hand side and equating like powers of \(x \).

2.3 Roots of unity
The equation \(x^n = 1 \) has \(n \) complex roots, which are \(x_k = e^{\frac{2\pi ik}{n}} \) for integer values of \(k \).

Notice that it is sufficient to take \(0 \leq k \leq n - 1 \), or \(1 \leq k \leq n \), since any other choice of index produces a value equivalent to one of these.

3 Euler’s formula
For any real number \(x \),
\[
e^{ix} = \cos x + i\sin x.
\]
It follows that we can write the cosine and sine functions as linear combinations of exponentials:
\[
\cos x = \frac{e^{ix} + e^{-ix}}{2}, \\
\sin x = \frac{e^{ix} - e^{-ix}}{2i}.
\]
It is then possible to derive all of the basic trigonometric identities as consequences of exponential multiplication (\(e^x e^y = e^{x+y} \)) and differentiation (\(\frac{d}{dx} e^x = e^x \)).

4 Vector spaces
- A **real vector space** \(V \) is a set of objects called vectors which is closed under two operations:
 - Addition. If \(v, w \in V \), then \(v + w \in V \). There is an identity element denoted by \(0 \). Every vector has an additive inverse. Addition is commutative and associative.
 - Scalar multiplication. If \(v \in V \) and \(a \in \mathbb{R} \), then \(av \in V \). There is an identity element in \(\mathbb{R} \) denoted by \(1 \).

The two operations are linked by the distributive property.

- A **complex vector space** is defined similarly, with \(\mathbb{R} \) above replaced by \(\mathbb{C} \).

- A set of vectors \(\{v_i\} \) is **linearly independent** if the only solution to the equation \(\sum_i a_i v_i = 0 \) is that \(a_i = 0 \) for every \(i \).

- If there exists a set \(B = \{v_i\} \) of linearly independent vectors such that every vector \(v \in V \) has a decomposition \(v = \sum_i a_i v_i \), then \(B \) is a **basis** of \(V \). The size of the set, \(|B| \), is the **dimension** of \(V \).

Linear independence of the basis guarantees uniqueness of the decomposition.

- An **inner product** on a **real vector space** \(V \) is a map \((\ ,\) : V \times V \to \mathbb{R} \) satisfying the following properties.
 1. Symmetry: \(\langle u|v \rangle = \langle v|u \rangle \) for any \(u, v \in V \)
 2. Bilinearity: \(\langle a_1 u + a_2 v|w \rangle = a_1 \langle u|w \rangle + a_2 \langle v|w \rangle \) and \(\langle u|a_1 v + a_2 w \rangle = a_1 \langle u|v \rangle + a_2 \langle u|w \rangle \) for any \(u, v, w \in V \) and \(a_1, a_2 \in \mathbb{R} \).
3. Positive definiteness: for any \(u \in V \), \(\langle u|u \rangle \geq 0 \),
and \(\langle u|u \rangle = 0 \iff u = 0 \).

- An inner product on a complex vector space \(V \) is a map \(\langle \cdot | \cdot \rangle : V \times V \rightarrow \mathbb{C} \) satisfying the following properties.
 1. Conjugate symmetry: \(\langle u|v \rangle = \langle v|u \rangle^* \) for any \(u, v \in V \)
 2. Complex bilinearity: \(\langle a_1 u + a_2 v|w \rangle = a_1^* \langle u|w \rangle + a_2^* \langle v|w \rangle \)
and \(\langle u|a_1 v + a_2 w \rangle = a_1 \langle u|v \rangle + a_2 \langle u|w \rangle \)
for any \(u, v, w \in V \) and \(a_1, a_2 \in \mathbb{R} \).
 3. Positive definiteness: for any \(u \in V \), \(\langle u|u \rangle \) is real, \(\langle u|u \rangle \geq 0 \),
and \(\langle u|u \rangle = 0 \iff u = 0 \).

- A vector space together with a specific choice of inner product is called an inner product space.
The following points regarding orthogonality and projection pertain to inner product spaces.
- A pair of vectors \(u, v \) is orthogonal if \(\langle u|v \rangle = 0 \). A set of vectors \(S = \{v_i\} \) is orthogonal if \(\langle v_i|v_j \rangle = 0 \) whenever \(i \neq j \).

- Orthogonal projection. Suppose that \(S = \{w_i\} \) is a set of orthogonal vectors. If a vector \(v \) is linearly dependent on \(S \), meaning that there exist real-valued coefficients \(a_i \) such that \(v = \sum_i a_i w_i \),
then these coefficients can be obtained from the following relation:

\[
a_i = \frac{\langle v|w_i \rangle}{\langle w_i|w_i \rangle}
\]
The relation is derived by taking the inner product of the expansion equation with the basis element \(w_i \). If \(S \) is a basis for the vector space \(V \), then every vector \(v \in V \) has such an expansion.

5 Systems of linear equations

Systems of two linear equations in two variables take the form

\[
\begin{align*}
a_{11}x_1 + a_{12}x_2 &= b_1 \\
a_{21}x_1 + a_{22}x_2 &= b_2
\end{align*}
\]

where the \(a_{ij} \) and \(b_i \) are constants.

You can probably think of several ways to solve this system for \(x_1 \) and \(x_2 \).

One way is to focus first on \(x_1 \). Eliminate \(x_2 \) by multiplying eq. (1) by \(a_{22} \) and eq. (2) by \(-a_{12} \)
and then summing the results. Then the left-hand side is proportional to \(x_1 \). Divide through by its prefactor to get the value of \(x_1 \). Then, repeat a similar process to solve for \(x_2 \), starting with multiplying eq. (1) by \(a_{21} \) and eq. (2) by \(-a_{11} \).

In this module we sometimes encounter larger systems of linear equations, but they will be readily approachable through elimination of one variable at a time. For example, for the triangular system

\[
\begin{align*}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\
a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\
& \vdots \\
a_{n-1,n-1}x_{n-1} + a_{n-1,n}x_n &= b_{n-1} \\
a_{nn}x_n &= b_n
\end{align*}
\]
solve the last equation for \(x_n \), then insert this value into the previous equation to solve for \(x_{n-1} \), and so on.
6 Series

- In this module, we work with two kinds of infinite series, namely
 \[\sum_{m=-\infty}^{\infty} a_m \]
 summed over all integer values of the index \(m \), or
 \[\sum_{m=0}^{\infty} a_m \]
 summed over nonnegative integer values of \(m \). The second type can be used for solving differential equations, as well as for Fourier series.

- A series that has a limiting value is said to converge, and it can be manipulated freely with algebraic operations if it converges absolutely, i.e. if the series \(\sum_{m} |a_m| \) converges.

- Infinite geometric series:
 \[\sum_{m=0}^{\infty} q^m = \frac{1}{1-q} \quad \text{if} \quad |q| < 1, \quad q \in \mathbb{C}. \]
 If \(|q| \geq 1\), the series does not converge.

- Finite geometric series:
 \[\sum_{m=0}^{r} q^m = \frac{1 - q^{r+1}}{1-q} \quad \text{if} \quad q \neq 1, \quad q \in \mathbb{C}. \]
 If \(q = 1 \), the series obviously sums to \(r + 1 \).

- The following are Taylor series expansions around \(x = 0 \).
 \[\log(1 + x) = \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m} x^m \]
 \[e^x = \sum_{m=0}^{\infty} \frac{x^m}{m!} \]
 Either from Euler's identity applied to the last line, or from direct differentiation, you can derive the power series for \(\sin x \) and \(\cos x \).

7 Calculus

The following concepts should be thoroughly understood and applied from memory wherever appropriate.

- Product rule
 \[\frac{d}{dx} (f \cdot g) = \frac{df}{dx} \cdot g + f \cdot \frac{dg}{dx} \]

- Chain rule
 \[\frac{d}{dx} (f(g(x))) = \frac{df}{dg} \cdot \frac{dg}{dx} \]

- Integration by parts
 \[\int u \, dv = uv - \int v \, du \]
 Be careful in applying integration by parts: it should only be done piecewise on intervals on which the functions are continuous.

- Method of partial fractions for integrating rational functions