
Trinity College
The University of Dublin

Theoretical Physics

Final Year Project

Binder Cumulants for the Ising Model
using Worm algorithms

Author:
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Abstract

Prokof’ev & Svistunov’s Worm algorithm is an alternative simulation strategy for classical

statistical systems. It is based upon updating closed path configurations produced by high-

temperature expansions through the motion of end points of a disconnected path. We begin

by presenting an analysis of this algorithm and the reformulation of the 2D Ising Model using

such high-temperature expansions/duality transformations. What then follows is a reproduction

of relevant results from published literature before the main focus of this project. Here, we

extend the simulation scheme to what we call a Two Worm algorithm, in order to obtain direct

Monte Carlo estimators that are not available in the standard worm representation. An ergodic

update scheme that satisfies detailed balance is subsequently introduced and our new algorithm

is applied using C++ code. At this stage, we use such newly retrievable observables to calculate

fourth-order Binder Cumulants for the 2D square lattice Ising model and examine the effects of

finite size scaling on the algorithm. Finally, we present a comparison of our algorithm to the

original worm method using magnetic susceptibility as our common observable between the two

update schemes.
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Chapter 1

Motivation & Background Material

1.1 Motivation

The Metropolis-Hastings algorithm [1] is usually the most widely used approach to Monte Carlo

simulations as it is universal, fast and easy to program. However, near phase transition points

(critical points), its advantages are virtually cancelled out. The belief is that any scheme based

on local Metropolis-type updates will be inefficient at the transition point as autocorrelation

times will scale as Lξ where L is the linear size of the system and ξ is the dynamical critical

exponent, often close to 2 [2]. In 1998, Prokof’ev and Svistunov introduced their quantum

“Worm” algorithm as a novel quantum Monte Carlo scheme that allows for efficient calculations

of Green’s functions and the study of large disordered systems [3]. Then, in 2001, the approach

was presented for use in simulations of classical spin systems in two and three dimensions [4].

The power of this new method is that it is a local, Metropolis-type scheme that seems to have

dynamical critical exponents close to zero (i.e., with efficiency comparable to the best cluster

methods today). Much work in the Condensed Matter and High Energy Theory communities

has been done with the worm algorithm in applying the method to different physical systems

and investigating it as a viable alternative to current Monte Carlo simulations methods [5–8].

In this project we will first familiarise ourselves with the theory behind the (classical)

worm algorithm, in particular focusing on the exact reformulation of the 2D Ising model using

high-temperature expansions/duality transformations. We will then present some results of

simple single worm simulations written in C++ and compare the results to published data [9].

This consideration will lead us to the main focus of the project; the extension of Prokof’ev &

Svistunov’s algorithm to what we refer to as a Two Worm algorithm in order to extend the

range of spin observables for which we can retrieve direct Monte Carlo estimators not available

in the single worm representation. Our primary motivation here is to calculate fourth-order

Binder Cumulants (eq. (3.5)), a common tool used in determining critical points, for the 2D Ising

1
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model. As these Binder Cumulants depends on higher order spin observables than are directly

retrievable from the original (single) worm algorithm, we present our extended formulation from

which direct estimators of such observables may be taken (eg. eq. (3.6)). We will present this

further reformulation of the algorithm and observables along with a detailed comparison of the

method to the original (single) worm algorithm.

It will be useful to consider how autocorrelation times are affected by the new method and

compare the effects of finite size scaling in our simulations. We will calculate dynamical critical

exponents, ξ, for each of our primary observables with the hope that they will be close to zero,

indicating a complete absence of critical slowing down.

2
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1.2 Ising Model

The Ising Model, developed by German physicist Ernst Ising, is a mathematical model of

ferromagnetism in statistical mechanics. As one of the simplest models in statistical mechanics

to display phase transitions, the Ising Model has been applied not just across various fields in

physics but to research in financial markets and to neural networks [10]. For the purposes of

our project, we will study the two dimensional zero field square lattice Ising model.

In his PhD thesis (1924) Ising was able to solve the one dimensional linear model which

displays no phase transition. That is, for positive temperature, β, the correlations between spins

〈σiσj〉 decay exponentially with the distance |i− j|

〈σiσj〉 ≤ C(β)e−f(β)|i−j|,

where C(β), f(β) are positive for β > 0, meaning that the system is disordered. In 1936, Rudolf

Peierls proved that in two or higher dimensions the model undergoes a phase transition between

an ordered and disordered phase [11]. The 2D square lattice Ising model with no magnetic field

was then solved analytically by Onsager [12] (1944).

1.2.1 Definition

Given a set of lattice sites Λ, each with a set of neighbouring sites, we denote for each site

k ∈ Λ the discrete variable σk such that σk ∈ {+1,−1}, representing the spin at k. A lattice

configuration, σ = (σk)k∈Λ, is an assignment of a specific spin value at each lattice site and

we will use {σ} to denote the set of all possible spin configurations.

In the zero field model (no external magnetic field) the energy of a configuration σ is given

by the Hamiltonian

E(σ) ≡ H(σ) = −
∑
〈i,j〉

Jijσiσj, (1.1)

where 〈i, j〉 indicates that i and j are nearest neighbours and Jij is the interaction between any

two adjacent sites i and j. In our case we will assume that each set of nearest neighbours 〈i, j〉
has the same interaction strength (Jij = J , ∀ 〈i, j〉 ∈ Λ). The configuration probability is then

given by the usual Boltzmann distribution with inverse temperature β ≥ 0

Pβ(σ) =
e−βE(σ)

ZB
, (1.2)

where the normalisation constant

3
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ZB =
∑
{σ}

e−βE(σ)

is the usual Boltzmann partition function.

1.2.2 Observables

We calculate observables in the usual way using this configuration probability for some quantity

A(σ) that is a function of the spins using

〈A(σ)〉 =
1

ZB

∑
{σ}

A(σ)e−βE(σ). (1.3)

This leads to simple calculations to derive expressions for interesting physical quantities

associated with the model such as the average magnetisation

〈M〉 = 〈σ̄〉. (1.4)

However, since we are looking at the zero field Ising Model, the average magnetisation is

zero, meaning

〈σ̄〉 = 〈M〉 = 0. (1.5)

The magnetic susceptibility is then

〈χ〉 = 〈M2〉 − (〈M〉︸︷︷︸
=0

)2,

= 〈σ̄2〉.

4
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1.3 Monte Carlo Methods

Monte Carlo methods refers to a broad class of computational algorithms that employ random

sampling to obtain numerical results. Such methods vary in implementation, but tend to follow

a similar pattern:

1. Define a domain of possible input values

2. Generate inputs randomly from a probability distribution over that domain

3. Perform a deterministic computation using these inputs

4. Aggregate the results

1.3.1 Markov Chain Monte Carlo

A Markov Chain is a stochastic process that possesses the Markov property, that is, the value

of the random variable at the current state of the chain depends only on the value assumed

at the immediately previous step. Markov Chain Monte Carlo (MCMC) methods are then

a class of algorithms for sampling from a given probability distribution (Monte Carlo) with

the intention of then constructing a Markov Chain that has the desired distribution as its

equilibrium distribution. After a number of time steps, the state of the chain can then be used

as a sample of the desired distribution.

· · · State

v

Propose

v → v′

vnew = v′ if accepted

vnew = v if rejected

State

vnew

· · ·

Figure 1.1: One ‘link’ of a Markov Chain

MCMC methods are used throughout Statistical Physics to evolve systems in time through

their configuration space states. The Ising Model is usually simulated numerically using Markov

Chain Monte Carlo methods with the most commonly used Monte Carlo algorithm for the Ising

model is the Metropolis-Hastings algorithm [1].

1.3.2 Detailed Balance

For a probability distribution of states π, we require that the Markov chain we construct with

our algorithm must be reversible so that π is a steady-state distribution. We first must note

that for an ergodic chain {Xn} with transition probability pX and stationary distribution π,

5
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the time-reversed process {Yn} will also satisfy the Markov property. This process is then

defined as

pYij = P
(
Yn+1 = j | Yn = i

)
=

(
πj
πi

)
pXij . (1.6)

and {Yn} is then a Markov chain. We will then call an ergodic chain {Xn} reversible if its

transition matrix is equal to the transition matrix of the time-reversed chain. That is

pYij = pXij , ∀ i, j. (1.7)

These two equations can then be expressed as

πipij = πjpji, (1.8)

which is the condition for a Markov chain to satisfy detailed balance. As checking detailed

balance is often the simplest way to verify that a particular distribution is stationary, we will

need to make sure that the Markov chain created by our algorithm satisfies the condition.

6
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1.4 Statistics

1.4.1 Autocovariance and Autocorrelation

In order to get an idea of the effectiveness of any Markov process we can look at the Auto-

correlation of our measured observables. Autocorrelation is a measure of the correlation or

relationship between members of a series of observations taken over time and the same values

taken at a fixed time interval later. Simply, we can think of the autocorrelation as a measure of

how long it takes for an observable produced by the algorithm to become independent of the

previous measurements.

We start by defining the autocovariance of a Markov chain {xi}, i = 1, . . . , N with average

value x̄ as

R(t) = 〈(xi − x̄)(xi+t − x̄)〉,

= 〈xixi+t〉 − x̄2,

≈
N−t∑
i=1

xixi+t
(N − t)

. (1.9)

Noting that R(0) = σ2 (σ2 ≡ 〈(x− x̄)2〉) is the variance, it is now more convenient to work

with the autocorrelation which we define as

ρ(t) =
R(t)

R(0)
, (1.10)

so that ρ(0) = 1 and −1 ≤ ρ(t) ≤ 1. In practice it is useful to define the integrated

autocorrelation:

τint(τ) =
1

2
+

τ∑
t=0

ρ(t), (1.11)

which will converge to the integrated autocorrelation time, τint = lim
τ→∞

τint(τ), an explicit

measure of the autocorrelation which we can use for quick comparison between data sets.

It must also be noted that we can use the following approximations to calculate the error for

the autocorrelation function:

(δρ(t))2 ≈ 1

N

∞∑
k=1

[
ρ(k + t) + ρ(k − t)− 2ρ(k)ρ(t)

]2
, (1.12)

7
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and for the integrated autocorrelation time:

(δτint(τ))2 ≈ 2(2τint + 1)

N
τ 2

int(τ). (1.13)

1.4.2 Jackknife Resampling

As is common in these types of Monte Carlo simulations, we will need some method of esti-

mating the precision of our sample statistics using resampling techniques. Using jackknife

resampling we will be able to estimate the uncertainties in our primary observables. The

jackknife estimate of a parameter is found by systematically leaving out each measurement from

the dataset and calculating the estimate from the remaining observations. The overall jackknife

estimator is then found by averaging each of these subsample estimators.

Given a set of N measurements, {θi ; i = 1, . . . , N}, each subsample estimate, θJi , is given by

θJi =
1

N − 1

N∑
k=1
k 6=i

θk, (1.14)

and the overall jackknife estimator is then given by [13]

θ̄ =
1

N

N∑
i=1

θJi . (1.15)

An estimate of the variance of an estimator can then easily be calculated from these jackknife

estimates using [14]

Var(θ) =
N − 1

N

N∑
i=1

(
θJi − θ̄

)2
. (1.16)

Binning

To reduce the effects of minor observation errors and to save computational time when calculating

jackknife estimates, we will group our observations in small intervals, or bins, which will be

replaced in our calculations by a representation of that interval. This process is known as data

binning.

8



Chapter 2

Single Worm Algorithm

2.1 Overview

As seen in most Statistical Mechanics or Numerical Methods courses, the traditional way to

simulate the Ising Model using MCMC simulations is with a spin flip Metropolis scheme. This

amounts to sweeping through the lattice flipping individual spins based on Metropolis acceptance

probabilities dependant on the energy of the system. While both easy to represent in computer

code and efficient away from transition points, the method struggles for practical simulations.

The advantages of this local method are virtually cancelled out at phase transition points as

the autocorrelation time, τint, will scale as Lξ where L is the system linear dimension (lattice

size) and ξ ≈ 2 is the dynamical critical exponent. At this critical point then is both where

numerical simulations begin to break down while being the physically most interesting domain.

The advent of cluster algorithms introduced by Swendsen and Wang [15] (1987) and further

developments [16–19] provided a huge improvement over single spin flip updates at the critical

point yet, both the classical and quantum methods rely on global updates and are essentially

non-local schemes.1

In 2001, Prokof’ev and Svistunov proposed a Worm Algorithm for classical statistical

models [4] that eliminates this problem of slowing at the critical point yet remains a local scheme.

Using high temperature expansions we move to a new configuration space of closed paths2 (figure

2.1), whose evolution in time we simulate through the motion of the end points of a disconnected

path. As an alternative to cluster methods, the Worm algorithm is based on radically different

principles and as such, has another range of potential applications. For example, the closed path

representation is suitable for the study of superfluid models by having direct Monte Carlo estima-

1Updates are local if they address configuration elements and change them without knowing about other

elements outside of the updated part
2In the case of the Ising model this is equivalent to a duality transformation between high- and low-temperature

states

9
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tors for superfluid stiffness [20], which are not available through the standard site representation.3

u

vw

z

Figure 2.1: Typical lattice configuration in the two worm reformulation (See later)

The real power of the Worm algorithm is then that we are not just discussing a new Monte

Carlo method, but an exact reformulation where physical observables have completely different

estimators, variances and autocorrelations which all deserve study. The algorithm has seen great

success in applications such as the modelling of weakly interacting 2D and 3D Bose gases or the

direct simulation of ultra-cold atoms in a 3D optical lattice. At the same time it has also seen

increasing popularity as a possible strategy for use in lattice field theory [6, 7].

3We will see later how this leads us to consider the possibility of constructing a 2 worm algorithm for direct

computation of higher order spin observables

10
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2.2 Reformulating the Ising Model

2.2.1 Closed Loop Constraints

In a rather confusing notation similar to that seen in [9], we define

Z(u, v) =
∑
{σ}

σuσv e
β

∑
〈x,y〉

σxσy

,

=
∑
{σ}

∏
〈x,y〉

σuσv e
βσxσy , (2.1)

where the outer sum is over all Ising spin configurations {σi = ±1}, and in the exponent we

sum over nearest neighbour links 〈x, y〉.
Then, using the identity:

eβσxσy = cosh β
∑
k=0,1

(σxσy tanh β)k , (2.2)

we get

Z(u, v) =
∑
{σ}

σuσv
∏
〈x,y〉

[
cosh β

∑
k=0,1

(σxσy tanh β)k
]
,

letting l = 〈x, y〉 denote the link between sites x and y then gives us (dividing by 2Nx for

convenience, where Nx is the total number of sites)

Z(u, v) =
1

2Nx

∑
{σ}

σuσv
∏
〈x,y〉

[
cosh β

∑
k=0,1

(σxσy tanh β)k
]
,

=
1

2Nx
(cosh β)Nl

∑
{σ,k}

σuσv
∏
l

[
tanh β

∏
x∈∂l

σx

]kl
, (2.3)

where Nl is the total number of links or dimers, kl = 0, 1 is the bond/link variable (0 = link

off, 1 = link on) and ∂l = {x, y} is the boundary set of nearest neighbours x and y.

Now, if we sum over the spins, {σ}, we arrive at the (global) constraint

1

2Nx

∑
{σ}

σuσv
∏
l

(∏
x∈∂l

σx

)kl

= Θ(k;u, v) ∈ {0, 1}, (2.4)

where Θ factorises into local constraints with

11
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θ(k; y) =

 1 if
∑
l,∂l3y

kl = even,

0 else,
(2.5)

and its complement

θ̄(k; y) = 1− θ(k; y). (2.6)

These then combine to give

Θ(k;u, v) =
∏

y/∈{u,v}

θ(k; y)×

{
θ(k;u) if u = v,

θ̄(k;u)θ̄(k; v) else.
(2.7)

This constraint then, in words, means that if

- u = v : The number of ‘on’ dimers/links at any site must be even (all closed loops).

- u 6= v : u and v (the end points of the worm/disconnected path) must be surrounded by

an odd number of ‘on’ dimers/links with all other sites surrounded by an even number

The algorithm’s namesake then presumably derives from the fact that the constraint Θ(k;u, v) 6=
0 requires a line of active links/dimers (kl = 1) connecting u and v. However, this series of

connecting links is not unique, so the worm is ‘fuzzy’ so to speak with only the head and tail

(u, v) fixed.

2.2.2 Duality Transformations

On a more technical point, it is important to note that the steps taken above in the high-

temperature/strong coupling expansion [21] in tanh β (eq. 2.2) coincide with those made

in a duality transformation [22].4 In the case of the 2D square lattice Ising model, at high

temperatures most spins are independent and we can consider how the energy changes as small

subsets of sites interact. Drawing lines between the interactions resembles vertices analogous to

our links/dimers. At very low energies, almost all sites are aligned, and we can consider how

the energy changes as small islands of opposite spins appear. These resemble cell clusters. Thus

in the Ising model lattice duality interchanges high- and low-temperature states. Indeed, the

square lattice is self-dual meaning that it is its own dual.

4Updated version available online: [23]
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2.2.3 Partition Functions

Now, by generalising the approach seen in [4] we consider a new partition function (for one

worm):

Z1 =
∑
u,v

ρ−1(u, v)Z(u, v), (2.8)

=
∑
u,v
{kl}

Θ(k;u, v)

ρ(u, v)
e
−µ

∑
l
kl
, (2.9)

where the coupling β has been replaced with the dimer chemical potential

tanh β = e−µ,

⇒
∏
l

(tanh β)kl → e
−µ

∑
l
kl
.

(2.10)

The pairs of sites u, v are now the ‘phase space’ of our system and 0 < ρ(x) <∞ is a weighting

function that we demand possesses the lattice periodicity. We also normalise the weighting

factor at the origin as constant positive factors in ρ will be irrelevant

ρ(0) = 1.

We can now calculate observables A(k;u, v), which may now also depend on kl, in the usual way

〈A(k;u, v)〉1 =
1

Z1

∑
u,v
{kl}

A(k;u, v)
Θ(k;u, v)

ρ(u, v)
e
−µ

∑
l
kl
, (2.11)

where 〈· · ·〉1 denotes the thermodynamic average with respect to (2.9). In practice however,

for deriving the form of particular observables, we will use a less explicit form of the partition

function

Z1 =
∑
u,v

∑
{σ}

σuσv
ρ(u, v)

e−βE(σ), (2.12)

where we have just taken the usual Boltzmann partition function and introduced a sum over all

configurations of the end points of the worm. Spin observables with respect to this form of the

partition function are then easily derived using

〈A(σ)〉1 =
1

Z1

∑
u,v

∑
{σ}

A(σ)
σuσv
ρ(u, v)

e−βE(σ), (2.13)

instead of 2.11.
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2.2.4 Observables

As a test of the single worm algorithm, we will use existing results from [9] for the suscep-

tibility of the Ising model in 2D as a benchmark against which to test. This gives us the

opportunity to introduce the manner in which we will be able to relate spin observables to

easily calculated observables in our new configuration space. In [9] the two-point function is

used to relate average nearest neighbour correlations to the energy and susceptibility whereas

we will more explicitly relate powers of average spin in the original Ising model to observables

that we can retrieve from the reformulated model. Note also that from here we will set the

weighting factor ρ ≡ 1 for all u and v for simplicity and for more accurate confirmation of results.

We recall that for the d-dimensional square lattice Ising model the average spin is given by

σ̄ =
1

Ld

∑
i

σi, (2.14)

which is used to calculate the susceptibility

〈χ〉 = 〈σ̄2〉. (2.15)

By considering Kronecker delta functions as our worm observables, equivalent to an average

of the number of times worm end points u and v coincide, we can relate an easily retrievable

observable to the susceptibility.

We start with

〈δuv〉1 =
1

Z1

∑
u,v

∑
{σ}

δuvσuσve
−βE(σ), (2.16)

sum over u and v

〈δuv〉1 =
1

Z1

∑
v

∑
{σ}

σvσve
−βE(σ),

=
Ld

Z1

∑
{σ}

e−βE(σ),

and then rewrite Z1 using the expression for average spin (2.14) as

14
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〈δuv〉1 =

Ld
∑
{σ}

e−βE(σ)

∑
uv

∑
{σ}

σuσve−βE(σ)
,

=

Ld
∑
{σ}

e−βE(σ)

L2d
∑
{σ}

(σ̄)2 e−βE(σ)
,

=
1

Ld〈σ̄2〉
,

so in 2D:

〈χ〉 =
1

L2〈δuv〉1
. (2.17)

This and similar Kronecker delta observables will be the most useful and easy to estimate

quantity for calculating observables both with the single worm algorithm, and later when we

extend to two worms. In general, the most physically interesting observables tend to be of

the derived type; nonlinear functions, typically ratios of primary observables (see eq. (3.5))

and details of these are found throughout existing literature. In our case, we will use the

susceptibility as a benchmark for both the one and two worm case and will then look at 4th

order Binder Cumulants as an example of a secondary observable in the two worm method.

2.3 Designing an Algorithm

With the algorithm from [4] we sample the statistical ensemble (eq. 2.9) produced using

high-temperature expansions. The method exploits the fact that we can base an ergodic Monte

Carlo algorithm for the ensemble entirely on two elementary alternating steps that together

make a single compound update:

- Move: (Figure 2.2) Pick one of the v’s nearest neighbours with equal probability and

denote it v′ with connecting link l. The proposed move is then v → v′ with simultaneous

adjustment kl → 1− kl and is accepted with the Metropolis probability:

pacc = min

(
1,
ρ(u, v)

ρ(u, v′)
eµ(2kl−1)

)
, (2.18)

otherwise the original configuration is maintained. Since the update and system are

translationally invariant, we only need to move v and can keep u fixed.
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- Kick: (Figure 2.3) If the system is in a configuration with u = v, we ‘kick’ the coincident

pair to another randomly chosen lattice site with unchanged {kl} (no links are changed)

with probability 0 < pkick < 1. For the dominant case where u 6= v, we do nothing in this

step.

We will call each move-kick pair of updates a micro-step, each of which will require O(1)

operations, regardless of the lattice size. However, in practice when we run simulations, we will

group L2 of these micro-steps into a single iteration or sweep of the algorithm re-introducing

the lattice size into CPU time.

u

v

v′

v → v′

u

v

(a) Drawing

u

vv′

v → v′

u

v

(b) Erasing

Figure 2.2: Successful Move updates

u, v

u′, v′

(u, v)→ (u′, v′)

u, v

Figure 2.3: Successful Kick update

Any two configurations may be connected with non-zero probability by the worm ‘dismantling’

all active links of the first configuration and then ‘re-building’ the second one over successive

updates. The kick step allows for the worm to move from one connected component to the next.
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As demonstrated in [8] and as we will show later, a correct and still efficient algorithm can

be based purely on worm move updates (pkick = 0). While autocorrelation times do increase

without the kick update, the increase is minor. Later, when we consider the system with two

worms, this fact will be useful in allowing us to run simulations without needing an ergodic kick

update.

2.3.1 Simulation notes

For the purposes of our simulations, as stated above, we will set ρ(x) ≡ 1 for all x as to match

the chosen literature and will initially set pkick = 0.5, although we will see later how this will have

little impact on our numerical results. For a 2D square lattice Ising model, we will group together

L2 micro-steps as defined above into a single iteration, during which we will accumulate our

binary observables 〈δuv〉1 , mostly implicit zeros. As such, we ‘always measure’ the system and

will never give away any information. Such an iteration will have a computational complexity

comparable to a sweep in standard algorithms, with the advantage of having L2 measurements

per sweep as opposed to just one per sweep.

For each of our simulations we have performed 106 iterations/sweeps, allowing the system to

reach equilibrium for the first 10% of these and taking statistics afterwards. Each simulation was

run with a 2-dimensional square lattice of side L with periodic (toroidal) boundary conditions.
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2.4 Numerical Results & Observations

2.4.1 Magnetic Susceptibility

In figures 2.4 and 2.5, we see how as we increase lattice size, plots of the susceptibility, χ,

approach the analytic singularity solution at the critical temperature. The steepness of the

peak at βc = 1
2

ln(1 +
√

2) ≈ 0.44 displays the phase transition point as expected, fully agreeing

with traditional spin flip simulations. Of note also is the asymptotic levelling off (consistent

with spin flip methods) of χ for all lattice sizes for β > βc as we enter the broken phase where

metropolis updates are nearly all rejected due to the low temperature (eq. (2.18)).
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 0.35  0.4  0.45  0.5  0.55  0.6  0.65  0.7  0.75  0.8
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L = 128

L = 256
βc = 0.44

Figure 2.4: Susceptibility (χ) against β for L = {16, . . . , 256}
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Figure 2.5: Susceptibility (χ) against β for L = {16, . . . , 256} (Logscale)

We can then compare our values for L
7
4/χ with those found in [9], as confirmation that the
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code is indeed doing what we want it to do and that our method is sound (table 2.1). When we

plot L
7
4/χ for increasing β, we again see how, at the critical temperature, there is a clear phase

transition that approaches the typical analytic discontinuity with increasing lattice size L.

L L
7
4/χ τint,χ

8 0.9202(24) 0.703(23)

16 0.9270(29) 0.738(25)

32 0.9420(35) 0.777(28)

64 0.9589(41) 0.799(31)

128 1.0114(50) 1.019(42)

256 1.1509(64) 1.172(59)

Table 2.1: L
7
4/χ with autocorrelation times - Single Worm
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Figure 2.6: Susceptibility (L
7
4/χ) against β for L = {16, . . . , 256}

2.4.2 Autocorrelations

Now that we’ve been able to reproduce typical magnetic susceptibility values and plots as a

concrete test of the method, we can now look at what is arguably the most interesting attribute

of the single worm algorithm. If we look at how the (integrated) autocorrelation times, τint,

scale with increasing lattice size at critical temperature βc (figure 2.8), we see that τint scales

as Lξ with dynamical critical exponent ξ = 0.00146 ± 0.00009. What this indicates is that

autocorrelations for the single worm algorithm essentially do not scale as lattice size is increased,

obviously this is a vast improvement over the widely accepted value of ξ = 2.125 for usual spin

flip methods [24]. We see what is fundamentally a complete absence of critical slowing down for

the observable χ.
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7
4/χ) against β for L = {16, . . . , 256} (Logscale)
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Figure 2.8: Integrated autocorrelation times for L = {16, . . . , 256}

2.4.3 Conclusions & next steps

What we have shown so far is a reproduction of typical susceptibility results for Prokof’ev and

Svistunov’s Worm algorithm for the 2D Ising model with no biasing. We have also demonstrated

the complete absence of critical slowing down for autocorrelations of the magnetic susceptibility.

While there are many physically interesting systems and observables we could then move onto

simulating, most of these examples have already been well documented by others [4, 5, 8, 9].

Instead, we are now motivated to investigate further the effect that finite size scaling has on

the method by considering intersections of Binder cumulants [25], a common technique in these

types of simulations. However, as these quantities depend on higher powers of average spin than

are directly retrievable from the current formulation, we must now further expand the algorithm

to allow the direct calculation of such estimators.
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Chapter 3

Extending the Algorithm

3.1 Motivation

While the Worm algorithm can at first seem like just an efficient and somewhat novel simulation

tool, the real power of the method lies in the reformulated configuration space in which it

operates. It provides direct Monte Carlo estimators for many quantities [20] that are not

available in the standard site representation. We saw with the standard single worm algorithm

how through simply keeping track of coincidences of our two worm points we can quite efficiently

measure magnetic susceptibility. We then however encounter a limitation of the model: when we

try to derive worm observables for higher order spin observables (such as 〈σ̄4〉) we immediately

see that such quantities are simply not retrievable from the single worm reformulation.

This limitation leads to the obvious question of how can the method be adapted in order to

calculate such higher order spin observables? In what we believe to be an original extension to

the algorithm, we will attempt to further reformulate the Ising model as to directly retrieve

these observables. The hope is that, by adding a second worm to the system, we will be able to

calculate 4th-order Binder Cumulants as an alternate method to determine the critical point

while greatly reducing finite size effects.

3.2 Adding a second worm to the 2D Ising Model

As an extension to the worm algorithm, we should be able to add a second “worm” to the

system by adding two more lattice sites w, z to the set of points we keep track of with each

update:

{u, v} → {u, v, w, z}.
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To study this new system we will need to devise a new partition function that includes

contributions from the second worm.

As usual, we will use the standard Boltzmann partition function,

ZB =
∑
{σ}

e−βE(σ), (3.1)

when calculating canonical thermodynamic observables (Energy, Magnetic Susceptibility, etc.).

We had the partition function for a single worm system,

Z1 =
∑
u,v

∑
{σ}

σuσv
e−βE(σ)

ρ (u, v)
, (3.2)

from which we will be able to extrapolate a partition function for the two worm system.

The natural extension of our partition function to a two worm system is then

Z2 =
∑
u,v
w,z

∑
{σ}

σuσvσwσz
e−βE(σ)

ρ (u, v, w, z)
, (3.3)

where we now keep track of four worm ends instead of two. This new partition function will

allow us to calculate observables with respect to the two worm system, denoted 〈· · · 〉2 .
Such observables will then be given by

〈A〉2 =
1

Z2

∑
u,v
w,z

∑
{σ}

σuσvσwσzA
e−βE(σ)

ρ (u, v, w, z)
. (3.4)

3.3 Binder Cumulant & Two Worm Observables

A frequently used method to determine critical points of phase transitions in various physical

systems is to use the intersection points of Binder Cumulants [25]. The most important

advantage of the Binder Cumulant method is that finite size effects are much reduced. The 4th

order Binder Cumulant UL is defined as

UL = 1− 〈σ̄4〉
3〈σ̄2〉2

, (3.5)

where σ̄ is the average spin given by σ̄ = 1
L2

∑
i

σi for the 2-dimensional square lattice Ising model.

Typically, UL behaves as follows:

- In the symmetric phase (β < βc): UL = 0 +O
(

1
V

)
as L→∞

- In the broken phase (β > βc): UL = 2
3

+O
(

1
V

)
as L→∞
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- At the critical point (βc): UL → U∗L where 0 < U∗L <
2
3

Locating the critical point using UL is then very easy. Using various lattice volumes, Ld, UL’s

must be calculated as functions of β. Then, the intersection points where UL(β) curves cross

will give the critical point βc. Usually, it is helpful to find the crossings using ascending pairs of

volumes
(
L1

L2
, L2

L3
, . . . where L1 < L2 < L3 < · · ·

)
(figures 3.12, 3.13).

So in order to calculate these Binder Cumulants for our two worm Ising Model, we will need to

relate 〈σ̄4〉
〈σ̄2〉2 to observables that we can directly retrieve from the reformulated model. Much like

in the single worm case where the susceptibility is given by

〈χ〉 =
1

L2〈δuv〉1
,

we can see how similar observables can be used to give us the desired relation for UL.

In order to maintain statistical consistency, we want all of our observables in the Binder

Cumulant to be retrievable from a single simulation of the system. To do this, we will consider

a combination of observables that suit our purposes. As such, we will again consider worm end

coincidences in the same way as with the single worm system.

We begin by explicitly writing the expectation value of each worm becoming a closed loop at

the same time, 〈δuvδwz〉2 , and then re-expressing it in terms of average spin σ̄. We start with

〈δuvδwz〉2 =
1

Z2

∑
u,v
w,z

∑
{σ}

δuvδwzσuσvσwσze
−βE(σ),

sum over u and v

〈δuvδwz〉2 =
1

Z2

∑
v,w
z

∑
{σ}

δwzσvσvσwσze
−βE(σ),

=
L2

Z2

∑
w,z

∑
{σ}

δwzσwσze
−βE(σ),

and then over w and z

=
L2

Z2

∑
z

∑
{σ}

σzσze
−βE(σ),

=
L4

Z2

∑
{σ}

e−βE(σ),

which can now be written using the expression for the average spin in 2D, σ̄ = 1
L2

∑
i

σi, as
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=

L4
∑
{σ}

e−βE(σ)

∑
u,v
w,z

∑
{σ}

σuσvσwσze−βE(σ)
,

=

L4
∑
{σ}

e−βE(σ)

(L2)4 ∑
{σ}

(σ̄)4 e−βE(σ)
,

=
1

L4〈σ̄4〉
,

giving

〈σ̄4〉 =
1

L4〈δuvδwz〉2
. (3.6)

Now that we have an expression for 〈σ̄4〉2 , we still need to calculate 〈σ̄2〉2 . We can do this in

much the same way, calculating now the expectation value for any two of the four endpoints

coinciding, 〈δuv〉2 .

〈δuv〉2 =
1

Z2

∑
u,v
w,z

∑
{σ}

δuvσuσvσwσze
−βE(σ),

again summing over u and v

〈δuv〉2 =
1

Z2

∑
v,w
z

∑
{σ}

σvσvσwσze
−βE(σ),

=
L2

Z2

∑
w,z

∑
{σ}

σwσze
−βE(σ),

and now rewriting in terms of average spin
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=

L2
∑
w,z

∑
{σ}

σwσze
−βE(σ)

∑
u,v
w,z

∑
{σ}

σuσvσwσze−βE(σ)
,

=

L2 (L2)
2 ∑
{σ}

(σ̄)2 e−βE(σ)

(L2)4 ∑
{σ}

(σ̄)4 e−βE(σ)
,

=

∑
{σ}

(σ̄)2 e−βE(σ)

L2
∑
{σ}

(σ̄)4 e−βE(σ)
,

=
〈σ̄2〉
L2〈σ̄4〉

,

giving us

〈σ̄2〉 = L2〈δuv〉2〈σ̄4〉. (3.7)

Finally, combining (3.6) and (3.7), we have

〈σ̄4〉
〈σ̄2〉2

=
〈δuvδwz〉2
(〈δuv〉2)

2 , (3.8)

so that the Binder Cumulant is retrievable from our two worm system using

UL = 1− 〈δuvδwz〉2
3 (〈δuv〉2)

2 . (3.9)

3.3.1 Susceptibility with two worms

As a test of our new two worm algorithm, we will again use the magnetic susceptibility of the

system for comparison both to our own single worm simulations and to existing literature [9].

We had, for the zero field Ising model, the susceptibility

〈χ〉 ≡ 〈σ̄2〉,

which we can express in terms of the two worm observables derived above. Subbing (3.6) into

(3.7), we get

〈σ̄2〉 = L2〈δuv〉2
(

1

L4〈δuvδwz〉2

)
,

=
〈δuv〉2

L2〈δuvδwz〉2
,
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giving us an expression for χ in terms of two worm observables

〈χ〉 =
〈δuv〉2

L2〈δuvδwz〉2
. (3.10)

3.4 Designing an Algorithm

In the single worm model, the algorithm itself has been previously defined both by its creators [4]

and in even more explicit detail by many others [9] so that we can assume most of the usual

conditions that such a MCMC method must hold (detailed balance, ergodicity, etc.). As we are

now in uncharted territory however, when designing our numerical strategies we have the added

complication of ensuring that our methods satisfy detailed balance, etc. while also wanting to

reproduce results from the single worm method with sufficient accuracy.

3.4.1 Move Update

First we will consider the Move update for two worms as this is the main part of the algorithm.

As mentioned when we discussed the single worm algorithm, the move update alone is enough

to simulate the system to similar levels of accuracy with the absence of a kick update only

slightly increasing autocorrelation times. Here, as we are now dealing with four distinct worm

end points, the system is no longer translationally invariant and we must now move each of

the worm ends. The order in which we move the ends will not matter when ensuring ergodicity

and detailed balance so long as each end point is moved on average the same number of times.

However, we will see how the autocorrelation times for moving a random worm end will be

slightly lower than if we move the ends sequentially (figure 3.8).

Our two worm move update is then much the same as the single worm update:

- Move: Pick one of the four worm ends, {u, v, w, z}, at random (say z for example) as the

current ‘active end’. Then, with equal probability, propose one of z’s nearest neighbours

as the destination site denoting it z′. The proposed move is then z → z′ with simultaneous

adjustment of the link/dimer between them kl → 1− kl and is accepted with the same

metropolis probability:

pacc = min

(
1,
ρ(u, v, w, z)

ρ(u, v, w, z′)
eµ(2kl−1)

)
,

otherwise the previous configuration is maintained.

Our move step is then essentially the same as for the single worm model and as such we know it

must both be ergodic and satisfy detailed balance for all lattice configurations. Again, we know
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that the update will require O(1) operations, regardless of the lattice size. We will again group

L2 updates into a single iteration/sweep of the algorithm.

Again, any two configurations will be connected with non-zero probability in the same way as

with the single worm by the four end points ‘dismantling’ all active links of the first configuration

and then ‘re-building’ the second one over successive updates.

Detailed Balance

As a quick sanity check, we can consider quick examples of worm configurations separated

by a single move update and check that detailed balance is satisfied. Consider the following

drawing/erasing move updates:

u

v

w

z

u

vw

z
State i State j

Figure 3.1: Detailed Balance: Move Update for two worms

The transition between these states must then satisfy the detailed balance equation (1.8):

πipij = πjpji,

where pij ≡ pi←j is the probability of going from state j to i. Since we have a stationary

distribution πi = πj, we compute pij and pji:

pij =
1

4︸︷︷︸
pick end
to move

× 1

4︸︷︷︸
pick

destination

× pacc,

pji =
1

4︸︷︷︸
pick end
to move

× 1

4︸︷︷︸
pick

destination

× pacc,

⇒ pij = pji.

While these are only elementary examples for two configurations connected by a single move

update, we can easily convince ourselves that by combining a chain of these drawing and erasing

updates we will maintain detailed balance between any two configurations separated by an

arbitrary number of updates.
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3.4.2 Kick Update

Unlike the move update, constructing an ergodic kick update is not as simple as extending

the single worm update to include two more potential ‘active sites’. We run into problems in

satisfying detailed balance with more than two worm ends. By considering various transitions

between lattice configurations we can quickly see how simply picking a coincident pair of worm

ends with equal probability (if there is more than one) and performing the single worm kick

update on this chosen pair will not satisfy detailed balance.

Failing Detailed Balance

If we consider detailed balance following the single worm kick update probabilities for the

following example, we will see how detailed balance is not satisfied and that we must consider

an alternative update scheme.

Take the kick update (v, w)↔ (v′, w′):

z

u, v,
w

z

v, w

u

State i State j

Figure 3.2: Detailed Balance: Kick Update for two worms

The update probabilities are:

pij =
1

1︸︷︷︸
Pick pair
to move

× 1

L2︸︷︷︸
Pick

destination

× pkick,

pji =
1

3︸︷︷︸
Pick pair
to move

× 1

L2︸︷︷︸
Pick

destination

× pkick,

⇒ pij 6= pji.

Detailed balance then is not satisfied for this version of the kick update. It is clear that in order

to have any chance of designing an update that satisfies detailed balance, we will need to factor

in the arrangement of coincident pairs both in the initial state along with the destination state.
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Kick Update Attempts

In our attempts to construct an ergodic kick update for the two worm algorithm that satisfies

detailed balance for all possible transitions, we have investigated many iterations of a similar

update scheme. For each such update, we were careful to maintain the following properties:

- Between each measurement of any observables, we perform a compound update consisting

of a Metropolis move followed by a kick.

- Each sub-update must preserve the equilibrium distribution. The easiest way to check

this is to show that the sub-update satisfies detailed balance with that distribution.

- Each of these sub-updates need not be ergodic on their own. In fact, none of our sub-

updates will be ergodic on their own. This is common, for example, in the standard Ising

spin flip algorithm with spin flip updates flipping one particular spin over and over again

is certainly not ergodic.

- Furthermore, the compound updates need not satisfy detailed balance as each sub-update

will maintain the equilibrium distribution.

The order in which these sub-updates are applied doesn’t matter, but it is certainly far simpler

to ensure detailed balance is satisfied if the kick update doesn’t have any dependence on the

move update that it follows.

The crux of the potential kick update is in configuring the acceptance probabilities for transitions

between certain configuration as to always satisfy detailed balance. While the time constraints

imposed by this project have prevented us from fully constructing and testing a consistent kick

method, we are confident that such an update can be formed by considering a kick probability,

pkick(i← j), that contains explicit dependence on the nature of configurations i and j.

3.4.3 Simulation Notes

Much the same as in our considerations of the single worm algorithm, we will set ρ(x) ≡ 1 for all

x for comparative purposes. As we do not now have a consistent kick update step, we will run

the two worm simulations with L2 single move updates making a single iteration, during which

we will accumulate our (no longer binary) observables 〈δuv〉2 and 〈δuvδwz〉2 , again mostly implicit

zeros. For each simulation we have performed 106 iterations/sweeps, allowing the system to

reach equilibrium for the first 10% of these and taking statistics afterwards. Each simulation

was run on a 2-dimensional square lattice of side L with periodic (toroidal) boundary conditions.
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3.5 Numerical Results & Observations

3.5.1 Magnetic Susceptibility

Using our newly derived spin observables in terms of easily retrievable worm observables

(eqs. (3.6) and (3.7)) we were able to compute susceptibilities and produce the same plots

(figs. 3.3 to 3.6) of χ and L
7
4/χ against β for different lattice sizes as we have for the single

worm algorithm. At a glance the plots are largely the same for each algorithm although with

the two worm algorithm, once we enter the broken phase (β > βc) χ oscillates erratically around

the single worm values for larger lattice sizes. We can attribute this behaviour again to the

difficulty in having any of our metropolis updates accepted for low temperatures (high β).
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Figure 3.3: Susceptibility (χ) against β for L = {16, . . . , 256}
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Figure 3.4: Susceptibility (χ) against β for L = {16, . . . , 256} (Logscale)
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Figure 3.6: Susceptibility (L
7
4/χ) against β for L = {16, . . . , 256} (Logscale)

In fig. 3.7 we have plotted the susceptibility, χ, against β comparing the original single

worm algorithm to our expanded two worm algorithm. For small lattices, the two methods give

largely the same results and as L is increased the susceptibility from two worm method starts to

oscillate wildly about the single worm solution above βc. Again, as this is well into the broken

phase this shouldn’t be any cause of concern for the validity of the algorithm. Since the duality

transformation to our worm configuration space is centred around a high-temperature (low β)

expansion, it should come as no surprise that, away from this region of low β and the critical

point, the method becomes less reliable. Reassuringly, at the critical point, βc, we recover the

same results using each version of the algorithm (table 3.1) consistent with published data [9].
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L L
7
4/χ τint,two τint,four

8 0.9378(07) 0.772(21) 0.603(11)

16 0.929(12) 0.797(22) 0.573(10)

32 0.956(21) 0.793(22) 0.544(09)

64 0.946(35) 0.829(25) 0.500(07)

128 1.089(64) 0.856(27) 0.508(07)

256 1.164(103) 0.977(37) 0.500(07)

Table 3.1: L
7
4/χ with autocorrelation times for two and four coincidences - Two Worms

3.5.2 Autocorrelations

We again use the integrated autocorrelation time (eq. (1.11)) for measured observables as a

measure of the efficiency of our algorithm. All standard errors again calculated using eq. (1.13).

In the development of the move update for the two worm algorithm, rather than randomly

choosing the worm end to be updated, we originally updated the worm ends sequentially. When

comparing integrated autocorrelation times for our two primary observables (eqs. (3.6) and (3.7))

with a sequential update versus a randomly sequenced move update, τint for the random update

is slightly lower for both of our observables (fig. 3.8). Therefore, we have employed a random

update scheme for all of our two worm simulations.

Comparing the algorithms

Figure 3.9 shows τint for two worm ends coinciding, 〈δuv〉2 , at the critical temperature for lattices

of size L = 16 & 256. Immediately, we see that autocorrelation times have improved for the

two worm method over the single worm algorithm and as the lattice size, L, is increased, the

improvement over what is an already very efficient algorithm increases. Looking at table 3.1, we

see how the autocorrelation time for finding all four worm ends coinciding (τint,four) converges

to the “perfect” value of 0.5 for large L. While we cannot compare this with the single worm

algorithm, it is in itself an astounding result.

Furthermore, in fig. 3.10 we have plotted the maximum/asymptotic value for τint as a function

of L for both 〈δuv〉2 and 〈δuvδwz〉2 . This plot shows what is in many ways the biggest success

of the single worm algorithm, further improved by our new two worm method. At βc, we see

that τint,two scales at Lξ, much like with the single worm method but with dynamical critical

exponent ξtwo = 0.000780± 0.000055, an order of magnitude closer to zero than for the single

worm algorithm. Again, we can take this to mean that τint simply does not scale as lattice size

is increased. Similarly for τint,four we have ξfour = −0.000332 ± 0.000157, closer again to zero

scaling. Again, we see a complete absence of critical slowing down for primary observables.
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Figure 3.7: Comparison of χ for single worm vs two worm algorithms with various lattice sizes
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3.5.3 Binder Cumulants

Finally, we have reached the ultimate goal set out in this project, calculating Binder Cumulants

(eq. (3.5)) for the 2D Ising Model using worm algorithm methods. Using eq. (3.9) to relate the

fourth-order Binder Cumulant, UL, to our primary observables, 〈δuv〉2 and 〈δuvδwz〉2 , we have

been able to calculate UL for various lattice sizes in an attempt to see how finite size effects

manifest in the two worm algorithm. In fig. 3.11 we have plotted UL against β for various lattice

sizes which show, much like in our plots of χ, how as L increases, the slope of UL increases and

approaches a sharp peak at the critical temperature/phase transition point βc. As expected, in

the broken phase (β > βc) UL levels off around the theoretical value of 2
3
, behaving exactly how

we expect.

L UL

8 0.6080(29)

16 0.6085(52)

32 0.5979(89)

64 0.608(17)

128 0.562(26)

256 0.564(47)

Table 3.2: Fourth-Order Binder Cumulants (UL) at the critical point βC

The intersection points of Binder Cumulants for ascending volume pairs are often used to

determine the critical point, βc, often giving more accurate results than the maximum locations

of magnetic susceptibility as finite size effects are greatly reduced. Figure 3.12 is a zoomed

in view of the intersections of UL for different lattice sizes from which we can take estimates

of the intersection points for ascending volume pairs
(
L1

L2
, L2

L3
, . . . where L1 < L2 < L3 < · · ·

)
.

Then in fig. 3.13 we look at the temperature at which these intersections occur and plot

them against 1/Lmin where Lmin is the smaller lattice size of the coincident pair. Within our

statistical errors there is no clear systematics for finite L, however the largest pair, 128
256

, gives

a value for the critical temperature of β = 0.440182(12), close to the known analytic value of

βc = ln(1+
√

2)
2

≈ 0.440686. By running our simulations for more values of β around the critical

point, this number could potentially be improved upon as we have here only values for UL for

β = {. . . , 0.43, 0.44, 0.45, . . . }.
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Conclusions

Our efforts during this project have all been with a single goal in mind; to expand upon

Prokof’ev and Svistunov’s worm algorithm with the aim of calculating higher order average spin

observables so that we can examine finite size scaling using intersections of Binder Cumulants

(eq. (3.5)). To achieve this we have first investigated the original Single Worm algorithm,

including a detailed discussion of the duality transformation to the worm configuration space.

We have detailed the development of an ergodic Monte Carlo Markov Chain (MCMC) algorithm

update scheme and included numerical results for simulations of the 2D square lattice Ising

model reproducing known results from published literature [4, 9].

The bulk of our work however has been in extending the original single worm method to

what we call a Two Worm algorithm. The primary aim being to allow for the direct calculation

of higher powers of average spin estimators with the intention of calculating Binder Cumulants

using the method. As a relatively non-trivial extension to a new but well-studied algorithm,

included is detailed discussion of the development of an update scheme that both is ergodic

and satisfies detailed balance for transitions between all available configurations. We have

derived expressions for the desired spin observables in terms of primary observables that we

may directly measure in this two worm configuration space. Of note is the fact that while

spin observables retrievable from both worm formulations have different expressions in terms of

primary observables for the two methods, the results are the same.

In developing the two worm algorithm, it has been important and very useful to consider

(integrated) autocorrelation times for our measured observables as a measure of the effectiveness

of our scheme. We have used this metric in the development of our update strategy and as a com-

parison tool for the two worm algorithm against the original single worm algorithm. Much like

the single worm method, our two worm algorithm shows what is essentially a complete absence

of critical slowing for each of the primary observables we have considered. For spin observables
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eqs. (3.6) and (3.7) we obtain dynamical critical exponents of ξtwo = 0.000780± 0.000055 and

ξfour = −0.000332± 0.000157 respectively, indicating an efficiency comparable to the best cluster

models with no size scaling (scaling as Lξ).

Finally, we have been able to calculate the fourth-order Binder Cumulant, UL, for various

lattice size, L, on the 2D square lattice Ising model. Such Binder Cumulant methods are

traditionally used to avoid finite size effects when determining critical points/temperatures.

Using our two worm algorithm, we have obtained the predicted theoretical limits for UL for

both high- and low-β and at the critical temperature βc. By considering the intersection points

of ascending volume pairs of Binder Cumulant curves we have also retrieved accurate estimates

of the (known) critical temperature.

The next step (other than running simulations for higher L, β resolution, etc.) to get this

extension to a publishable state is then, as seen in [8] with the single worm method, to simulate

the three dimensional Ising model for which there remains no analytic solution along with a

more in depth analysis of autocorrelation scaling behaviour. Of interest is the performance of

the two worm scheme in simulating the two-point function for the 3D Ising model, a calculation

for which the single worm algorithm has been noted to be more efficient than the best cluster

methods.
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