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Abstract

Scattering amplitudes take surprisingly simple forms in theories such
as quantum chromodynamics (QCD) and general relativity. This simplic-
ity indicates deep symmetry. Recently, it has become possible to explain
some of this symmetry. I will describe these insights and show how to
derive amplitudes efficiently and elegantly. Key new ideas involve using
complexified momentum, exploring singular behavior, and seeking clues
in so-called twistor geometry. Complete amplitudes can be produced re-
cursively. This streamlined approach is being applied in searches for new
physics in high-energy particle colliders.

Lecture 1: Color quantum numbers can be set aside. Helicity am-
plitudes have elegant expressions in terms of spinors. MHV (maximally
helicity violating) amplitudes are the simplest.

1 Introduction

The theme of this course is the study of scattering amplitudes through their
simplicity and singularities.

When written as functions of well chosen variables, formulas for scattering
amplitudes take simpler forms than one would naively expect from thinking
of sums of Feynman diagrams. This simplicity is clearest in supersymmetric
Yang-Mills theory, but extends to pure Yang-Mills, the Standard Model, and
even (super)gravity. Simplicity motivates why and how we compute them: new
structures demand new insights, and lead to new computational methods.

Explicit computations of amplitudes are important for experimental studies,
notably in hadron colliders; and more formally, for exploring deeper structures
in field theories such as Yang-Mills and supergravity.
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Precision calculations at hadron colliders

Hadron colliders such as the Tevatron and especially LHC have very large QCD
backgrounds. In order to observe signals of new physics, both background and
signal must be computed to high precision (on the order of 1%). This typi-
cally means computing to next-to-leading order (NLO) in the strong coupling
constant, and in some cases to next-to-next-to-leading order as well. One- and
two-loop computations are thus of particular interest. These higher-order com-
putations also have the effect of reducing renormalization scale dependence.

The QCD Factorization Theorem states that thanks to asymptotic freedom,
an infrared-safe, collinear-safe observable can be expressed as a convolution of
parton distribution functions with hard scattering kernels.

∑

a,b

∫ 1

0
dx1dx2 fa/h1

(x1, µf ) Hab(Q;Q2/µ2, µf/µ,αs(µ)) fb/h2
(x2, µf )

The parton distribution function fa/h1
(x1, µf ) is the probability density of find-

ing parton a of momentum fraction x1 in proton h1 at energy scale µf . Therefore
it is meaningful to compute cross sections in perturbative QCD.

N = 4 supersymmetric Yang-Mills theory

This is a very special theory. It is conformal, with maximal supersymmetry in
four dimensions. It is integrable in the planar limit. It is involved in various du-
alities: most famously, AdS/CFT; relevant to this course, a duality with twistor
string theory; and internal dualities among Wilson loops, amplitudes, and cor-
relation functions that are still being discovered today. Some practitioners like
to refer to it as “the harmonic oscillator of the 21st century.” We will come back
to this subject in Lecture 3, but for now I just want to touch upon a couple of
motivations for pushing the boundaries of amplitude calculations.

For years, the “cusp anomalous dimension” or “soft anomalous dimension”
f(λ) has been a computational target. It is the scaling of twist-2 operators in
the limit of large spin,

∆(Tr[ZDSZ])− S = f(λ) logS +O(S0).

Weak coupling calculations have been done from QCD pdf’s and gluon ampli-
tudes, while a strong coupling expansion comes from AdS/CFT, integrability
considerations and an all-loop Bethe ansatz. The number has been matched
through 4 loops, giving checks on proposals for integrable structures.

Another inspiration has been the “BDS ansatz” (Bern, Dixon, Smirnov), a
conjecture for iterative structure,

log

(

An

Atree
n

)

= Divn +
f(λ)

4
a1(k1, . . . , kn) + h(λ) + nk(λ)

The formula was conjectured based on the expected divergences of the amplitude
from soft & collinear limits. By now we know that it fails for n > 5, and it has
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been instructive to see why it could be satisfied for n ≤ 5 (new symmetries!)
and how it fails for n > 5, since the difference, called the “remainder function”
has been predicted in the n → ∞ limit from strong-coupling considerations.
Specifically, AdS/CFT predicts that the amplitude can be computed from the
classical action of the string worldsheet whose boundary is a certain polygon.
This correspondence extends to weak coupling as well.

Gravity amplitudes

Amplitudes in Einstein gravity or supergravity are simple as well, though we
might not expect it from looking at the Lagrangian. Starting from a string
theory analysis by Kawai, Lewellen and Tye (KLT) relating closed string ampli-
tudes and open string amplitudes, one can take the field theory limit and relate
graviton and gauge field amplitudes. These KLT relations are valid through at
least two loops in N = 8 supergravity.

One basic question in gravity theories is, could N = 8 supergravity actually
be finite? Like N = 4 SYM, it is special by virtue of having maximal super-
symmetry and no additional field content. Indeed, supersymmetry plays a role
in suppressing expected divergences, but supersymmetry arguments alone can
only eliminate divergences through a certain number of loops. Depending on
the sophistication of the argument, the number starts at 3 and (so far) goes
up to 6.1 No one has performed a 7-loop computation, but thanks to this mo-
tivation, 4-loop amplitudes have been computed and further computations are
underway. Along the way, new identities have been discovered enhancing our
understanding of amplitudes in general or in N = 4 SYM. One reason to think
it is possible that the theory is ultimately finite is that its relation to N = 4
SYM is even stronger than we currently understand.

2 QCD at tree level

Now we begin studying amplitudes in detail. To look at concrete examples,
we choose QCD as a theory amenable to new techniques. However, the spinor-
helicity formalism can be generalized to include other field content. Massless
fields are straightforward, while spinors for massive fields are somewhat less
clean and are less widely used. The extension to supersymmetric Yang-Mills
theory is easy and we will use it later.

Our field content is the gluon, transforming in the adjoint representation of
the gauge group SU(N), and quarks and antiquarks of assorted flavors, trans-
forming in the fundamental or antifundamental representation. The Feynman
rules are given in Figure 1.

Recommended reading: Most of this introductory lecture follows [1] closely.
I refer you to those lectures for additional explanations and a complete list of
references. I am also using material from [2], especially in using Weyl spinors

1An earlier argument against any divergence through 8 loops was slightly flawed.
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= −i δ
abηµν

p2

b, ν

p

a, µ

j = iδij

p̸
i

p

= −igγµT a
ij

i

j

a, µ

b, µ c, ν

d, ρa,λ

− ig2facef bde(ηλµηνρ − ηλρηµν)

= −ig2fabef cde(ηλνηµρ − ηλρηµν)

− ig2fadef cbe(ηλνηµρ − ηλµηρν)

= −gfabc(ηνρ(p− q)µ + ηρµ(q − k)ν + ηµν(k − p)ρ)

k

c, ρ

a, µ

b, ν
p

q

Figure 1: Feynman rules for QCD in Lorentz (Feynman) gauge with massless
quarks, omitting ghosts.

rather than Dirac spinors. A new lecture write-up [3] appeared just last week.
It covers color ordering and the spinor-helicity formalism, with many examples
of computing amplitudes in QCD and QED, and including an introduction to
BCFW recursion relations.

2.1 Color ordering

The SU(N) color algebra is generated by the N×N traceless hermitian matrices
T a, with the color index a taking values from 1 to N2− 1. They are normalized
by Tr(T aT b) = δab. The structure constants fabc are defined by [T a, T b] =
i
√
2fabcT c, from which it follows that

fabc = − i√
2

(

Tr(T aT bT c)− Tr(T aT cT b)
)

. (1)

Gluon propagators conserve color through the factor δab. The traces in the fabc

at the vertices can be merged by the Fierz identity,

∑

a

(T a) j̄
i (T a) ℓ̄

k = δ ℓ̄
i δ j̄

k − 1

N
δ j̄
i δ ℓ̄

k (2)

It follows that at tree level, all color factors combine to form a single trace
factor for each term. (One can check that the terms with 1/N all cancel among
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themselves; this is guaranteed by the fact that this term would be absent if the
gauge group were U(N) rather than SU(N), but the auxiliary photon field does
not couple to gluons anyway.)

The color decomposition for gluon amplitudes at tree level is:

Atree
n ({ai, pi, ϵi}) = (3)

gn−2
∑

σ∈Sn/Zn

Tr(T aσ(1)T aσ(2) · · ·T aσ(n))A(pσ(1), ϵσ(1), . . . , pσ(n), ϵσ(n)).

The sum is over all permutations of the gluon labels, with a quotient by Zn

because the trace is cyclically invariant, so all these permutations can be com-
bined in the same term. The function A(pi, ϵi) of kinematic arguments only
is called the “color-ordered partial amplitude.” Once we have performed the
color decomposition, we will refer to this function simply as the “amplitude” of
the process. For tree amplitudes involving quarks, analogous formulas can be
derived where instead of a trace, the string of matrices will be terminated by
the specific T a’s in the quark-quark-gluon vertices.

One-loop amplitudes of gluons have double-trace terms as well as single-trace
terms. Their color decomposition is:

A1−loop
n ({ai, pi, ϵi}) = (4)

gn
[

∑

σ∈Sn/Zn

N Tr(T aσ(1)T aσ(2) · · ·T aσ(n))An;1(pσ(1), ϵσ(1), . . . , pσ(n), ϵσ(n))

+

⌊n/2⌋+1
∑

c=2

∑

σ∈Sn/Sn;c

Tr(T aσ(1) · · ·T aσ(c−1))Tr(T aσ(c) · · ·T aσ(n))

×An;c(pσ(1), ϵσ(1), . . . , pσ(n), ϵσ(n))
]

.

Here, the partial amplitude An;1 multiplying the single-trace term is called the
leading-color partial amplitude, and the An;c are called subleading-color partial
amplitudes. There is a relation among these partial amplitudes, so that in fact
it suffices to compute the leading-color partial amplitudes. The An;c are then
fixed by the identity

An;c(1, 2, . . . , c− 1; c, c+ 1, . . . , n) = (−1)n
∑

σ∈COP{α}{β}

An;1(σ), (5)

where {α} is the reverse-ordered set {c− 1, c− 2, . . . , 2, 1}, {β} is the ordered
set {c, c + 1, . . . , n}, and COP denotes the cyclically-ordered permutations of
{1, . . . , n} preserving the cyclic orderings of {α} and {β}.

Having carried out the color decomposition, we now turn our attention to the
(leading-color) partial amplitudes. The upshot is that we only need to consider
planar diagrams for a given cyclic ordering of gluons. There are suitably defined
“color-ordered Feynman rules” generating these partial amplitudes, given in
Figure 2.
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= i√
2
γµµ

= iηµρηνλ − i
2 (ηµνηρλ + ηµληνρ)

µ ν

ρλ

µ
= − i√

2
γµ

p = i
p̸

µ ν

p
= −i

ηµν
p2

= i√
2
(ηνρ(p− q)µ + ηρµ(q − k)ν + ηµν(k − p)ρ)

k

ρ

µ

ν
p

q

Figure 2: Color-ordered Feynman rules in QCD. Momenta are directed outwards
from the cubic vertex.
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2.2 Spinor-helicity formalism

The color-ordered amplitudes are functions of the (null) momentum 4-vectors pi
and the polarization vectors ϵi. In the spinor-helicity formalism, these numbers
will be exchanged for spinors and helicity labels. The motivation is that there is
too much redundancy among momenta and polarizations. Given a momentum
vector pi for an external gluon, we know that the polarization vectors must be
transverse and therefore satisfy ϵi · pi = 0, and moreover that the shift ϵi →
ϵi+wpi for constant w is a gauge transformation that must leave the amplitude
invariant. However, there is no natural choice of ϵi given these constraints. By
expressing the momentum in terms of spinors, we will improve this situation.
This section follows the exposition in [2].

The Lorentz group is locally isomorphic to SL(2) × SL(2), whose finite-
dimensional representations are labeled by (p, q) taking integer or half-integer
values. The positive-chirality spinor representation is (1/2, 0), while the negative-
chirality spinor representation is (0, 1/2). We write λa for a positive-chirality
spinor and λ̃ȧ for a negative-chirality spinor, where the labels a and ȧ take
values 1, 2.

The vector representation of SO(3, 1) is the (1/2, 1/2) representation of
SL(2) × SL(2), so a momentum vector should be viewed as an object with
one each of the positive and negative chirality spinor labels. To see this map
explicitly, let us work in the chiral (Weyl) basis of gamma matrices,

γµ =

(

0 σµ

σ̄µ 0

)

, (6)

where σµ = (1, σ⃗) and σ̄µ = (−1, σ⃗). Given a Lorentz vector pµ, define a 2x2
matrix

paȧ = σµ
aȧpµ = p0 + σ⃗ · p⃗. (7)

One can see that pµpµ = det(paȧ). Thus a null momentum vector p is mapped
to a 2x2 matrix whose rank is strictly less than 2 and can therefore be written
in the form

paȧ = λaλ̃ȧ. (8)

For real-valued momentum vectors in +−−− signature, the spinors λa and
λ̃ȧ are actually complex-valued, but they are complex conjugates of each other,
up to a sign. Later on, we will find it indispensable to work with complex-valued
momentum vectors, for which λa and λ̃ȧ become completely independent.

Notice that the equation (8) does not give unique values for the spinors. It is
always possible to exchange a constant factor between them. In real Minkowski
space, since the spinors should be complex conjugates, this factor can only be a
complex phase. The choice of a specific pair of spinors for a given momentum
vector is equivalent to the choice of a wavefunction for a spin 1/2 particle of that
same momentum. (This is the starting point in the exposition of spinor-helicity
in [1].)
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Explicit forms for the spinors associated to a null vector (p0, p1, p2, p3) are

λa =
eiθ√

p0 − p3

(

p1 − ip2
p0 − p3

)

, λ̃ȧ =
e−iθ

√
p0 − p3

(

p1 + ip2 p0 − p3
)

, (9)

where eiθ is the freely chosen phase factor. The spinor indices are raised and
lowered with the epsilon tensors ϵab, ϵȧḃ and their inverses ϵab, ϵȧḃ.

2.3 Spinor products and notation

Two spinors of the same chirality can be contracted with the epsilon tensors. We
use different shapes of brackets for the two chiralities, and define antisymmetric
spinor products as

ϵabλaµb ≡ ⟨λµ⟩ = −⟨µλ⟩ , (10)

ϵȧḃλ̃ȧµ̃ḃ ≡ [µ̃λ̃] = −[λ̃µ̃]. (11)

Just as we had p · p = det(paȧ), it is easy to see that p · q = 1
2ϵ

abϵȧḃpaȧqbḃ. If
both these vectors are null, we find

p · q =
1

2
⟨λµ⟩ [µ̃λ̃]. (12)

In the literature, it is very common to find 4-component Dirac spinors rather
than the 2-component Weyl spinors. We summarize the correspondence and
shorthand below. The subscripts on the Dirac spinors indicate helicity.

Weyl Weyl Dirac Dirac spinor Dirac spinor
shorthand spinor shorthand pos. energy neg. energy

|i⟩ λa(pi) |i+⟩ u+(pi) v−(pi)
|i] λ̃ȧ(pi) |i−⟩ u−(pi) v+(pi)
⟨i| λa(pi) ⟨i−| u−(pi) v+(pi)
[i| λ̃ȧ(pi) ⟨i+| u+(pi) v−(pi)

It is also important to be aware that there are two commonly used conventions
for the square-bracket spinor product (for negative chiralities), which differ by
a sign. Here we do our best to follow the more traditional “QCD” conventions,
where

⟨ij⟩ [ji] = 2pi · pj = (pi + pj)
2 ≡ sij . (13)

The opposite sign is used in [2] and many “twistor-inspired” papers that fol-
lowed.

More complicated contractions of spinor indices are expressed by expanded
spinor products. Notice that

p̸i = |i⟩ [i|+ |i] ⟨i| . (14)
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When any Lorentz vector is sandwiched between spinors, it is redundant to write
the slash, although it is common to do so. Therefore it should be understood
that

⟨i|P |j] = λa(pi)Pbḃλ̃ȧ(pj)ϵ
abϵȧḃ (15)

= [j|P |i⟩ . (16)

Chirality implies that a product such as ⟨i|P |j⟩ does not exist; in Dirac spinor
terminology, ⟨i−| P̸ |j+⟩ = 0. Here, P is an arbitrary Lorentz vector. In ampli-
tude calculations, we will typically find P that are the sum of external momenta.
Since the external legs are cyclically ordered, we define for convenience

Pi,j = pi + pi+1 + · · ·+ pj (17)

where indices are taken modulo n, the number of legs. Then, for example, our
notation implies that

⟨k|Pi,j |ℓ] =
j
∑

r=i

⟨kr⟩ [rℓ] . (18)

Before coming back to the subject of polarization vectors and amplitudes, let
us introduce one useful spinor identity, the Schouten identity:

0 = ⟨ij⟩ ⟨kℓ⟩+ ⟨ik⟩ ⟨ℓj⟩+ ⟨iℓ⟩ ⟨jk⟩ . (19)

The Schouten identity follows from the fact that the spinors live in a 2-dimensional
space.

2.4 Polarization vectors

Now that we have expressed the gluon momenta in terms of spinors, we can
write the polarization vectors in a natural form for each of the two helicity
states. For a gluon of momentum paȧ = λaλ̃ȧ, the polarization vectors are

ϵ−aȧ = −
√
2
λaµ̃ȧ

[λ̃ µ̃]
, ϵ+aȧ = −

√
2
µaλ̃ȧ

⟨µ λ⟩ , (20)

where µ and µ̃ are arbitrary reference spinors, as long as the denominators do
not vanish. Since they are directly proportional to the spinors, it is clear that
the transverse condition ϵ · p = 0 is satisfied. It is also easy to see that the
freedom to choose µ and µ̃ is the freedom of gauge.

Thus the polarization vectors satisfy the following relations,

ϵ±aȧλ
aλ̃ȧ = 0, (21)

ϵ+aȧϵ
+aȧ = 0, (22)

ϵ−aȧϵ
−aȧ = 0, (23)

ϵ+aȧϵ
−aȧ = −1. (24)
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2.5 Helicity amplitudes

With the expressions for polarization vectors, we can show that the simplest
classes of helicity amplitudes of gluons vanish,

A(1+, 2+, 3+, · · · , n+) = 0,

A(1−, 2+, 3+, · · · , n+) = 0.

Because cyclic relabelings are not distinct, the second equation covers any con-
figuration with (n− 1) gluons of positive helicity and one of negative helicity.

To see that these amplitudes vanish, notice that all Lorentz indices must
be contracted in the final expression. An n-point tree amplitude has at most
n − 2 momentum vectors in each term, from the cubic interaction vertices.
That means that at least two of the polarization vectors must be contracted
with each other. We can make all such contractions vanish by choosing the
reference spinors wisely. If µi = µj , then ϵ+i · ϵ+j = 0. So we choose all the µ for

positive helicities to be identical. The contraction ϵ−1 · ϵ+j vanishes if µ̃1 = λ̃j

or µj = λ1. We can make this choice of µj for all the positive helicities in the
second amplitude. Similar arguments show that A(1−q̄ , 2

+
q , 3

+, · · · , n+) = 0.
Thus, the nonvanishing amplitudes start when at least two gluons have helic-

ity opposite to the rest. These are called Maximally Helicity Violating (MHV)
amplitudes.

Naturally, we have parity-conjugate vanishing relations for amplitudes with
only negative-helicity gluons or a single positive-helicity gluon. Parity conjuga-
tion is one of several useful identities satisfied by helicity amplitudes.

Reflection:

A(1, 2, . . . , n) = (−1)nA(n, . . . , 2, 1) (25)

Parity conjugation:

A(1h1 , 2h2 , . . . , nhn) = (−1)n
(

A(1−h1 , 2−h2 , . . . , n−hn)
)
∣

∣

⟨ , ⟩↔[ , ]
(26)

Photon decoupling identity:

0 = Atree(1, 2, 3, . . . , n) +Atree(2, 1, 3, . . . , n) +Atree(2, 3, 1, . . . , n) + · · ·+Atree(2, 3, . . . , 1, n) (27)

This identity is derived by decoupling the non-existent photon, which would be
present if the gauge group were U(N) instead of SU(N). Then we could put
the identity matrix into the trace in the color decomposition formula (4), whose
form is unchanged. But there is no photon in QCD, so this color structure
multiplies a vanishing expression.

Finally, the scaling of polarization vectors gives a scaling property of the full
amplitude. For each particle labeled by i,

(

λa
i

∂

∂λa
i

− λ̃ȧ
i

∂

∂λ̃ȧ
i

)

A(λi, λ̃i, hi) = −2hiA(λi, λ̃i, hi). (28)
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2

1

n

µ + Σ= Σ

1

i

i+1

n

1

i

i+1

j

j+1

n

µ µ
i,ji

Figure 3: The Berends-Giele recursion relation.

As we think about computing amplitudes, we start for small values of n.
For n = 4 and n = 5, every nonvanishing amplitude is MHV or conjugate-
MHV. Moreover, we can use the photon decoupling identity to limit our com-
putations to amplitudes where the negative helicities are cyclically adjacent,
i.e. A(−,−,+,+) and A(−,−,+,+,+). Through judicious choices of reference
spinors for the polarization vectors, we can drastically reduce the number of
diagrams to compute and carry out the computation by hand without too much
trouble. But as the number of legs increases, we will find recursive techniques
immensely helpful.

2.6 Recursion for off-shell currents (Berends-Giele)

The Berends-Giele recursion for currents [4] generates gluon amplitudes by tak-
ing a single external leg off shell. Define Jµ(1, 2, . . . , n) as the sum of Feynman
diagrams where gluons 1, . . . , n are on shell but there is one additional off-shell
gluon with the uncontracted vector index µ. The current can be constructed
recursively by noticing that the gluon labeled by µ must be attached to either
a cubic or a quartic vertex, and in either case, the vertex is contracted with
similar currents involving fewer legs. See Figure 3.

Jµ(1, . . . , n) =
−i

P 2
1,n

[

n−1
∑

i=1

V µνρ
3 (P1,i, Pi+1,n) Jν(1, . . . , i) Jρ(i + 1, . . . , n)

+
n−1
∑

j=i+1

n−2
∑

i=1

V µνρσ
4 Jν(1, . . . , i) Jρ(i+ 1, . . . , j) Jσ(j + 1, . . . , n)

]

The off-shell current satisfies the current conservation identity,

Pµ
1,...,n · Jµ(1, . . . , n) = 0. (29)

To construct the (n+1)-point gluon amplitude from the current Jµ(1, . . . , n),
first amputate the propagator by multiplying by iP 2

1,n. Then, contract with
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ϵµn+1, the polarization vector of either helicity. Finally, take the limit p2n+1 =
P 2
1,n → 0.
The algorithm is unsurpassed for its numerical power. Analytically, closed-

form expressions are available for the simplest helicity configurations:

Jµ(1+, 2+, . . . , n+) =
⟨q|σµP1,n|q⟩√

2 ⟨q1⟩ ⟨12⟩ · · · ⟨n− 1, n⟩ ⟨nq⟩
, (30)

Jµ(1−, 2+, . . . , n+) =
⟨q|σµP2,n|q⟩√

2 ⟨12⟩ · · · ⟨n− 1, n⟩ ⟨n1⟩

n
∑

m=3

⟨1m⟩ ⟨1|P1,m|m]

P 2
1,m−1P

2
1,m

.(31)

These formulas were constructed from an ansatz that could be checked to satisfy
the recursion.

From these results, we can confirm that amplitudes with all positive or one
negative helicity vanish. More importantly, we can prove the formula conjec-
tured by Parke and Taylor for MHV amplitudes [5]. If the negative-helicity
gluons are labeled by j and k, then the amplitude is

A(1+, . . . , j−, . . . , k−, . . . , n+) = i
⟨jk⟩4

⟨12⟩ ⟨23⟩ · · · ⟨n1⟩ . (32)

With Berends-Giele recursion, complete analytic results for gluon ampli-
tudes were given up through n = 7, and also the complete next-to-MHV series
A(1−, 2−, 3−, 4+, . . . , n+) where the negative-helicity gluons are cyclically adja-
cent.

Exercise: By parity conjugation of the Parke-Taylor formula for 4 gluons, we
can see that

i
⟨12⟩4

⟨12⟩ ⟨23⟩ ⟨34⟩ ⟨41⟩ = i
[34]4

[12] [23] [34] [41]
.

If we didn’t know that this expression represented an amplitude, the equal-
ity would not be obvious. Prove it using spinor identities, given momentum
conservation p1 + p2 + p3 + p4 = 0.
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Constructing Scattering Amplitudes

Lecture 2: On-shell (BCFW) recursion relations

at tree level

Ruth Britto
ruth.britto@cea.fr

January 28, 2011

1 The BCFW construction

The formulas commonly called “on-shell” or “BCFW” [1] recursion relations
are not specific to a particular theory. Their common element is a construction
based on a linear momentum shift in complexified momentum space. In any
theory where a valid construction like this can be found, recursion relations are
generated. The construction was originally performed and proved in pure Yang-
Mills theory, where these kinds of relations among amplitudes had already been
guessed (based on properties of loop amplitudes). What is remarkable about
the BCFW construction is not just the ease with which it can be varied and
applied elsewhere, but also the fact that it tends to produce amplitudes in their
most compact, elegant forms.

The idea is to consider the amplitude A as a (complex) function of external
momenta,

A = A(p1, . . . , pk�1, pk, pk+1, . . . , pn�1, pn). (1)

We introduce a shift of these momenta, preserving on-shell conditions and mo-
mentum conservation, that is linear in a complex variable z, and observe the
analytic properties of the function A(z)/z. The only singularities of a Feynman
diagram come from its propagators, which, at tree level, lead to simple poles.
There is another pole at z = 0. Now, if A(z) vanishes in the limit z ! 1, then
the sum of all residues is zero,

0 =
1

2⇡i

I
dz

A(z)

z
(2)

= A(0) +
X

poles z⇡ of A(z)

Res

✓
A(z)

z

◆

z=z⇡

. (3)

In this equation, A(0) will be the original, unshifted amplitude, and the other
residues will turn out to be factorization limits of the amplitude, in which it

1



becomes the product of smaller amplitudes. This is because the poles are where
propagators go to zero, meaning that there are on-shell amplitudes on either
side.

In sum, the two necessary ingredients for this construction to work are a
linear momentum shift preserving on-shell and conservation conditions, and the
vanishing of A(z) as z ! 1. The condition of vanishing at infinity is where all
the details of the theory come in. Let us first see how to define the momentum
shift quite generally, before specializing to massless QCD and using it in detail.

Start by choosing a particle j with 4-momentum pj to shift by a vector q
multiplied by our complex variable z. It is convenient to denote the shifted
momentum by a hat:

bpj ⌘ pj(z) ⌘ pj + zq. (4)

To conserve momentum overall, this additional term must be absorbed by the
momenta of other particles, and the simplest choice is to move it all to one other
particle, which we label by k. Then

bpk ⌘ pk(z) = pk � zq. (5)

Along with momentum conservation, we also need the on-shell conditions,

bp2
j
= p2

j
= m2

j
, bp2

k
= p2

k
= m2

k
, (6)

which restrict the choice of q. It is su�cient to choose q such that

q2 = 0, q · pj = 0, q · pk = 0, (7)

and in fact, there are two solutions to these equations (up to rescaling)—
provided we can accept complex values for momentum.

Whether either of these solutions satisfies limz!1 A(z) = 0 depends on the
theory. In pure Yang-Mills theory, there is always at least one such q for any
choice of two shifted particles, and for many amplitudes in other theories, there
is always at least one choice of shifted particles that gives a valid q.

For the moment, let us assume that the vanishing condition is satisfied.
Then, we need to identify the poles and residues. The poles are located where
propagators go to zero. Momentum flowing through a propagator depends on z
if and only if the shifted particles j and k are on opposite sides. See Figure 1.
For each partition ⇡ of the legs into sets separating j and k, we use PR to denote
the momentum flowing through the propagator in the direction of k, and M for
the mass of the propagating particle. The pole associated to this propagator is
the solution z = z⇡ to the equation PR(z)2 �M2 = 0. Since PR(z) = PR � zq,
the pole is

z⇡ =
P 2

R
�M2

2q · PR

, (8)

and the residue at this pole is the factorization of the amplitude where the
propagator goes on shell,

Res

✓
A(z)

z

◆

z=z⇡

= AL(z⇡)
�i

P 2

R
�M2

AR(z⇡). (9)
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= Σ
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π=

Figure 1: The BCFW recursion relation. The filled circles represent sums of all
Feynman diagrams with fixed external legs, which become on-shell amplitudes
where the propagator has a pole. The sum is over factorization channels of the
amplitude separating the shifted legs j and k. The momentum in the propaga-
tor is the (shifted) sum of all external momenta on the right-hand side of the
diagram.

The propagator should be modified appropriately if it is a fermion. The final
recursion relation is therefore

A(0) =
X

⇡

AL(z⇡)
i

P 2

R
�M2

AR(z⇡). (10)

The sum is over partitions of the external particles, but also over all internal
states (helicity, mass, etc.). It is a sum over factorization channels separating j
and k.

2 The 3-point amplitude

The BCFW recursion relation constructs an amplitude from amplitudes with
smaller numbers of legs, all the way down to 3. Before we examine the recursion
in detail in Yang-Mills theory, it is important to understand the basic building
blocks, the 3-point amplitudes. Let us consider the 3-point amplitude of gluons
in detail.

Start from the momentum conservation condition. Label the three outward-
directed momenta by p, q, r, which satisfy momentum conservation, p+q+r = 0.
Then, since r2 = 0, we have

h�p �qi [�̃q �̃p] = 0, (11)

so that

h�p �qi = 0 or [�̃q �̃p] = 0. (12)

In real Minkowski space, the spinor products are complex conjugates (up to a
sign), so they must both vanish separately. There are no finite momentum in-
variants or spinor products, and in fact the amplitude truly vanishes in physical
phase space.
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However, in complexified momentum space (or alternatively, in real momen-
tum space with signature + + ��), the spinors of positive and negative chi-
rality or completely independent, so we can choose just one of the conditions
h�p �qi = 0 or [�̃q �̃p] = 0 with which to satisfy momentum conservation. These
conditions can be rephrased in terms of the proportionality of the 2-component
spinors, as �p ⇠ �q or �̃p ⇠ �̃q. We can repeat this argument starting from
p2 = 0 or q2 = 0 instead of r2 = 0, leading to the conclusions that either all the
�’s are proportional, or else all the �̃’s are proportional. In each of these two
cases, we can write a nonvanishing expression for a 3-point helicity amplitude.
In summary, the three-point gluon amplitudes are given by

A(p+, q+, r�) = i
[�̃p �̃q]3

[�̃q �̃r][�̃r �̃p]
, and h�p �qi = h�p �ri = h�q �ri = 0;

A(p�, q�, r+) = i
h�p �qi

3

h�q �ri h�r �pi
, and [�p �q] = [�p �r] = [�q �r] = 0.

These formulas can be verified by explicit construction from the Feynman rules
with the appropriate polarization vectors. They will be needed in BCFW re-
cursion, where the original unshifted momenta are real-valued, but the shift
introduces complex momenta.

3 The vanishing condition and recursion rela-
tions in QCD

Let us look more specifically at QCD, starting with all-gluon amplitudes. They
are color-ordered, so we label the gluons cyclically from 1 to n. It is obvious
that the number of terms in the recursion relation depends on the number
of partitions separating the two shifted particles, which is smallest if they are
cyclically adjacent. Let us therefore choose adjacent particles to shift and choose
the labeling so that they are called 1 and n, with the shift

p1(z) = p1 � zq, pn(z) = pn + zq. (13)

The two solutions of (7) are q = �1�̃n and q = �n�̃1, up to rescaling, of course,
and by now it is clear that any scalar factors are taken care of by z.

We want a solution such that limz!1 A(z) = 0. It turns out that if we
choose

q = �1�̃n, (14)

then the vanishing condition is satisfied for the helicity choices (h1, hn) = (+,+)
or (�,�) or (�,+). By label permutation, then, it is clear that any pair of
gluons can be shifted.

We can prove the vanishing condition for (h1, hn) = (�,+) at the level of
Feynman diagrams. (For the like-helicity shifts, the vanishing does not hold at
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the diagram level, so di↵erent arguments are needed, which were given in the
BCFW paper.) Notice that the shift can be written in terms of spinors as

�1(z) = �1, �̃1(z) = �̃1 � z�̃n, (15)

�n(z) = �n + z�1, �̃n(z) = �̃n. (16)

Now we can just follow the z-dependence in any possible Feynman diagram.
First, notice that the only internal momenta carrying z-dependence are those
along the path connecting gluons 1 and n. The only way that z appears in the
numerator is from cubic vertices along this path, each linear in z. If the path
contains r vertices, then there are also r�1 propagators, each falling o↵ as 1/z.
Finally, there are the polarization vectors, and for this helicity choice we can see
that both ✏�

1
and ✏+

n
fall o↵ as 1/z. Thus, each diagram goes to zero at infinity,

as 1/z.
We finish the construction by identifying the poles and residues. The prop-

agators carrying z-dependence can be labeled by their momenta, P1,i(z) (since
they separate 1 and n, we choose to define it in the direction of 1), and the poles
labeled simply by i. If zi is the solution to P1,i(z)2 = 0, it is given by

zi =
P 2

1,i

h1|P1,i|n]
. (17)

The recursion relation is written as follows. There is a sum over internal he-
licities. Recall that the helicities are restricted to (h1, hn) = (+,+), (�,�), (�,+).
The hats denote shifted momenta, and the shift is di↵erent in each term.

An =
n�2X

i=2

X

h=+,�
A(b1, 2, . . . , i,� bPh

1,i
)
�i

P 2

1,i

A( bP�h

1,i
, i+ 1, . . . , n� 1, bn) (18)

bp1 = �1

 
�̃1 �

P 2

1,i

h1|P1,i|n]
�̃n

!
(19)

bpn =

 
�n +

P 2

1,i

h1|P1,i|n]
�1

!
�̃n (20)

bP1,i = P1,i �
P 2

1,i

h1|P1,i|n]
�1�̃n =

⇣
P1,i · �̃n

⌘⇣
�1 · P1,i

⌘

h1|P1,i|n]
(21)

Example:
Let’s compute A(1�, 2�, 3+, 4+, 5+), using the shift (15), (16). The recursion
relation (18) becomes

X

h=+,�

h
A(b1, 2,� bPh

1,2
)
�i

P 2

1,2

A( bP�h

1,2
, 3, 4,b5) +A(b1, 2, 3,� bPh

1,3
)
�i

P 2

1,3

A( bP�h

1,3
, 4,b5)

i
.

The first term inside the brackets vanishes, because gluons 3, 4, 5 all have pos-
itive helicity. Likewise, we are forced to take h = + in the second term to
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get a nonzero result. Using the Parke-Taylor formula for the 3- and 4-point
amplitudes, we get

A(b1�, 2�, 3+,� bP+

1,3
)
�i

P 2

1,3

A( bP�
1,3

, 4+,b5+) = i

D
b12
E3

h23i
D
3 bP1,3

ED
bP1,3
b1
E 1

P 2

1,3

h
4b5
i3

h
b5 bP1,3

i h
bP1,34

i

The shifted spinors can be read o↵ directly from equations (19), (20), and (21).
In particular, the hatted spinors b1 and b5 in this expression are exactly the
unshifted ones. Using the substitution P 2

1,3
= P 2

4,5
= h45i [54], it is straight-

forward to see that we recover the 5-point Parke-Taylor formula. In fact, the
Parke-Taylor formula can easily be proved by induction in this way. It is equally
simple if the negative-helicity gluons are cyclically non-adjacent.

Exercise:
Check the example above. Then compute A(1�, 2�, 3�, 4+, 5+, 6+).

If we want to shift non-adjacent gluons, the helicity restrictions for the van-
ishing condition are the same, and the recursion relation looks similar, except
that the poles will be indexed by two gluon labels instead of just one.

We can easily include massless fermions and scalars. The same shifts of a
pair of gluons will still be valid. Some additional shifts that are equally valid
at the diagram level are a gluon-fermion pair with helicities (hg, hf ) = (1,� 1

2
)

and (hf , hg) = ( 1
2
,�1). (The asymmetry is traced to the choice of q in (14).)

Many other shifts have been established in the literature. To give a small
start towards further exploration, here are just a few references for QCD [2],
amplitudes including massive scalars [3], massive fermions [4, 5], gravitons [6, 7],
and strings [8]. In amplitudes with massive particles, the results do tend to
rely on finding a pair of massless particles to shift. Lately there have been
applications to other kinds of quantities as well, such as integrands for multiloop
amplitudes and certain correlation functions.

For some examples of gluon amplitudes derived from this recursion relation,
see [9], which predates BCFW. The recursion relations had been guessed, but
the proof was not yet known. For example, one can prove the Parke-Taylor
formula directly, without having to guess a closed form for the Berends-Giele
o↵-shell current.

4 Bonus relations

If the fallo↵ of an amplitude under a BCFW shift is stronger than 1/z, then we
can construct even more compact recursion relations, called “bonus” relations.
For example, suppose A(z) ! 1/z2 as z ! 1. Then instead of applying the
residue theorem to A(z)/z as in (2), we can put an extra linear function in the
numerator.

0 =

I
↵� z

↵z
A(z). (22)
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We recover the unshifted amplitude A(0) as the residue at z = 0. The recursion
relation is

A(0) =
X

⇡

AL(z⇡)
↵� z⇡

↵

i

P 2

R
�M2

AR(z⇡). (23)

By choosing ↵ to equal one of the poles z⇡, we obtain a recursion relation
that is one term shorter than usual. If the recursion is applied repeatedly, this
gives noticeably more compact results. We now give three examples, also as a
way of introducing other theories and relations. They show formulas that were
previously known but whose compact form was later traced to bonus relations.

4.1 Gravity

In gravity, there is no color decomposition. We have mentioned the KLT (Kawai,
Lewellen, Tye) relations between graviton and gauge field amplitudes, derived
from a relation between closed and open string amplitudes. From KLT relations,
the formula for MHV amplitudes at tree level is [10]

A(1�, 2�, 3+, · · · , n+) =

h1 2i8

2

4 [1 2][n� 2, n� 1]

h1, n� 1iN(n)
(
n�3Y

i=1

n�1Y

j=i+2

hi ji)
n�3Y

l=3

(�hl|Pl+1,n�1|n]) + P(2, 3, · · · , n� 2)

3

5

where N(n) =
Q

n�1

i=1

Q
n

j=i+1
hi ji and P(2, 3, · · · , n�2) represents the sum over

all permutations. Notice that there are (n� 3)! terms.
The BCFW shift is valid for helicities (�,+), (+,+), (�,�), just as in Yang-

Mills theory, but in gravity the behavior at infinity is 1/z2 for each of these
shifts. Straightforward application of the recursion relation gives a formula
with (n� 2)! terms, while one of the bonus relations gives the formula above.

Here are two other expressions for the MHV amplitude in gravity [11]. The
first has (n� 2)! terms but exhibits nice properties, and the second has (n� 3)!
terms and can be traced to a bonus relation. The negative helicities can be on
any two of the gravitons.

Agrav

MHV
(1, 2, . . . , n) =

X

P(3,···,n)

F (1, 2, . . . , n), (24)

Agrav

MHV
(1, 2, . . . , n) =

X

P(4,···,n)

h12i h34i

h13i h24i
F (1, 2, . . . , n), (25)

where

F (1, 2, . . . , n) ⌘ h1ni [n1]

 
n�1Y

s=4

�s

!
AYM

MHV
(1, 2, . . . , n)2, (26)

�s ⌘ �
hs, s+ 1i

h2, s+ 1i
h2|P3,s�1|s] . (27)
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4.2 QED

There is no color ordering in QED either. The MHV amplitude for scattering a
charged fermion pair into n photons is very simple [12]:

A(q�, q̄+; 1�, 2+, . . . , n+) = i
hqq̄in�2

h1qi2Q
n

k=2
hqki hq̄ki

. (28)

Although these are MHV amplitudes, the lack of color ordering gives an ex-
pression with several terms when BCFW is applied directly. Recently it was
found that these amplitudes have a very strong fallo↵ when the charged pair
is shifted, namely 1/zn�1. Therefore n � 2 linear factors can be inserted into
(2), giving a “dressed” recursion relation [13]. For MHV amplitudes, the for-
mula above is recovered, and new compact forms for NMHV (next-to-MHV: 3
negative helicities) and NNMHV amplitudes have been found as well.

4.3 Yang-Mills theory

In Yang-Mills theory, the original BCF(W) recursion relation gives the most
compact formulas for gluon amplitudes. While shifts of non-adjacent gluons
give longer formulas, they have better boundary behavior, so there are bonus
relations. In this way new proofs have been found [14] of the familiar U(1) de-
coupling identity, a generalization of this identity called the Kleiss-Kuijf relation,
and relatively new identities by Bern-Carrasco-Johansson [15]. These last iden-
tities were conjectured based on the observation that gauge theory amplitudes
can be given in a form where their kinematic factors satisfy identities analogous
to the Jacobi identity satisfied by their corresponding color factors. They have
been useful for computing multi-loop amplitudes in supergravity. The bonus
relations for nonadjacent shifts have also given completely new identities.

All of these identities relate di↵erent permutations of labels in n-point gluon
amplitudes. A rephrasing of the U(1) (or photon) decoupling identity is

X

�2cyclic

A(1,�(2, 3, . . . , n)) = 0. (29)

The Kleiss-Kuijf relation is

A(1, {↵}, n, {�}) = (�1)|�|
X

�2OP ({↵},{�T })

A(1,�, n), (30)

where the sum is over “ordered permutations” preserving the respective order-
ings of the two subsets, and {�T

} is {�} with the ordering reversed.
The BCJ relations are more complicated, so we do not write all the details

here, but they take the form

A(1, 2, {↵}, 3, {�}) =
X

�2POP ({↵},{�})

A(1, 2, 3,�)
mY

k

Fk, (31)
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Figure 2: Recursion relation from the shift of the three negative helicity gluons
i, j, k in an NMHV amplitude. The amplitudes AL (on the left) and AR (on the
right) are both MHV.

where {↵} = {4, 5, . . . ,m} and {�} = {m+1, . . . , n}; POP stands for “partially
ordered permutations” of the labels 4 through n, preserving the ordering of
{�}; and Fk is a certain rational function of momentum invariants, linear in
numerator and denominator.

5 Multi-line shifts

Momentum shifts can be applied to more than two external lines. Such multi-
line shifts have been especially useful in gravity amplitudes. Here, we will show a
simple example in pure Yang-Mills theory [17]. It leads to the “MHV Diagram”
construction [18], which was first conjectured based on twistor geometry, as we
will discuss further in the next lecture.

Suppose we want to find an NMHV (next-to-MHV, i.e. 3 negative helicities)
helicity amplitude of gluons. Denote the gluons of negative helicity by i, j, k.
Introduce the following shift:

�̃i(z) = �̃i + z hjki ⌘̃ (32)

�̃j(z) = �̃j + z hkii ⌘̃ (33)

�̃k(z) = �̃k + z hiji ⌘̃ (34)

Total momentum conservation follows from the Schouten identity. The van-
ishing condition limz!1 A(z) = 0 is easily seen to be satisfied at the level of
Feynman diagrams.

What kind of recursion relation follows? The poles can now come from any
propagator separating i, j, k; i.e., two of the shifted particles are on one side of
the propagator, and one is on the other. See Figure 2. If i is the gluon separated
from j and k by a given propagator PR, the shifted propagator momentum is
PR(z) = PR � z hjki�i⌘̃. Notice that the negative helicity in the propagator
must be in AL, on the side of i. If not, then the AL has all positive helicities
except for one, so it vanishes automatically if there are at least three external
lines. If there are just two external lines, we have a 3-point amplitude, which
vanishes in a + + � configuration unless all the �’s are proportional. But this
condition cannot be forced, since it is �̃i which is shifted, while �i is fixed to its
original value, generically di↵erent from the other external � in AL.
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Thus, we have an expansion in terms of MHV amplitudes only. They are
built out of spinor products ha bi. Among these, the only appearance of either

shifts or propagators is in factors of the form
D
a bPR

E
. It is easy to replace these.

The definition of the shift implies
D
a| bPR|⌘̃

i
= ha|PR|⌘̃], so

D
a bPR

E
=

D
a| bPR|⌘̃

i

h
bPR ⌘̃

i =
ha|PR|⌘̃]h
bPR ⌘̃

i (35)

We know further from the helicity scaling identity that there must be exactly
equal numbers of these factors in the numerator and denominator (since the
propagator appears once each with positive and negative helicity in AL and AR).
Therefore, for each of these appearances, we can simply make the substitution

D
a bPR

E
! ha|PR|⌘̃] . (36)

These are the “MHV Rules” or “CSW Rules” (Cachazo-Svrček-Witten) for
generating tree-level amplitudes. In general, they are given as follows:

• Choose an arbitrary “reference” spinor ⌘̃.

• Draw all possible graphs with fixed external lines (in cyclic order, if ap-
plicable), such that each node has an MHV helicity configuration.

• Propagators are evaluated as usual, with momenta determined by momen-
tum conservation.

• Vertices are the MHV amplitudes! Write them from the Parke-Taylor
formula in the case of gluons. Propagators must be continued on-shell:
define �P = P · ⌘̃.

The definition �P = P · ⌘̃ is equivalent to the replacement (36). We do not need
�̃P because it doesn’t appear in MHV amplitudes.

For a general gluon amplitude with at least 3 negative helicities, the MHV
rules can be derived by shifting �̃ of every negative-helicity gluon. If the negative
helicities are on the gluons labeled by mi, the shift is

�̃mi(z) = �̃mi + zri⌘̃, (37)

where the ri are numbers such that
P

i
ri�mi = 0, but no proper subset of these

terms sums to zero. (In the NMHV case, the ri are determined uniquely.)
Like the BCFW recursion, the MHV rules have been generalized and used in

many di↵erent contexts. They do not give the most compact formulas, but they
are an illuminating expansion, quite direct compared to Feynman diagrams, and
with very simple on-shell continuation rules.
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6 The background field interpretation

There is an interpretation of the BCFW shift and recursion relations in terms
of a hard particle moving in a soft background [16]. This interpretation allows
us to study the structure and construction of recursion relations without wor-
rying about the exact representations of amplitudes. For example, we can work
generally in any dimension D � 4. One can see in general terms what kinds
of theories and amplitudes will allow recursion relations. Here, we will show
specifically how this formalism can prove the validity of BCFW shifts for gluon
amplitudes in the (+,+) and (�,�) cases.

Consider the z ! 1 limit of the momentum shift (4), (5),

pj(z ! 1) ! zq, pk(z ! 1) ! �zq. (38)

If q were real, this would be an eikonal limit, but of course q must be complex.
We can still use the idea that these large momenta approximate a single hard
particle, and the remaining soft particles can be understood collectively as a
classical background. The scattering of the hard particle will then be understood
by studying quadratic fluctuations about this background.

Let’s revisit pure Yang-Mills theory to see how the formalism works. The
gauge field will be expanded as

Aµ = Aµ + aµ, (39)

where Aµ is the background field and aµ is the fluctuation. The quadratic
Lagrangian is

L = �
1

4
trD[µa⌫]D

[µa⌫] +
i

2
tr[aµ, a⌫ ]F

µ⌫ . (40)

After adding a gauge-fixing term, (Dµaµ)2, we get

L = �
1

4
tr ⌘abDµaaD

µab +
i

2
tr[aa, ab]F

ab. (41)

Here we’ve relabeled the indices in order to display an “enhanced spin symme-
try” in the first term: there is something like a Lorentz symmetry acting on the
indices of the fluctuation aa. (Actual Lorentz invariance is broken by the non-
vanishing background field.) Intuitively, this is understood as the conservation
of helicity of the hard particle.

In the gauge-fixed Lagrangian, the vertices of O(z) come from the first term,
with the ⌘ab symmetry. Propagators are still O(1/z) along the path of the hard
particle (now the only scattered particle).

The full amplitude is

A = (✏j)aM
ab(✏k)b, (42)

where Mab is the expression assembled from vertices and propagators, before
contracting with the polarization vectors. From the gauge-fixed Lagrangian, we
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see that its expansion in z must take the form

Mab = (cz + · · ·)⌘ab +Aab
1

z
Bab + · · · , (43)

where Aab is antisymmetric, because it comes from terms with exactly one inser-
tion of the second-term vertex; and Bab has no particular symmetry properties;
and dots represent terms that are lower order in z.

What are the polarization vectors? Notice that the polarization vectors
satisfy the equations (7) for the shift vector q. Concretely, we consider one of
the two solutions (corresponding to q = �j �̃k in four dimensions), so that

q = ✏�
j
= ✏+

k
, q⇤ = ✏+

j
= ✏�

k
. (44)

These choices can be justified in D dimensions by looking in the center-of-mass
Lorentz frame. The shifted polarization vectors are then

✏+
j
(z) = q⇤ � zpk, ✏�

k
(z) = q⇤ + zpj , (45)

while ✏�
j
(z) and ✏+

k
(z) are still equal to q.

We will also use the Ward identities, such as (pj)a(z)Mab(✏k)b = 0, which
implies

qaM
ab(✏k)b = �

1

z
(pj)aM

ab(✏k)b. (46)

First, let us review the shift whose vanishing we proved by Feynman dia-
grams, namely M�+ = (✏�

j
(z))aMab(✏+

k
(z))b. In the background field expan-

sion, it follows from the expansion (43) together with the Ward identity (46)
and the fact that pj · q = 0, that M�+ = O(1/z).

The analysis for M�� is only slightly more complicated. Here we have

M�� = (✏�
j
(z))aM

ab(✏�
k
(z))b (47)

= qaM
ab(✏�

k
(z))b (48)

= �
1

z
(pj)aM

ab(✏�
k
(z))b (49)

= �
1

z
(pj)a

h
(cz + · · ·)⌘ab +Aab +

1

z
Bab + · · ·

i
(q⇤ + zpj)b (50)

= O (1/z) . (51)

The higher-order terms in (50) drop out because p2
j
= 0, pj · q⇤ = 0, and

(pj)aAab(pj)b = 0 due to the antisymmetry of Aab.
In the expansion of M�+, the leading term is �cz3pj · pk, so indeed the

boundary behavior does not give a recursion relation.
Additional simplifications are available in the lightcone gauge q ·A = 0. This

gauge eliminates O(z) behavior in all vertices except those to which both j and
k are directly attached. Therefore, if we shift non-adjacent gluons, there are
no vertices of O(z), and the same arguments show e.g. that M�+ = O(1/z2),
leading to the kind of bonus relations we discussed in the previous section. The
lightcone gauge q ·A = 0 also helps to understand BCFW recursion at the level
of Feynman diagrams.
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Constructing Scattering Amplitudes

Lecture 3: Twistors and N = 4 Supersymmetric

Yang-Mills

Ruth Britto
ruth.britto@cea.fr

February 4, 2011

The main theme of these lectures is the construction of scattering amplitudes
from their singularities. We have seen how complex poles are used in the BCFW
construction, and later on we will discover the use of branch cuts and related
singularities for loop amplitudes. In this lecture, we take a step aside and
consider the construction of amplitudes from their symmetries, incarnating the
simplicity promised at the start.

First, there is supersymmetry. Color-ordered tree-level QCD is “effectively”
supersymmetric. Since there are no loops, there are no superpartner contribu-
tions. Moreover, after the color decomposition, quarks can be treated exactly
like gluinos. Later, we will see how a “supersymmetry decomposition” is also
useful for computing one-loop amplitudes in QCD. N = 1 supersymmetry is
enough to derive useful relations, but we will go directly to N = 4 supersym-
metry here.

N = 4 supersymmetric Yang-Mills (SYM) theory is also conformal. The nat-
ural setting for (super)conformal symmetry is twistor space, where the symmetry
generators are all first-order differential operators. In twistor space, amplitudes
are localized on curves, and the components of the curves can be reinterpreted
as complete MHV subamplitudes, leading to the “MHV Diagram” method, also
called “CSW rules.” These constructions have been generalized to nonsuper-
symmetric theories with a variety of additional fields.

We will also discuss dual superconformal symmetry and the way it enlarges
the superconformal symmetry to the full Yangian algebra, an exact symmetry
of tree level amplitudes in N = 4 SYM. The dual space where this symmetry
operates is the natural home of Wilson loops whose relationship to scattering
amplitudes has been an especially fruitful research topic in recent years. Dual
space has its own twistor space, parametrized by “momentum twistor” coordi-
nates, which is perhaps the most natural setting of all for the study of N = 4
SYM amplitudes.

In this realm, it is conventional to omit the factor of i in vertices and ampli-
tudes and −i in propagators, and I now do so as well. Throughout this lecture
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we will assume color-ordered amplitudes of massless particles.

Recommended reading: In the presentation of twistor space and the local-
ization of amplitudes, I am following Witten [1]. A much fuller introduction
to twistor space may be found there, as well as original references, notably to
work of Penrose and Nair. I am also drawing heavily on the recent lectures
of Drummond [2], which give an introduction to N = 4 superamplitudes, dual
space and the Yangian algebra and all the relevant original references. Material
on momentum twistors and the Grassmannian integral follows [3].

1 Twistor space

Twistor space can be considered as the space of light rays; it is particularly well
suited for studying massless particles. Given the spinor representation of a null
momentum 4-vector, paȧ = λaλ̃ȧ, the twistor transform replaces λ̃ȧ by another
two-component object, µȧ, as follows:

µȧ = −i
∂

∂λ̃ȧ

, λ̃ȧ = i
∂

∂µȧ
. (1)

This can also be called the “half-Fourier” or “Penrose” or “Nair” transform.
Notice that it breaks the original parity symmetry between λ and λ̃. In twistor
space, there is no obvious relationship between MHV amplitudes (two negative
helicities, n − 2 positive helicities) and the conjugate MHV amplitudes (with
two positive helicities, n− 2 negative helicities).

One motivation for studying Yang-Mills theory in twistor space is that the
conformal symmetry generators become first order differential operators. In
spinor variables, the generators were given by

paȧ = λaλ̃ȧ jab =
i

2

(
λa

∂

∂λb
+ λb

∂

∂λa

)

kaȧ =
∂2

∂λa∂λ̃ȧ
j̃ab =

i

2

(
λ̃ȧ

∂

∂λ̃ḃ
+ λ̃ḃ

∂

∂λ̃ȧ

)

d =
i

2

(
λa

∂

∂λa
+ λ̃ȧ

∂

∂λ̃ȧ
+ 2

)

For the symmetries of an amplitude, there is an implicit sum over the particle
labels i. In twistor variables, the generators are

paȧ = iλa
∂

∂µȧ
jab =

i

2

(
λa

∂

∂λb
+ λb

∂

∂λa

)

kaȧ = iµȧ
∂

∂λa
j̃ab =

i

2

(
µȧ

∂

∂µḃ
+ µḃ

∂

∂µȧ

)

d =
i

2

(
λa

∂

∂λa
− µȧ

∂

∂µȧ

)
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Not only are the generators first-order, but the dilatation operator has become
homogeneous. The conformal symmetry generators can now be viewed as gen-
erating the natural action of SL(4) on twistor space T, which is a copy of C4.

In twistor space, the scaling relation for amplitudes becomes

(
λa
i

∂

∂λa
i

− µȧ
i

∂

∂µȧ
i

)
A(λi, µi, hi) = (−2hi − 2)A(λi, µi, hi), (2)

for each of the external particles, indexed by i. Thus, the amplitude is homoge-
neous in the twistor coordinates, of fixed degree. It can be viewed as a section
of the line bundle O(−2hi − 2) over projective twistor space PT. For the study
of scattering amplitudes, then, we should treat the twistor coordinates (λ, µ)
as homogeneous coordinates. Projective twistor space PT is three-dimensional1

and is isomorphic to CP3.
The external wavefunctions are the twistor transforms of plane waves, which

are delta functions:2

eiy·p →

∫
d2λ̃

(2π)2
exp(iyaȧ · λaλ̃ȧ) exp(iλ̃ȧµ

ȧ) = δ(2)(µȧ + yaȧλ
a). (3)

The wavefunction is then localized on a space where

µȧ + yaȧλ
a = 0. (4)

This equation is called the “twistor equation” or the “incidence relation.” From
it, we can read the geometric correspondence between spacetime and twistor
space.

A point in spacetime, specified by a fixed y, defines a line in twistor space, on
which the two components of λa are homogeneous coordinates. In complexified
twistor space, this line is a CP1, isomorphic to a 2-sphere.

A point in twistor space, specified by fixed coordinates λ, µ, defines a so-
called α-plane in spacetime, a two-dimensional subspace whose tangent vectors
are all null. If y and y′ lie on the same α-plane, then µȧ + yaȧλa = 0 and
µȧ+y′aȧλ

a = 0. It follows that (y−y′)aȧλa = 0, meaning that det(y−y′)aȧ = 0;
in other words, y and y′ are null separated: (y − y′)2 = 0.

Two lines in twistor space intersect (at a point) iff the corresponding points
in spacetime are null-separated. The intersection point in twistor space corre-
sponds to an α-plane containing the two spacetime points.

A set of n points in twistor space are collinear iff the corresponding α-
planes in spacetime intersect at a point. This property will motivate the MHV
diagram prescription, which we presented in the previous lecture and will see
again shortly.

1Here, complex dimensions. There is also a real version, with all coordinates taking real
values. Twistors are most rigorously defined with real coordinates in ++−− signature, where
for example λ and λ̃ are real-valued and completely independent.

2I am using y as a spacetime coordinate to avoid confusion with x, which will be a coor-
dinate in dual space later on.
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Localization of amplitudes in twistor space

Witten [1] conjectured that an amplitude in twistor space is localized on an
algebraic curve of degree

d = # negative helicities + # loops− 1 (5)

and genus

g ≤ # loops. (6)

For example, an MHV tree-level amplitude should be localized on a curve of
degree 1 and genus 0, i.e. a line. We can see why this is true. The MHV
amplitude is expressed by the Parke-Taylor formula. In fact, we do not even
need to know the details of that formula. The only relevant fact is that it
depends on the λi and is independent of the λ̃i. However, it is important to
replace the momentum-conserving delta function in the amplitude. Thus we
write

AMHV
tree = (2π)4δ(4)

(
∑

i

λa
i λ̃

ȧ
i

)

f({λi})

=

∫
d4y exp

(

iyaȧ
∑

i

λa
i λ̃

ȧ
i

)

f({λi}).

In the second line we have made the Fourier transform to spacetime. Now we
apply the twistor transform for each of the particles, finding

∫
d4y

∫
d2λ̃1

(2π)2
· · ·

d2λ̃n

(2π)2
exp

(

i
∑

i

µiȧλ̃
ȧ
i

)

exp

(

iyaȧ
∑

i

λa
i λ̃

ȧ
i

)

f({λi})

=

∫
d4y

∏

i

δ(2)(µiȧ + yaȧλ
a
i )f({λi})

We see that the amplitude has its support where all the twistor coordinates
(λi, µi) lie on a common line. That is the condition for the delta functions to
have overlapping support, at a common point y.

Since MHV amplitudes are localized on lines in twistor space, which in turn
correspond to points in spacetime, one can interpret the MHV amplitudes them-
selves as local interactions, leading to the MHV diagram prescription described
in the previous lecture. See Figure 1.

A consequence in twistor space is that amplitudes are localized on curves that
are even more special than indicated in the conjecture (5). The curves of degree
d > 1 are actually degenerate, in the sense that they are unions of curves built
from lines. This degeneracy can be seen from the fact that they are annihilated
by a product of “collinear operators”, first-order differential operators acting on
triples of points that vanish when the points are collinear in twistor space. See
Figure 2.
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Figure 1: Schematic depiction of MHV Diagrams, in twistor space (left) and
spacetime (right). On both sides the amplitude is a sum of such diagrams. On
the right side, each vertex is an MHV amplitude whose expression can be read
from the Parke-Taylor formula. Each vertex on the right corresponds to a line
on the left.

Figure 2: The localization of a tree-level amplitude in twistor space is on a curve
of degree d as given in (5), but which is moreover a union of degenerate curves
built from lines.
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The MHV diagrams were originally proven to give the correct expressions for
amplitudes based on checking that they had all the correct singularities, from
collinear limits and multiparticle poles. The constructive proof from a multi-line
shift followed later.

2 N = 4 SYM

2.1 Superfield and superamplitudes

In N = 4 SYM, gluons on shell live in a PCT self-conjugate supermultiplet with
8 bosonic states and 8 fermionic states. The 16 states can be combined into an
on-shell superfield,

Φ = G+ + ηAΓA +
1

2!
ηAηBSAB +

1

3!
ηAηBηCϵABCDΓ

D
+

1

4!
ηAηBηCηDϵABCDG−. (7)

Here, the ηA are Grassmann variables transforming in the fundamental rep-
resentation of the R-symmetry algebra SU(4), so A = 1, 2, 3, 4. The on-shell

states are G±, gluons of positive and negative helicity; ΓA and Γ
A
, the gluinos

and anti-gluinos; and SAB, 6 real scalars, sometimes combined into 3 complex
scalar states. We assign a helicity value of 1

2 to ηA, so that the total superfield
has helicity 1.

The supersymmetry generators are

qaA = λaηA, q̄ȧA = λ̃ȧ ∂

∂ηA
, (8)

whose anticommutator is the momentum generator, {qaA, q̄ȧB} = paȧδAB .
The general form of a superamplitude is

An =
δ(4)

(∑
i λ

a
i λ̃

ȧ
i

)
δ(8)

(∑
i λ

a
i η

A
i

)

⟨12⟩ ⟨23⟩ · · · ⟨n1⟩
Pn(λ, λ̃, η) (9)

The delta function for momentum conservation is joined by its supersymmetric
counterpart, δ(

∑
i qi). The denominator has been included because it shows up

naturally in the MHV amplitude, and with these factors built in, the helicity of
the remaining function Pn(λ, λ̃, η) is 0.

The other supersymmetry generator, q̄ȧA, gives additional conditions on Pn(λ, λ̃, η).
It generates a translation of ηA proportional to λ̃ȧ. Therefore, we must have an
invariance of the form

Pn(ηi) = Pn(ηi + [λ̃iζ̃]). (10)

This symmetry can be used to translate any two ηj , ηk to zero, by choosing

ζ̃jk =
λ̃jηk − λ̃kηj

[λ̃j λ̃k]
. (11)
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Our first example of a superamplitude is the MHV superamplitude, for which
Pn(λ, λ̃, η) = 1.

AMHV
n =

δ(4)
(∑

i λ
a
i λ̃

ȧ
i

)
δ(8)

(∑
i λ

a
i η

A
i

)

⟨12⟩ ⟨23⟩ · · · ⟨n1⟩
(12)

How do we recognize this expression as representing an MHV helicity config-
uration? The superamplitude can be expanded in the Grassmann variables like
the superfield. The delta function of a Grassmann variable is the variable itself,
so δ(8)

(∑
i λ

a
i η

A
i

)
=
∏

a,A

(∑
i λ

a
i η

A
i

)
. We read off the component amplitudes

multiplying the various Grassmann polynomials. To illustrate just a couple of
the terms in the expansion,

AMHV
n = (η1)

4(η2)
4A(G−

1 , G
−
2 , G

+
3 , · · · , G

+
n ) + · · · (13)

+(η1)
4(η2)(η3)

3A(G−
1 ,Γ2,Γ3, · · · , G

+
n ) + · · · .

In the expansion of the Grassmann delta function, the coefficient of η11η
1
2 is ⟨12⟩.

The coefficient of (η1)4(η2)4 is ⟨12⟩4, giving the numerator of the Parke-Taylor
formula needed for A(G−

1 , G
−
2 , G

+
3 , · · · , G

+
n ). The coefficient of (η1)4(η2)(η3)3 is

⟨12⟩ ⟨13⟩3.
Notice that we can call this amplitude MHV but have no need to specify

which of the particles have opposite helicity. The superamplitude includes all
possible MHV amplitudes of gluons, simply by taking the (ηj)4(ηk)4 component
to see the amplitude where j and k have negative helicities. It includes also
amplitudes with more mixed helicity configurations where there are multiple
fermions or scalars involved.

Supersymmetric Ward identities (SWI) are the relations among dif-
ferent amplitudes in the supermultiplet. They were originally proposed from
N = 2 supersymmetry considerations, although N = 1 suffices, with a single
supersymmetry generatorQ, and a vacuum with unbroken supersymmetry. One
example of the SWI is the one given in [4],

A(1−g , 2
−
P , 3

+
P , 4

+
g , . . . , n

+
g ) =

(
⟨12⟩

⟨13⟩

)2hP

A(1−g , 2
−
s , 3

+
s , 4

+
g , . . . , n

+
g ), (14)

where the subscripts are g for a gluon, s for a scalar, and P for a particle
of helicity hP ; the particles not listed explicitly are positive-helicity gluons;
and hP is 0 for a scalar (trivial relation), 1 for a gluon, and 1

2 for a fermion.
This relation can be derived from similar arguments to those relating the two
component amplitudes in (13).

Another example of SWI is the vanishing of the amplitudes with all or all-
but-one helicities alike, A(±,+,+, . . . ,+) = 0. In the N = 4 superfield for-
malism, this is evident from the fact that the 8-dimensional Grassmann delta
function requires exactly eight η’s for each component amplitude, so there can-
not be any contributions without at least two negative helicities. (For scalar
fields, helicity is zero, but positive and negative still have interpretations as
particle or antiparticle.)
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Of course, we know that the three-point amplitudes are an exceptional case.
The MHV amplitude A(−,−,+) is consistent with the formula (12). However,
the conjugate MHV amplitude A(+,+,−) doesn’t vanish. As we know, in this
amplitude all the λi’s are proportional, so it cannot appear in the form (9).
In fact, the general form (9) privileged the variables λ over λ̃, both in the
explicit denominator factors and in the choice of q rather than q̄ to enforce
supersymmetry in the delta function. To recover the amplitude A(+,+,−), we
can take the parity conjugate of A(−,−,+).

AMHV
3 =

δ(4) (
∑

i pi) δ
(8)
(∑

i λ̃
ȧ
i η̄

A
i

)

[12] [23] [31]
(15)

Here η̄ = ∂/∂η is the Grassmann variable conjugate to η. It can be used in a
conjugate representation of the superfield,

Φ =
1

4!
(η̄)4G+ +

1

3!
η̄Aη̄B η̄Cϵ

ABCDΓD +
1

2!
η̄Aη̄BS

AB + η̄AΓ
A
+G−. (16)

If we transform AMHV
3 back to a form with the delta function of q (and hence

η), we find

AMHV
3 =

δ(4) (
∑

i pi) δ
(4) (η1[23] + η2[31] + η3[12])

[12] [23] [31]
(17)

The fact that the supersymmetric delta function is only four-dimensional in this
space reflects the factorization of δ(

∑
i q̄i) when all the spinors λi are propor-

tional, which is already accounted for by δ(
∑

i pi).

2.2 Recursion relations

Equipped with the three-point superamplitudes, we can hope to construct all
n-point tree amplitudes in compact forms by BCFW recursion relations. In
fact, this has been accomplished recently [5]. Here, I will present the argument
to prove the validity of the BCFW construction. Instead of proving a vanishing
condition directly, we rely on the vanishing condition of pure gluon amplitudes.

Suppose we shift the momenta of superfields 1 and n as

λ1(z) = λ1, λ̃1(z) = λ̃1 − zλ̃n, (18)

λn(z) = λn + zλ1, λ̃n(z) = λ̃n. (19)

To preserve the argument of the supersymmetric delta function, the variable η1
must be shifted as well, by

η1(z) = η1 − zηn. (20)

Recall that q̄-supersymmetry could be used to translate any two η’s to zero. We
do this to set η1 and ηn to zero, with a spinor ζ̃1n as defined in (11). Notice
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Figure 3: Dual coordinates xj label the regions bounded by neighboring mo-
mentum vectors pi in Minkowski space. In dual space (right), the xj are corners
of a polygon whose edges are null iff the momenta pi are on shell.

that ζ̃1n is invariant under the shift, so we can keep η1 = ηn = 0 throughout.
That means we are shifting two gluons of positive helicity, which we know is a
valid shift (even with the expanded field content). Therefore, this shift is valid
for the full superamplitude.

In the recursion relation, the sum over internal helicity states is now replaced
by an integral over the internal η.

An =
n−1∑

i=2

∫
d4ηP̂i

P 2
i

A(1̂, 2, . . . , i,−P̂ h
1,i)A(P̂

−h
1,i , i+ 1, . . . , n− 1, n̂) (21)

To write down any superamplitudes beyond the MHV case, it is convenient
to use “dual” coordinates, to which we turn next. Because they are associated
with other symmetries of N = 4 SYM, they are also very useful for describing
loop amplitudes and Wilson loops.

2.3 Dual space

Given a set of momenta paAi , define dual space coordinates xaȧ
j such that

λa
i λ̃

ȧ
i = (xi − xi+1)

aȧ. (22)

Conservation of momentum,
∑

i p
aA
i = 0, then corresponds to the relation

xn+1 = x1. (23)

These coordinates are also known as ’t Hooft region momenta. They are “dual”
in the sense of a planar graph; one can think of the xj as labeling the regions
bounded by neighboring momentum vectors. (In a planar multiloop amplitude,
there would be an additional dual coordinate for each loop.) See Figure 3.
Similarly, the supersymmetry generators qaAi have dual Grassmann counterparts
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θaAj satisfying

λa
i η

A
i = θaAi − θaAi+1, (24)

and likewise
∑

i q
aA
i = 0 corresponds to the relation

θn+1 = θ1. (25)

Within the “full space” parametrized by {λi, λ̃i, ηi, xi, θi}, amplitudes are local-
ized on the subspace defined by the constraints (22) and (24). The parametriza-
tion by {λi, λ̃i, ηi} is called on-shell superspace. The parametrization by {λi, xi, θi}
is called dual chiral superspace. On-shell superspace coordinates can be recov-
ered from dual chiral superspace coordinates by the relations

λ̃i =
(xi − xi+1) · λi+1

λi · λi+1
, ηi =

(θi − θi+1) · λi+1

λi · λi+1
. (26)

In dual chiral superspace, the constraints (22) and (24) are rephrased as

(xi − xi+1) · λi = 0, (θi − θi+1) · λi = 0. (27)

The MHV superamplitude is

AMHV
n =

δ(4)(x1 − xn+1)δ(8)(θ1 − θn+1)

⟨1 2⟩ ⟨2 3⟩ · · · ⟨n 1⟩
. (28)

In terms of the dual coordinates, we can now write the NMHV superamplitude
compactly. First we introduce one more notational convention. Define

xij ≡ xi − xj (= pi + pi+1 + · · ·+ pj−1), (29)

θij ≡ θi − θj (= qi + qi+1 + · · ·+ qj−1). (30)

The NMHV superamplitude is

ANMHV
n = AMHV

n PNMHV
n , PNMHV

n =
n−1∑

r=2

n−1∑

s=r+2

Rn,rs, (31)

where

Rt,rs =
⟨r, r − 1⟩ ⟨s, s− 1⟩ δ(4)(⟨t|xtrxrs|θst⟩+ ⟨t|xtsxsr |θrt⟩)

x2
rs ⟨t|xtrxrs|s⟩ ⟨t|xtrxrs|s− 1⟩ ⟨t|xtsxsr |r⟩ ⟨t|xtsxsr|r − 1⟩

. (32)

2.4 Superconformal and dual superconformal symmetry

N = 4 SYM has a superconformal symmetry, whose generators are

pȧa =
∑

λ̃ȧλa, mab =
∑

λ(a∂b), m̄ȧḃ =
∑

λ̃(ȧ∂ḃ),

kaȧ =
∑

∂a∂ȧ, d =
∑ 1

2
λa∂a +

1

2
λ̃ȧ∂ȧ + 1,

10



qaA =
∑

λaηA, q̄ȧA =
∑

λ̃ȧ∂A,

saA =
∑

∂a∂A, s̄ A
ȧ =

∑
ηA∂ȧ,

rAB =
∑

ηA∂B +
1

4
ηC∂C ,

c =
∑

1 +
1

2
λa∂a −

1

2
λ̃ȧ∂ȧ −

1

2
ηA∂A.

The sums are over the particle labels i, which are to be understood. It is also
to be understood that

∂a =
∂

∂λa
, ∂ȧ =

∂

∂λ̃ȧ
, ∂A =

∂

∂ηA
. (33)

The additional symmetry known as dual conformal symmetry is motivated
by considering conformal inversion of the dual coordinate, which maps xaȧ to
−xaȧ/x2 and preserves the null-polygonal property depicted in Figure 3. With
respect to the dual coordinates, there is another “dual” copy of the supercon-
formal algebra, whose generators are given by

Paȧ =
∑

∂aȧ, QaA =
∑

∂aA, Q̄A
ȧ =

∑
θaA∂aȧ + ηA∂ȧ

Mab =
∑

x ȧ
(a ∂b)ȧ + θA(a∂b) + λ(a∂b), M̄ȧḃ =

∑
x a
(ȧ ∂ḃ)a + λ̃(ȧ∂ḃ),

Kaȧ =
∑

x ḃ
a x b

ȧ ∂bḃ + x b
ȧ θ B

a ∂bB + x b
ȧ λa∂b + xḃ

i+1 aλ̃ȧ∂ḃ + λ̃ȧθ
B
i+1 a∂B,

SA
a =

∑
−θBa θ

bA∂bB + x ḃ
a θbA∂bḃ + λaθ

bA∂b + xḃ
i+1 aη

A∂ḃ − θBi+1 aη
A∂B,

S̄ȧA =
∑

x b
ȧ ∂bA + λ̃a∂A,

D =
∑

−xaȧ∂aȧ −
1

2
θaA∂aA −

1

2
λa∂a −

1

2
λ̃ȧ∂ȧ,

RA
B =

∑
θaA∂aB + ηA∂B −

1

4
δABθ

aC∂aC −
1

4
δABη

C∂C ,

C =
∑

−
1

2
λa∂a +

1

2
λ̃ȧ∂ȧ +

1

2
ηA∂A, B =

∑ 1

2
θaA∂aA + λa∂a − λ̃ȧ∂ȧ.

Again, the sums are over the particle labels i, which are implicit everywhere
except in the terms of K and S where a different label is specified. It should be
understood that

∂aȧ =
∂

∂xaȧ
, ∂aA =

∂

∂θaA
. (34)

While tree-level amplitudes are invariant under the original, physical supercon-
formal symmetry, they are covariant under the dual superconformal symmetry.
They are annihilated by most of the generators; the exceptions are

DAn = nAn, KaȧAn =

(

−
∑

i

xaȧ
i

)

An,

CAn = nAn, SA
a An =

(

−
∑

i

θAia

)

An.
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This covariant behavior can be seen from the AMHV
n prefactor in (9). The factor

Pn is invariant under both symmetry algebras. In particular, the functions Rt,rs

defined in (32) for the NMHV amplitude are invariant under both algebras.
To determine the full symmetry algebra of the N = 4 SYM tree amplitudes,

we subtract weight terms for the covariantly acting generators, defining the new
generators

D′ ≡ D − n, K ′aȧ ≡ Kaȧ +
∑

i

xaȧ
i , S′A

a ≡ SA
a +

∑

i

θaAi . (35)

The superconformal and modified dual superconformal generators are then com-
bined in on-shell superspace. Here, many generators degenerate or overlap:

P = 0, Q = 0, Q̄ = s̄, M = m, M̄ = m̄, S̄ = q̄, D′ = ∂, R = r, (36)

while K ′ and S′ are truly independent additions to the original superconformal
algebra. The total symmetry algebra is the graded infinite-dimensional Yangian
algebra Y (PSU(2, 2|4)). Its level-0 subalgebra is the original superconformal
algebra PSU(2, 2|4).

2.5 Momentum twistors and Grassmannian integrals

The symmetry exchanging the superconformal and dual superconformal sub-
algebras is the transformation between dual space and its twistor transform,
known as momentum twistor space. This is simply another copy of twistor
space, whose coordinates are (λa, µȧ), with the incidence relation3

µȧ + xaȧλ
a = 0. (37)

Compared to the incidence relation (4), the variable λ is identical, but now x
is the coordinate on dual space, so µ is completely different. Instead of being
related to λ̃ by a Fourier transform, the nonlocal relation is

λ̃i =
⟨i+ 1, i− 1⟩µi + ⟨i, i+ 1⟩µi−1 + ⟨i− 1, i⟩µi+1

⟨i, i+ 1⟩ ⟨i, i− 1⟩
. (38)

In the superfield formalism, the momentum twistor also includes Grassmann
coordinates χA ≡ θaAλa. Their relation to the on-shell superspace Grassmann
variable is

ηi = −
⟨i+ 1, i− 1⟩χi + ⟨i, i+ 1⟩χi−1 + ⟨i− 1, i⟩χi+1

⟨i, i+ 1⟩ ⟨i, i− 1⟩
. (39)

Exercise: Derive the relations (38) and (39) from the definitions of momentum
twistors and dual coordinates.

3Phase conventions vary in the literature.
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Momentum twistors might well be the most natural variables for studying
planar amplitudes. In momentum space, conservation of momentum has to be
imposed as an additional condition. In dual space, conservation of momentum
is automatic, but being on-shell is not (it requires the segments joining the
coordinates to be null). Both momentum conservation and on-shell-ness are
built into momentum twistor space, so that only any n coordinates need to be
specified.

Recall the Yangian invariant for the NMHV amplitudes given in (32). In
momentum twistor variables, it would be written as

Rt,rs =
δ0|4 (χtϵ(r − 1, r, s− 1, s) + 4 cyclic permutations)

ϵ(t, r − 1, r, s− 1)ϵ(r − 1, r, s− 1, s)ϵ(r, s− 1, s, t)ϵ(s− 1, s, t, r − 1)ϵ(s, t, r − 1, r)
. (40)

In this form, more of the symmetries of this function are transparent, notably its
skew symmetry in five arguments. By itself, this function of the five arguments is
PNMHV
5 . In general, these cofactors of AMHV

n in the superamplitude expression
can be computed by a contour integral in a Grassmannian manifold G(k, n),
which is the space of k-dimensional planes in Cn passing through the origin.
(For example, G(1, n) = CPn−1. The Grassmannian contour integral is

PNkMHV
n =

1

(2πi)k(n−k)

∮

Γ⊂G(k,n)

k∏

r=1

δ4|4(T r · Z)
Dk(n−k)T

(12 · · ·k)(23 · · · k + 1) · · · (n1 · · · k − 1)
. (41)

Here, NkMHV indicates a superamplitude whose components include the pure-
gluon amplitude with k+ 2 negative helicites. T = {T r

i } is a k× n matrix with
values in C. The variable Z is the momentum twistor coordinate (λ, µ,χ). The
factors in the denominator are the k × k determinants of consecutive columns
of T .

Reconstructing the tree amplitude requires choosing a suitable contour Γ,
which I will not describe here and is not always clear. However, it has been
observed that different contours give rise to the different representations of the
tree amplitude, for example by choosing different shifts in BCFW recursion.

It has been argued that these Grassmannian contour integrals are the most
general Yangian invariant quantities. Therefore they are expected to give (pos-
sibly complete!) information about N = 4 SYM amplitudes, even to all loop
orders.
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Constructing Scattering Amplitudes, Lecture 4:

On-shell techniques for one-loop amplitudes

Ruth Britto
ruth.britto@cea.fr

February 11, 2011

We would like to construct scattering amplitudes in terms of their singu-
larities. These can be poles, as in the case of tree amplitudes and the BCFW
construction. In loop amplitudes, there are branch cuts, as well as other sin-
gularities associated with “generalized” cuts, in which di↵erent combinations of
propagators are put on shell. All of these singularities probe factorization limits
of the amplitude: they select kinematics where some propagators are put on
shell. Thus, the calculation can be packaged in terms of lower-order amplitudes
instead of the complete sum of Feynman diagrams.

The “unitarity method” started as a framework for one-loop calculations.
Rather than the standard expansion in loop Feynman diagrams, the basic refer-
ence point is the linear expansion of the amplitude function in a basis of “master
integrals” multiplied by coe�cients that are rational functions of the kinematic
variables. The point is that the most di�cult part of the calculation, namely
integration over the loop momentum, can be done once and for all, with ex-
plicit evaluations of the master integrals. The master integrals contain all the
logarithmic functions. What remains is to find their coe�cients.

References: Citations to the original works presenting integral reduction, the
unitarity method, and consequences of supersymmetry may be found in the
familiar review article [1]. More recent improvements are reviewed in my own
recent article [2]. Among the more recent works, I indicate a few of the most
notable developments as they arise in the text.

1 Reduction to master integrals

Integral reduction is a procedure for expressing any one-loop Feynman integral
as a linear combination of scalar boxes, scalar triangles, scalar bubbles, and
scalar tadpoles, with rational coe�cients:

A1�loop =
X

n

X

K={K1,...,Kn}

cn(K)In(K) (1)
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In four dimensions, n ranges from 1 to 4. In dimensional regularization, the tad-
pole contributions with n = 1 arise only with internal masses. If we keep higher
order contributions in ✏, we find that the pentagons (n = 5) are independent as
well.

The traditional reduction procedure proceeds as follows. We assume that the
integral has been constructed from Feynman diagrams, so that the denominators
are propagators of the form Di = (` � Ki)2 � M2

i , along with the propagator
defining the loop momentum, D0 = `2�M2

0 , chosen anew for each term at each
stage. Note that then 2` · Ki = M2

o + K2
i � M2

i + D0 � Di. There are three
steps.

First, we eliminate tensor structure (i.e. momentum-dependent numerators)
in terms with at least five propagators. Any appearance of `2 in the numerator
is replaced by M2

0 +D0, and the D0 term cancels against the denominator. The
remaining momentum dependence in the numerator is polynomial in contrac-
tions of the form ` ·P . Among the five propagators, there are four independent
momentum vectors Ki in which to expand any P . Then we make the replace-
ment 2` · Ki = M2

o + K2
i � M2

i + D0 � Di and cancel D0 and Di against the
denominator. Step by step, the degree of the polynomial is lowered until we
have a scalar numerator or at most four propagators in the denominator.

Second, we eliminate remaining tensor structure in the terms with at most
four propagators. This is done by using the momenta appearing in the denom-
inators to build a basis of Lorentz-covariant tensors in which to expand the
integral. Contracting the tensors with external momenta gives the constraints
needed to solve the linear system. It can be particularly e�cient to use contrac-
tions with complex momenta constructed from spinors associated to di↵erent
external legs.

Third, we express n-point scalar integrals with n > 4 in terms of lower-point
scalar integrals. If n � 6, then there is a nontrivial solution {↵i} to the five
equations

Pn
i=1 ↵i = 0 and

Pn
i=1 ↵iP

µ
i = 0. With this solution,

P
i ↵iDi =P

i ↵i(K2
i �M2

i ). Divide the integrand by the (momentum-independent) right-
hand side of this equation and multiply it by the left-hand side. The factors
Di will cancel against the denominator and reduce n by one. The final re-
maining concern is the scalar pentagon. If we are keeping full ✏ dependence in
dimensional regularization, it is an independent master integral. If we truncate
the integrals at O(✏), then the scalar pentagon can be reduced further to four
scalar boxes. The scalar pentagon integral is finite, so we can now treat its loop
momentum as four-dimensional. The final reduction involves expanding it in
terms of the axial vectors constructed from triples of four independent external
momenta.

1.1 Master integrals

The one-loop master integrals are depicted in Figure 1. The scalar n-point

2
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Figure 1: One-loop master integrals: box, triangle, bubble and tadpole. The
Lorentz vectors Ki are sums of external momenta, all directed outward. The
tadpole is present if there are internal masses; otherwise, it is zero in dimensional
regularization.

integral, without internal masses, is defined as

In = (�1)n+1i(4⇡)
D
2

Z
dD`

(2⇡)D
1

`2(`�K1)2(`�K1 �K2)2 · · · (`+Kn)2
(2)

The expressions given below are taken from [3, 4]. All divergent one-loop
integrals with possible internal masses may be found in [5]. Other useful expres-
sions for scalar box integrals, convenient for analytic continuation to di↵erent
kinematic regions, appear in [6].

The dimensional regularization parameter is ✏ = (4 � D)/2. The constant
r� is defined by

r� =
�(1 + ✏)�2(1� ✏)

�(1� 2✏)
(3)

Scalar bubble integral, no internal masses:

I2 = r�

✓
1

✏
� ln(�K2) + 2

◆
+O(✏) (4)

Scalar triangle integrals, no internal masses:
If K2

2 = K2
3 = 0 and K2

1 6= 0, then the scalar triangle is called “one-mass”, and
it is

I1m3 =
r�
✏2

(�K2
1 )

�1�✏. (5)

If K2
3 = 0 and K2

1 ,K
2
2 6= 0, then the scalar triangle is called “two-mass”, and it

is

I2m3 =
r�
✏2

(�K2
1 )

�✏
� (�K2

2 )
�✏

(�K2
1 )� (�K2

2 )
(6)

The “three-mass” scalar triangle is finite and given by

I3m3 =
i

p
�3

3X

j=1


Li2

✓
�
1 + i�j
1� i�j

◆
� Li2

✓
�
1� i�j
1 + i�j

◆�
+O(✏), (7)
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where we have defined the following:

�3 = �(K2
1 )

2
� (K2

2 )
2
� (K2

3 )
2 + 2K2

1K
2
2 + 2K2

2K
2
3 + 2K2

3K
2
1 (8)

�j =
2K2

j � (K2
1 +K2

2 +K2
3 )

p
�3

(9)

Scalar box integrals, no internal masses:
Let s = (K1 +K2)2 and t = (K1 +K4)2. The dilogarithm function is defined
by Li2(x) = �

R x
0 ln(1� z)dz/z.

If all four momenta are massless, i.e. K2
1 = K2

2 = K2
3 = K2

4 = 0 (a special
case for four-point amplitudes), then the box integral is given by

I0m4 =
2r�
st

1

✏2
⇥
(�s)�✏ + (�t)�✏

⇤
�

2r�
st


1

2
ln2
⇣s
t

⌘
+

⇡2

2

�
+O(✏). (10)

If only one of the four momenta, say K1, is massive, and the other are massless,
i.e. K2

2 = K2
3 = K2

4 = 0, then the box is called “one-mass”, and it is given by

I1m4 =
2r�
st

1

✏2
⇥
(�s)�✏ + (�t)�✏

� (�K2
1 )

�✏
⇤

(11)

�
2r�
st


Li2

✓
1�

K2
1

s

◆
+ Li2

✓
1�

K2
1

t

◆
+

1

2
ln2
⇣s
t

⌘
+

⇡2

6

�
+O(✏).

There are two distinct arrangements of two massive and two massless legs on the
corners of a box. In the “two-mass-easy” box, the massless legs are diagonally
opposite. If K2

2 = K2
4 = 0 while the other two legs are massive, the integral is

I2m e
4 =

2r�
st�K2

1K
2
3

1

✏2
⇥
(�s)�✏ + (�t)�✏

� (�K2
1 )

�✏
� (�K2

3 )
�✏
⇤

(12)

�
2r�

st�K2
1K

2
3


Li2

✓
1�

K2
1

s

◆
+ Li2

✓
1�

K2
1

t

◆
+ Li2

✓
1�

K2
3

s

◆

+ Li2

✓
1�

K2
3

t

◆
� Li2

✓
1�

K2
1K

2
3

st

◆
+

1

2
ln2
⇣s
t

⌘�
+O(✏).

In the “two-mass-hard” box, the massless legs are adjacent. If K2
3 = K2

4 = 0
while the other two legs are massive, the integral is

I2m h
4 =

2r�
st

1

✏2


1

2
(�s)�✏ + (�t)�✏

�
1

2
(�K2

1 )
�✏

�
1

2
(�K2

2 )
�✏

�
(13)

�
2r�
st


�
1

2
ln

✓
s

K2
1

◆
ln

✓
s

K2
2

◆
+

1

2
ln2
⇣s
t

⌘

+Li2

✓
1�

K2
1

t

◆
+ Li2

✓
1�

K2
2

t

◆�
+O(✏).

If exactly one leg is massless, say K2
4 = 0, then we have the “three-mass” box,

given by

I3m4 =
2r�

st�K2
1K

2
3

1

✏2


1

2
(�s)�✏ +

1

2
(�t)�✏

�
1

2
(�K2

1 )
�✏

�
1

2
(�K2

3 )
�✏

�
(14)
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�
2r�

st�K2
1K

2
3


�
1

2
ln

✓
s

K2
1

◆
ln

✓
s

K2
2

◆
�

1

2
ln

✓
t

K2
2

◆
ln

✓
t

K2
3

◆

1

2
ln2
⇣s
t

⌘
+ Li2

✓
1�

K2
1

t

◆
+ Li2

✓
1�

K2
3

s

◆
� Li2

✓
1�

K2
1K

2
3

st

◆�
+O(✏).

Finally, the “four-mass” box, which is finite, is given by

I4m =
1

a(x1 � x2)

2X

j=1

(�1)j
✓
�
1

2
ln2(�xj)

�Li2

✓
1 +

�K2
3 � i"

�s� i"
xj

◆
� ⌘

✓
�xk,

�K2
3 � i"

�s� i"

◆
ln

✓
1 +

�K2
3 � i"

�s� i"
xj

◆

�Li2

✓
1 +

�t� i"

�K2
1 � i"

xj

◆
� ⌘

✓
�xk,

�t� i"

�K2
1 � i"

◆
ln

✓
1 +

�t� i"

�K2
1 � i"

xj

◆

+ ln(�xj)(ln(�K2
1 � i") + ln(�s� i")� ln(�K2

4 � i")� ln(�K2
2 � i"))

�
.

Here we have defined

⌘(x, y) = 2⇡i[#(�Im x)#(�Im y)#(Im (xy))� #(Im x)#(Im y)#(�Im (xy))],

and x1 and x2 are the roots of a quadratic polynomial:

ax2 + bx+ c+ i"d = a(x� x1)(x� x2), (15)

with

a = tK2
3 , b = st+K2

1K
2
3 �K2

2K
2
4 , c = sK2

1 , d = �K2
2 .

1.2 Four-dimensional truncation

For practical purposes, we make use of the expansions in ✏ given above for
the master integrals. Their coe�cients also have higher-order dependence on ✏.
When these higher-order terms combine with 1/✏ ultraviolet divergences (from
the scalar bubble), they produce additional rational terms of O(✏0). The four-
dimensional expansion is then

A1�loop =
X

n

X

K={K1,...,Kn}

cn(K)In(K) + rational terms +O(✏), (16)

where the coe�cients cn(K) are now independent of ✏.
We work in the four-dimensional-helicity (FDH) scheme of dimensional reg-

ularization, in which the polarization vectors remain exactly four-dimensional.
Only the loop momentum is continued to (4� 2✏) dimensions.

2 The unitarity method

The unitarity cut of a one-loop amplitude is its discontinuity across the branch
cut in a kinematic region associated to a particular momentum channel. The

5
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Figure 2: Unitarity cut of a one-loop amplitude in the K momentum channel.
The two propagators are constrained to their respective mass shells. The disks
represent the sum of all Feynman diagrams linking the fixed external lines and
the two cut propagators.

name comes from the unitarity of the S-matrix: since S†S = 1, and we expand
S = 1 + iT where T is the interaction matrix, then 2Im T = T †T . Expanding
this equation perturbatively in the coupling constant, we see that the imagi-
nary part of the one-loop amplitude is related to a product of two tree-level
amplitudes. E↵ectively, in the complete sum of Feynman diagrams, two chosen
propagators within the loop are restricted to their mass shells. This imaginary
part should be viewed more generally as a discontinuity across a branch cut
singularity of the amplitude—in a kinematic configuration where one kinematic
invariant, say K2, is positive, while all others are negative. This condition iso-
lates the momentum channel K of interest; K is the sum of some of the external
momenta. We will take cuts in various momentum channels to construct the
amplitude.

For a one-loop amplitude, the value of the unitarity cut is given by Cutkosky
rules, which are expressed in the cut integral,

�A1�loop
⌘

Z
dµ Atree

Left ⇥ Atree
Right, (17)

where the Lorentz-invariant phase space (LIPS) measure is defined by

dµ = d4`1 d4`2 �(4)(`1 + `2 �K) �(+)(`21) �
(+)(`22). (18)

Here, the superscript (+) on the delta functions for the cut propagators denotes
the choice of a positive-energy solution.

How can these unitarity cuts be used to calculate the amplitude? By ap-
plying the cut � in various momentum channels, we get information about the
coe�cients of master integrals.
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Consider applying a unitarity cut to the expansion (1) or (16) of an amplitude
in master integrals. Since the coe�cients are rational functions, the branch cuts
are located only in the master integrals. Thus we find that

�A1�loop =
X

n

X

K={K1,...,Kn}

cn(K)�In(K). (19)

Our task is to isolate the individual coe�cients cn(K).
Equation (19) is the key to the unitarity method. It has two important fea-

tures. First, we see from (17) that it is a relation involving tree-level quantities.
Second, many of the terms on the right-hand side vanish, because only a subset
of master integrals have a cut involving the given momentum K. Meanwhile,
we enjoy the freedom of using all possible values of K in turn. In e↵ect, we have
traded the original single equation (1) for a system of several shorter equations.

One-loop amplitudes are known to be cut-constructible. That is, they are
uniquely determined by their branch cuts. The cuts should properly be eval-
uated in D dimensions. It is usually easier to evaluate four-dimensional cuts,
giving the ✏-independent coe�cients in (16), and then compute the rational
terms separately.

We will now address the problem of finding the coe�cients cn(K) from four-
dimensional cuts.

3 Generalized unitarity

Before learning to evaluate unitarity cuts and extract the coe�cients of master
integrals, let us do something even more direct. Unitarity cuts can be “gener-
alized” in the sense of putting a di↵erent number of propagators on shell. This
operation selects di↵erent kinds of singularities of the amplitude; they are not
physical momentum channels like ordinary cuts and do not have an interpreta-
tion relating to the unitarity of the S-matrix. Here, it becomes essential to work
with complexified momenta.

The most direct application of generalized unitarity is to use a “quadruple
cut” to find any box coe�cient [7]. If we cut four propagators—equivalent
to specifying a partition (K1,K2,K3,K4) of the external momenta—then the
four-dimensional integral becomes trivial. See Figure 3.

�4A
1�loop =

Z
d4` �(`21) �(`

2
2) �(`

2
3) �(`

2
4) A

tree
1 Atree

2 Atree
3 Atree

4 (20)

Applied to the master integrals, the quadruple cut picks up a contribution from
exactly one box integral, namely the one with momenta (K1,K2,K3,K4) at the
corners. Therefore, the cut expansion collapses to a single term:

�4A
1�loop = c4(K1,K2,K3,K4)�4I4(K1,K2,K3,K4). (21)

The quadruple cut of the scalar box integral is a Jacobian factor which is equal

7



c

Figure 3: A quadruple cut puts four propagators on shell. It is a trivial integral
isolating a single box coe�cient.

on both sides of the equation. The result for the coe�cient is simply

c4 =
1

2

X

`2S
Atree

1 (`)Atree
2 (`)Atree

3 (`)Atree
4 (`), (22)

where S is the solution set for the four delta functions of the cut propagators,

S = {` |`2 = 0, (`�K1)
2 = 0, (`�K1 �K2)

2 = 0, (`+K4)
2 = 0}. (23)

There are exactly two solutions, provided that momenta are allowed to take
complex values. This is the origin of the factor of 2 in the denominator of (22).
Thus it is easy to get all the box coe�cients.

Other applications of “generalized unitarity” include triple cuts for trian-
gle coe�cients, single cuts for tadpole and other coe�cients, and all possi-
ble extensions of these operations in multiloop amplitudes. In particular, the
parametrizations of Forde [8] are useful for triple cuts and can be extended to
double cuts as well.

4 Supersymmetric theories, and SUSY decom-

position for QCD

• Both N = 4 SYM and N = 8 supergravity have only box integrals in
the one-loop expansion. This property follows from supersymmetric can-
cellations combined with power-counting arguments. Consequently, the
quadruple cut operation su�ces in these cases.

• Supersymmetric massless theories, in general, are 4d cut-constructible.
That is, the four-dimensional cuts determine the one-loop amplitudes com-
pletely, and there are no rational terms in (16).

• Supersymmetric one-loop gluon amplitudes are also an ingredient in pure
QCD amplitudes. Based on the e↵ective equivalence of gluinos and quarks
in color-ordered Feynman rules, and in view of the previous two points, it
is useful to rewrite a gluon or quark loop in an amplitude with external
gluons as a component of a supersymmetric multiplet. For the gluon, this
is the N = 4 supermultiplet with a gluon g with four fermions f and

8



three complex scalars s. For a fermion, it is the N = 1 chiral matter
supermultiplet with one fermion and one complex scalar.

Agluon loop = g = (g + 4f + 3s)� 4(f + s) + s = AN=4
� 4AN=1 +Ascalar

Aquark loop = f = (f + s)� s = AN=1
�Ascalar

With this decomposition into N = 4, N = 1, and N = 0 components, the
nonzero coe�cients are the following:

N Box Triangle Bubble Rational
4

p

1
p p p

0
p p p p

Because the component with the scalar loop does not propagate spin in-
formation, it is simpler than the full gluon loop even though it is still
nonsupersymmetric.

5 Evaluation of cut integrals and solutions for

coe�cients

5.1 Cuts of master integrals

The utility of equation (17) depends on knowing the master integrals and hence
their branch cuts. Having listed the master integrals for massless theories in the
previous section, we can calculate the cuts explicitly by taking the imaginary
parts of these functions in various kinematic regions. Recall that the kinematic
region associated to the unitarity cut in momentum channel K has K2 > 0 and
all other invariants negative. In the limit of largeK2, we see that the behavior of
the master integrals features uniquely identifiable products of logarithms [3]. It
follows that no linear combination of master integrals with rational coe�cients,
in a given momentum channel, can be cut-free.

The cuts of the bubble integrals are purely rational; this is easily seen from
the ordinary logarithm in equation (4). The cuts of all other master integrals
are logarithmic. The various arguments of the logarithms identify the original
master integrals.

We need to evaluate the left hand side of equation (19), by carrying out the 2-
dimensional integral of (17). This is neatly accomplished by the Cauchy residue
theorem, in a technique known as “spinor integration” [9]. We now illustrate
the technique applied to the master integrals themselves, starting from their
definition in (2).

To implement the cut conditions, it is convenient to reparametrize the loop
momentum in terms of spinor variables. Now it is crucial that our cut is in 4
dimensions.
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Since `1 is null, we can parametrize it with

(`1)aȧ = t�a�̃ȧ, (24)

where �a, �̃ȧ are homogeneous spinors (taking values in CP1), and t takes non-
negative values. The original loop momentum is real-valued, so we will integrate
over the contour where �̃ is the complex conjugate of � . In the integral measure,
we make the replacement

Z
d4`1 �(+)(`21)(•) = �

Z 1

0

t

4
dt

Z

�=�̃
h� d�i

h
�̃ d�̃

i
(•). (25)

Now we make this substitution explicitly in the second delta function of the
LIPS measure defined in (18). The momentum of the second cut propagator is
(`2)aȧ = Kaȧ � t�a�̃ȧ, so the measure becomes

Z
dµ (•) = �

Z 1

0

t

4
dt

Z

�=�̃
h� d�i

h
�̃ d�̃

i
�(K2

� t
D
�|K|�̃

i
)(•). (26)

This second delta function sets t to the value

t =
K2

D
�|K|�̃

i (27)

so, taking account of the prefactor
D
�|K|�̃

i
of t inside the delta function, we

can now perform the t-integral trivially:

Z
dµ (•) = �

Z

�=�̃
h� d�i

h
�̃ d�̃

i K2

4
D
�|K|�̃

i2 (•). (28)

The remaining integral over the spinor variables is carried out with the residue
theorem. We will see how this is done in the master integrals before proceeding
to the case of general amplitudes.

5.1.1 Cut bubble

Let us start with the scalar bubble integral. The integrand consists entirely of
the two cut propagators, so the cut is simply the integral of the LIPS measure,

�

✓
1

`2(`�K)2

◆
=

Z
dµ = �

Z

�=�̃
h� d�i

h
�̃ d�̃

i K2

4
D
�|K|�̃

i2 . (29)

In calculating coe�cients of complete amplitudes, it can su�ce to leave the cut
bubble in the form (29) and work at the integrand level. Here we continue and
show how to apply the residue theorem to complete the integral. We make use
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of the following identity to rewrite the integrand as a total derivative. Here ⌘
is an arbitrary spinor.

[e� de�] 1
D
�|K|e�

i2 = �[de� @e�]

0

@ [e� ⌘]

h�|K|⌘]
D
�|K|�̃

i

1

A . (30)

However, the integral is not identically zero, because there are delta-function
contributions along the contour. In the theory of a complex variable, we know
that

@

@z

1

(z � b)
= 2⇡�(z � b). (31)

Therefore, we pick up a residue at the pole |�i = |K|⌘]. Along the contour,

since � and �̃ are conjugates, we also substitute |e�] = |K|⌘i. The result of the
four-dimensional cut bubble is thus

�I2 =
i

⇡2
�

✓
1

`2(`�K)2

◆
= �

iK2

2⇡

0

@ [e� ⌘]D
�|K|e�

i

1

A

������
|�i=|K|⌘]

=
1

2⇡i
. (32)

(Di↵erent conventions in the literature yield results with di↵erent powers of i
and 2⇡; these will be unimportant as long as the framework is consistent. )

5.1.2 Cut triangle

In the unitarity cut of the scalar triangle, there is one propagator left over
along with the LIPS measure. Converting to the spinor variables, this factor is

(` +K3)2 = t
D
�|K3|�̃

i
+K2

3 . Performing the t integral as before, making the

substitution (27) throughout, we have

�

✓
1

`2(`�K)2(`+K3)2

◆
= �

Z

�=�̃
h� d�i

h
�̃ d�̃

i 1

4
D
�|K|�̃

i D
�|Q|�̃

i , (33)

where

Q =
K2

3

K2
K +K3. (34)

Again, it is worth leaving the expression in the form (33), but let us see how to
finish the integral. The two factors in the denominator can be combined with
a Feynman parameter, and the spinor integral done just as in the bubble case,
so that we have

�

Z 1

0
dx

Z

�=�̃
h� d�i

h
�̃ d�̃

i 1

4
D
�|(1� x)K + xQ|�̃

i =
⇡

2

Z 1

0
dx

1

((1� x)K + xQ)2
.
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The result for the cut in the K-channel is

�I3 = �
i

⇡2
�

✓
1

`2(`�K)2(`�K3)2

◆

=
1

2⇡i
p
��3

ln

✓
�2(K2

3 +K ·K3) +
p
��3

�2(K2
3 +K ·K3)�

p
��3

◆
, (35)

where �3 is defined in (8). Notice that this result is logarithmic, as expected.
Moreover, it is clear that all three-mass triangles are uniquely identified by the
functions �3, which play a distinguished role in the expression as the arguments
of square roots. (For one-mass and two-mass triangles, �3 is a perfect square,
so the square roots disappear from the formula while the logarithm remains.)

5.1.3 Cut box

The calculation of the cut scalar box integral is similar. Now there are two uncut
propagators identifying the box, which we write as (` � Ki)2 and (` � Kj)2.

Converting to the spinor variables, they become K2
i � t

D
�|Ki|�̃

i
and K2

j �

t
D
�|Kj |�̃

i
, respectively. Performing the t integral and making the substitution

(27) throughout, we have

�

✓
1

`2(`�K)2(`�Ki)2(`�Kj)2

◆
= �

Z

�=�̃
h� d�i

h
�̃ d�̃

i 1

4K2
D
�|Qi|�̃

i D
�|Qj |�̃

i , (36)

where now we define Qi, Qj by

Qi ⌘
K2

i

K2
K �Ki, Qj ⌘

K2
j

K2
K �Kj . (37)

Here again, we can evaluate the integral by introducing a Feynman parameter.
It takes a form similar to the triangle. The final result is

�I4 =
1

(2⇡i)2K2
p
�ij

ln

 
Qi ·Qj +

p
�ij

Qi ·Qj �
p

�ij

!
, (38)

where

�ij ⌘ (Qi ·Qj)
2
�Q2

iQ
2
j . (39)

We see that the cut is again logarithmic. One can check that for either of the
two choices of the cut configuration (straight across the box or selecting one
corner), the function �ij under the square root corresponds to the discriminant
of the quadratic polynomial in (15). In the cases where any of the corners of
the box is a null momentum, �ij is a perfect square.
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5.2 Unitarity cut of the amplitude

To evaluate the cuts of master integrals, we needed only the relatively simple
identity (30), from which we could find the residues according to (31). The cut
of the full amplitude will generally have more complicated dependence on the
loop momentum. We use partial fraction identities to split long products of
denominator factors, e↵ectively doing a reduction of the cut integrand.

Suppose we take the expressions for the tree amplitudes in the cut integral
(17) from the Feynman rules. The integrand is a rational function whose de-
nominator is a product of propagator factors of the form (`�Ki)2. As we have
seen the cuts of master integrals, such a factor becomes

(`�Ki)
2 =

K2
D
�|Qi|�̃

i

D
�|K|�̃

i . (40)

Other factors of
D
�|K|�̃

i
arise from the integral measure and the substitution

for t found in (27). The key property is that the denominator of the integrand

consists of factors of
D
�|Qi|�̃

i
, where no two Qi are the same, along with some

power of the factor
D
�|K|�̃

i
.

We find it helpful to rearrange the integrand in order to identify the cuts
of master integrals as given in (29), (33), and (36). This task is accomplished
by partial fraction identities that split the denominator factors and reduce the

power of
D
�|K|�̃

i
if necessary. In e↵ect, it is a reduction technique for the cut

integrals.
The splitting of factors with partial fractions proceeds as follows. First, split

the factors h`|Qj |`] among themselves, with the following identity:

Qk�1
j=1 [aj �̃]

Qk
i=1

D
�|Qi|�̃

i =
kX

i=1

1D
�|Qi|�̃

i

Qk�1
j=1

h
aj |Qi|�̃

E

Qk
m=1,m 6=i

D
�|QmQi|�̃

E . (41)

Next, reduce the power of h`|K|`] in the remaining denominators, since the
master cuts contain at most one:

Qn�1
j=1 [aj �̃]

D
�|K|�̃

in D
�|Q|�̃

i =

Qn�1
j=1

h
aj |Q|�̃

E

h�|KQ|�in�1

1D
�|K|�̃

i D
�|Q|�̃

i (42)

�

n�2X

p=0

⇣Qn�p�2
j=1 [aj |Q|�i

⌘
[an�p�1|K|�i

⇣Qn�1
t=n�p[at �̃]

⌘

D
�|K|�̃

ip+2
h�|KQ|�in�p�1

.

Power-counting arguments ensure that enough appearances of �̃ in the numer-
ator to implement these identities as often as necessary.
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It remains to implement the residue theorem, with the help of a generalized
version of the di↵erentiation identity (30) and the careful treatment of higher-
multiplicity poles arising in the factor h�|KQ|�i.

The procedure can be performed in generality. Formulas for the coe�cients
derived from ordinary unitarity cuts have been given in [10, 11, 12, 13]. These
references include D-dimensional versions of these formulas, with possible scalar
masses. Similar formulas based on generalized cuts have been given in [8, 14, 15].

6 The OPP algorithm (numerical)

The OPP (Ossola, Papadopoulos, Pittau) algorithm [16] for finding the coef-
ficients of master integrals is a procedure based on numerical solutions to the
on-shell conditions of generalized unitarity cuts. It is carried out at the integrand
level.

In addition to the integrands for the scalar box, triangle, bubble, and tad-
pole, there are “spurious” terms that integrate to zero. These have been thor-
oughly classified. They have no more than four denominator factors but have
nontrivial tensor structure in the numerator. Indeed, two of the three steps in
integral reduction can be carried out at the integrand level as described above.
It is the argument based on Lorentz covariance (step 2) that breaks down for
integrands.

If a general integrand is written in the form I = N(`)/(D0D1 · · ·Dn�1),
where Di = (`�Ki)2 �M2

i , the OPP expansion is of the form

I(`) =
X

i

[a(i) + ea(`; i)]I(i) +
X

i<j

[b(i, j) +eb(`; i, j)]I(i,j)

+
X

i<j<r

[c(i, j, r) + ec(`; i, j, r)]I(i,j,r) +
X

i<j<r<s

[d(i, j, r, s) + ed(`; i, j, r, s)]I(i,j,r,s).

Here, a(i), b(i, j), c(i, j, r), d(i, j, r, s) are the coe�cients of the master integrals
containing the specified propagators. The coe�cients with tildes and `-dependence
are the spurious terms, listed explicitly in [16]. There is just one spurious term
for the box, but several for the lower-point integrands.

The procedure is triangular. Start with the box coe�cients. For example,
solve for d(0, 1, 2, 3) by multiplying through by D0D1D2D3 and plugging in the
numerical solutions `±0123 to the equations

0 = D0(`) = D1(`) = D2(`) = D3(`). (43)

Since the only term without explicit vanishing factors is the term for the box
(0, 1, 2, 3), the OPP expansion collapses to the equation

I(`±0123) = d(0, 1, 2, 3) + ed(`±0123; 0, 1, 2, 3). (44)

Explicitly, the four-point spurious term is ed(`; i, j, r, s) = ✏(`,Kj ,Kr,Ks). Since
there are two solutions to (43), we can solve for both the true box coe�cient
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d(0, 1, 2, 3) and the spurious box coe�cient. Indeed, up to this point it is exactly
like the quadruple cut.

The numerical benefit of the OPP algorithm appears in the following steps,
where we proceed to solve triples and duples of on-shell conditions. Analytically,
there are whole families of solutions, but numerically, one can just choose as
many di↵erent solutions from these families as needed to solve for all the spurious
coe�cients.

7 D-dimensional unitarity / rational terms

In closing, I will merely mention various current approaches to computing the
rational terms in (16).

• Keep ✏ dependence and perform cuts strictly in D dimensions, so that
there are no separate rational terms. Analytic formulas are given among
the references previously mentioned, [11, 12, 13, 15]. Numerically, it can
be convenient to sample integer values of D; two values beyond D = 4 are
enough [17]. With integer D, gamma-matrix algebra is straightforward,
and the tree-level input can be generated e�ciently from Berends-Giele or
similar o↵-shell recursions.

• Rational terms can be generated from on-shell recursion, since they have
no branch cuts. However, their pole structure is significantly more com-
plicated than at tree level. See [19, 20] for reviews.

• Feynman diagrams can be brought in to complement unitarity-cut tech-
niques. If only the rational part is needed, the diagram analysis simplifies
a lot. Examples of this approach appear in [21, 22].

• The rational component of the OPP method (due to DGPP rather than
OPP [18]) separates the rational terms into two parts. One is computed
from D-dimensional cuts, while the other is obtained from special addi-
tional Feynman rules.

8 Exercise

Consider the 2 ! 2 scattering of photons (“light by light”) mediated by a virtual
electron loop.

1. List the box integrals. (Note: There is no color ordering.)

2. What symmetries relate the various coe�cients of the helicity amplitudes?

3. Compute the box coe�cients.
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The tree amplitudes for the scattering of photons with an electron-positron
pair vanish when all photons have like helicity. For one photon of opposite
helicity, the MHV amplitude is given by

A(ē+, e�, 1+, 2+, . . . , i�, . . . , n+) = 2
n
2 en

⌦
f f̄
↵n�2

hf ii3
⌦
f̄ i
↵

Qn
k=1 hf ki

⌦
f̄ k
↵ .

Additional comments. The full amplitude includes scalar triangle and bubble
integrals and rational terms as well. For n-photon scattering mediated by a
fermion loop, rational terms and bubbles are absent for n > 4, and triangles are
absent for n > 6. The amplitudes vanish for odd values of n by Furry’s theorem.
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