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Abstract

We perform Monte Carlo simulations on the 2-dimensional Ising model in a zero magnetic

field, using the Metropolis and Wolff Cluster algorithms to obtain computational results for

thermodynamic quantities and the dynamic critical exponents of the algorithms. The Ising

model in 2-dimensions and zero magnetic field undergoes a second order phase transition

from a phase with no magnetisation to one with spontaneous magnetisation. This phase

transition is modelled by our simulations with the behaviour of magnetisation, energy, mag-

netic susceptibility and heat capacity at phase transition all being accurately valued. We

used finite size scaling of the lattice at critical temperature to derive the value of the dynamic

critical exponent for both algorithms of z = 2.11 ± 0.073 for Metropolis and 0.47 ± 0.051

for Wolff Cluster which compares well with accepted quantities of zmetropolis = 2.17 and

zcluster = 0.52. Critical exponents of derived observables magnetic susceptibility (γ) and

heat capacity (α) were found to be γ = 1.76 ± 0.023 and α = 0.29 ± 1.5. γ compared well

with the accepted value of γ = 7/4. The discrepancy of α from the accepted value 0 was

discussed.



Chapter 1

Introduction

The Ising model, named after Ernst Ising who first studied it in 1923, has played a central

role in the development of statistical physics and quantum field theory [1] and is one of the

most famous statistical systems. Of particular interest is the two dimensional Ising model

which is complicated enough to possess non-trivial properties yet still simple enough to have

an exact analytical solution. For several years the Ising model was considered as a greatly

over-simplified representation of intermolecular forces and as being inapplicable to any real

systems [2]. In fact Ernst Ising gave up on his research in physics after he believed that

he had proved that the model had no physicsal usefulness, yet twenty years later he was to

become famous as a result of his work on the model [2].

In 1923 Ising showed that the one-dimensional model does not exhibit magnetic behaviour

in the absence of a magnetic field [3]. He assumed that this result could be extrapolated

in higher dimensions. However, this was incorrect. The Ising model zero magnetic field, in

two or more dimensions, undergoes a second-order phase transition at a critical temperature

Tc from a disordered, high temperature state with zeroed magnetization; to an ordered, low

temperature state that has spontaneous magnetization. This is the case only for a finite size

lattice; in the thermodynamic limit there is no spontaneous magnetization.

It was only in the late 1940s that the Ising model began to rise in popularity. The explicit

solution of the two-dimensional problem involved such difficult mathematics that it stumped

all physicists who attempted it. In fact, it was a chemist (Onsager 1948) who found the full

analytical solution to the two dimensional model in zero magnetic field, which remains one

of the most important achievements in statistical mechanics. The result is interesting from

a physical point of view since it is the simplest, most phenomenologically interesting, model
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of a ferromagnetic material. Due to universality, the model describes also the liquid/vapor

phase transition at the triple point [1].

Another approach to studying the Ising model, which is the focus of this report, is Monte

Carlo simulations. These are highly efficient computational methods for solving dynamic

systems in thermal equilibrium. The goal of this report is to examine in detail the errors and

efficiencies of two Monte Carlo methods which greatly differ in their approach to solving the

model. Their strengths and weaknesses will be compared and contrasted. The two algorithms

are the local change Metropolis algorithm and the non-local Wolff Cluster algorithm.

In Chapter 2 we shall review the fundamentals of statistical physics that are essential in

understanding the Ising model and, in section 2.2, how this basis in statistical physics leads

us to derive bulk properties of the Ising model from the hamiltonian of the system.

Chapter 3 shall give an introduction to the Monte Carlo computation methods and a

detailed discription of the algorithms used. We will also discuss in detail the method of

deriving bulk properties from our functioning algorithms and how to become confident that

our results are representative of the equilibrium state of the system. We shall further discuss

the concept of autocorrelation and how this effects our results. Chapter 3 will be concluded

with a discussion of how error analysis was conducted in this project.

In Chapter 4 we shall discuss an exact (non-statistical) computational solution to the

model which, for reasons that shall be discussed is only practical for very small systems. We

shall also compare these exact results to those found by our statistical approach to ensure

that they are in strong agreement within our calculated margin of error.

In Chapter 5 we shall present a discussion on data produced by our simulations. We shall

use the methods described in 3 to calculate expectation values of various observables and

their associated errors. In particular we shall focus on the computation of autocorrelation

times of the algorithms and how they handle critical slowing down. This is expected to be

the greatest variant between the algorithms as the Wolff Cluster algorithm was introduced as

an effective way of beating the effects of critical slowing down. We shall further discuss the

implications of these comments on the efficiencies of the system and our choice of algorithm

later.
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Finally, in Chapter 6 the overall achievements and observations of this project will be sum-

marised. The most important discovery will be highlighted and its implications underlined.

This will conclude the project.

3



Chapter 2

Statistical Physics

2.1 The Need for Statistical Physics

A simple macroscopic system generally has between 1023 and 1044 number of degrees of

freedom. This could describe anything from water vapour to an entire planet. Hence, it

is impractical to determine exact results from the evolution of the system. It is enough,

however, to know a small number of bulk properties of the system in order to have a useful

description of it.

For example, we have sufficient information from the energy and density of a fluid without

needing to know the position; momentum; energy and angular momentum of each individual

molecule which would provide us with more information than we need, or than it would be

possible to analyse. It is possible to use Monte Carlo simulations to find these bulk properties

from the hamiltonian of the system.

We can consider a system to have N discrete states each with a discrete energy E0 <

E1 < ... < Eµ < ... < EN−1. This system is in contact with a termal resevoir of temperature

T. When the system is in thermodynamic equilibrium with the resevoir, its bulk properties

are described by the canonical ensemble. Weights describe the probability for the system

to be in state µ at time t. The probability for state µ with energy Eµ is given by pµ and

is the connection between the microscopic and statistical descriptions of the system. The

Boltzmann distribution gives:

pµ =
e−βEµ

Z
(2.1)
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β is the known as the coupling temperature and is given by:

β =
1

kT
(2.2)

Where k is Boltzman’s constant. β is refered to as the inverse temperature and is some-

times used as the independent variable in calculation rather than T. In this paper, it is indeed

β to which we often refer. Where high temperature refers to low β and low temperature

refers to high β. As a matter of convention we also choose natural units i.e. k = 1.

Z is a normalising factor known as the partition function. It encrypts all the thermody-

namic information about a system.

Z =
∑
µ

e−βEµ (2.3)

All thermodynamic properties of a system can be calculated from the partition function

for that system. It is simply the sum of the weights of each state of the system. We can see

that for a very high β (T → 0) equation (2.1) becomes pµ = 1/(number of states) ie. each

state equally likely.

Thermodynamic systems have a stocastic (non-deterministic) character. Thus if we want

to measure a physical quantity, or observable (O), we compute the thermal average, as the

probability of measuring a quantity to take a value significantly different from its average

is ridiculously small. This average is referred to as the expectation value of the observable

〈O〉. The expectation value is found by averaging the observable over all possible states of

the system, weighted by Boltzmann probabilities:

〈O〉 =
1

Z

∑
µ

Oµe
−βEµ (2.4)

where Oµ is the value of O in state µ.

The observables of particular interest in this paper are magnetization and the internal

energy of the system to which we, for convenience, refer to simply as energy. For a statistical

system we may calculate the expectation values of these observables using equation (2.4).
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〈M〉 =
1

Z

∑
µ

Mµe
−βEµ (2.5)

〈E〉 =
1

Z

∑
µ

Eµe
−βEµ (2.6)

These quantities are almost always measured as other quantities can be dervied from them.

Such as the susceptibility:

χ = kβ(〈M2〉 − 〈M〉2) (2.7)

and the heat capacity:

C = kβ2(〈E2〉 − 〈E〉2) (2.8)

which are expressed above as the variation of magnetization and energy respectively and

are hence refered to as derived observables since when we calculate them in this way it it

not necessary to take and further measurements from the system. k is a constant specific to

the system.

2.2 The Ising Model

Consider a d-dimentional lattice with a scalar valued elementary spin at each lattice point

of si = ±1. This may be considered to be an atom or a magnet due to the universality

of the model. Each side is of length L giving a total N = Ld number of spin sites. Sites

are connected to one another via links to their nearest neighbours with whom they directly

interact. This spin-spin interaction is what determines the dynamics of the system.

At the boundary of the lattice periodic boundary conditions are usually employed such

that the rightmost site’s nearest neighbour to the right is the leftmost site. This is clearly

illustrated in figure 2.1.

The Hamiltonian for the Ising model is given by:

H = −J
∑
〈i,j〉

sisj −B
∑
i

si (2.9)
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Figure 2.1: 2-dimentional L = 3 lattice, N = L× L = 9. Links between nearest neighbours

are seen as lines connecting sites and periodic boundaries are shown for this small lattice.

Note, for illustration purposes the links across the boundary are not shown here but do exist.

where B is the external magnetic field. We consider the 2-dimensional ising model in a

zeroth magnetic field (B=0) and so the Hamiltonian is given by:

H = −J
∑
〈i,j〉

sisj (2.10)

where the notation 〈i, j〉 is a sum over nearest neighbours for each given point, or in other

words:
∑
〈i,j〉 sisj =

∑
i,j(si,j · si,j+1 + si,j · si+1,j). We only take the two links (up and right

in this case) since once we have summed over all spins we will have accounted for each link;

two vertices are connected by one link and four links intersect at one vertex:

2Nl = 4N ⇒ Nl = 2N (2.11)

J is the exchange energy (for interaction between spins). If J > 0 then the energy of

the system is lowered when spins align which is known as ferromagnetic behaviour. J < 0

causes the system to have lowest energy when spins are anti-parallel, referred to as anti-

ferromagnetism. The system is considered to be in thermodynamic equilibrium when its

energy reaches a steady state minimum and for this reason the system tends to ferromag-

netism for J > 0 and paramagnetism for J < 0 for a system with a non-zero external

magnetic field.

We can consider the total Magnetisation of the system in state µ to be given by:
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M =

∣∣∣∣∣∑
i

si

∣∣∣∣∣ (2.12)

The probability of the appearance of a state depends only on the Hamiltonian H of the sys-

tem. Since the Hamiltonian is symmetric under reflection of all the spins two configurations

of opposite sign are equally likely. These configurations will have opposite magnetizations,

therefore the average magnetization M = 〈
∑

i si〉 will be zero. This is the reason for the

absolute value sign in equation (2.12).

Spin interaction makes it possible that the model will end up in a state with most of the

spins aligned despite the absence of an external magnetic field. This is called spontaneous

magnetisation. The question of whether or not the Ising model exhibits spontaneous mag-

netisation in a particular dimension is a large motivation in the study of the ising model.

Furthermore, it is the focus of this curiosity to determine if there exists a critical temperature

βc = 1/Tc at which the model undrgoes a phase transition from exhibiting no spontaneous

magnetisation to a spontaneously magnetised region.

From the Hamiltonian it is clear to see that energy of the system in a given state may be

calculated by:

E = −
∑
<i,j>

sisj (2.13)

We can derive quantities of susceptibility and heat capacity, as discussed in the previous

section, using equations (2.7) and (2.8) where k for the Ising model is the number of sites N.

It can be derived analytically [1], [4] that in 2-dimensions (with B = 0), the Ising Model

has a phase transition at critical temperature β = βc where:

βc =
1

2
ln(1 +

√
2) = 0.4406867935... (2.14)
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Chapter 3

Monte Carlo Simulations

3.1 Monte Carlo Sampling

For the most interesting statistical mechanical system, the partition function can’t be

computed analytically. Monte Carlo simulations are a class of algorithms that rely on random

sampling to obtain numerical results that approximate, to a high degree of accuracy, the

observable quantities in a dynamical system.

3.1.1 Sampling

We would like to calculate expectation values 〈O〉 using equation (2.4). However for

large systems, such as the 2 dimensional ising model where we generally want to consider

systems with L = 100 and so 2100×100 states it is impossible (with even the most advanced

super computers) to calculate the hamiltonian for each individual state. (This is possible

for a very small lattice as will be discussed in Chapter 4.) Thus we need to estimate the

expectation value using sampling.

We construct a sample of N states µ1, µ2, . . . , µN which are distributed according to a

chosen probability distribution, Pµ, which should depend on the temperature of the system.

Then we can define an estimator (ON) of 〈O〉 to be:

ON =

∑N
i=1Oµie

−βEµiP−1µi∑N
i=1 e

−βEµiP−1µi

(3.1)
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This is easily understood since, for a sufficiently large sample, Pµ will simply be the

frequency that the system is in state µ and so we expect that:

〈O〉 = lim
N→∞

ON (3.2)

We wish to determine a value Pµ which causes the convergence in equation (3.2) as fast

as possible. Simple sampling sets Pµ as a constant. But since our sample is generally tiny

compared to the number of states in the system the probability of getting many states that

make a large contribution to the sum in equation (2.4) is low since this is a vast minority of

states.

Importance sampling chooses a state µ and adds it to the sample with probability Pµ =
e−βEµ

Z
. In this way the states chosen should have the most significant contribution to the

calculation of 〈O〉. This is the sampling process used in most Monte Carlo Simulations.

Putting this probability into equation (3.1) we get the expression

ON =
1

N

N∑
i=1

Oµi (3.3)

3.1.2 Markov Process

It is not possible to choose a state µ and add it to the sample with probability Pµ = e−βEµ

Z
in

a direct way as it is clearly not possible to determine the partition function in a large system.

We need to find a method that produces states according to the Boltzmann probabilities

without needing to compute the partition function. To do this we introduce a Markov chain.

This is a sequence of states that shall make up our sample.

A Markov chain begins in a state µ and uses a transition probability Pµ→ν which is de-

pendent on Pµ and Pν to change the system from state µ to state ν. Pµ→ν is chosen such

that the convergence to equilibrium1 is quick. Hence, proper choice of Pµ→ν is one of the

most important considerations in the Markov process and is one of the defining features of

an algorithm that employs it.

The transition from state µ to ν must obey the following criteria:

1We will consider the system to have reached equilibrium when the observables of the system converge

the region of their expectation values and henceforth fluctuate finitely
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1. It is independent of time.

2. It is memoryless: Pµ→ν does not depend on the path taken to reach state µ

3. The relation ∑
ν

Pµ→ν = 1

holds. Where ν = µ is allowed.

4. For limN→∞ the sample µ1,...,µN follows the Pµ = e−βEµ

Z
distribution.

Since each state (ν) in the sample is reached from another state (µ) it is a requirement

that the process is ergodic2. That is, any state ν can reached by any other state µ in a finite

number of steps.

It is possible that we start our system in a state µ1 that is far from equilibrium. In this

case it is clear that several of our initial measurement shall not be close to the expectation

value as it will take many steps along the chain. In this case we must consider a criteria

for discarding false results and deciding when we have reached states which are typical of

the simulated temperature. This is the problem of thermalization and shall be considered in

section 3.3.

3.1.3 Detailed Balance

Finally we need to determine P (µ→ ν) for our process such that the system will reach

equilibrium as quickly as possible and only fluctuate from it by small amounts. If the system

is in equilibrium, the rate of transition into and out of any state µ should be equal:∑
ν

pµP (µ→ ν) =
∑
µ

pνP (ν → µ)

. This may be guaranteed by requiring that the rate of transition from state µ to state ν is

the same as the rate of transition from ν to µ.

pµP (µ→ ν) = pνP (ν → µ) (3.4)

This condition is known as detailed balance.

2The system has the same behaviour averaged over time as it does averaged over phase space
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Taking the sum over ν on both sides of equation (3.4) above we have:

pµ =
∑
ν

pνP (ν → µ) (3.5)

Which we can consider this in matrix notation as:

~p = ~p · P (3.6)

where p =
[
pµ1 , ... , pµ2N

]
is a probability vector, with number of sites N, and P is the

Markov Matrix given by:

P =

 p(µ1 → µ1) ... p(µ1 → µN2 )

: ... :

p(µN → µ1) ... p(µN → µN2 )

 (3.7)

where we must have an eigenvalue of 1 to satisfy equation (3.6).

The Perron Frobenius theorem [6] ensures that every stochastic matrix has a vector ~p

that satisfies (3.6) and that the largest absolute value of any eigenvalue is always 1. For

a matrix with strictly positive entries, which is guaranteed by the fact that the entries are

probabilities, this vector is unique and each of the other 2N − 1 eigenvalues of P are < 1.

Thus we must have that

~p = ~v( lim
k→∞

P k) (3.8)

Which guarantees our desired probability distribution3 given that all eigenvalues of P will

fall off to zero while our unique eigenvalue of 1 that satisfied equation (3.6) remains. It is

also clear from this that we approach the desired distribution asymtotically with each step

of our algorithm as each eigenvalue falls of with the power k.

3This is the Boltzmann distribution 2.1 discussed previously.
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We have showed that detailed balance is a sufficient condition to ensure that the asympp-

totic fixed point distribution is the desired distribution. Thus from equation (2.1), the

detailed balance condition for Boltzmann distribution is:

P (µ→ ν)

P (ν → µ)
=
pν
pµ

=
1
Z
e−βEν

1
Z
e−βEµ

= e−β(Eν−Eµ) (3.9)

Where we can express P (µ → ν) as a product of two terms, P (µ → ν) = g(µ →
ν)A(µ → ν). Now g(µ → ν) is the probability of selecting the transition from state µ to

ν and A(µ → ν) is the probability of accepting that transition. Thus we have our final

expression of detailed balance:

g(µ→ ν)A(µ→ ν)

g(ν → µ)A(ν → µ)
= e−β(Eν−Eµ) (3.10)

The reason that we choose to express it this way is so that we may decide any selec-

tion process we desire for long we fix the acceptance probability such that equation (3.10)

holds. We change the acceptance ratio such that the maximum number of selected states

are accepted.

3.2 Algorithms

We use two algorithms that greatly differ in their approach to a statistical solution to

the Ising Model. The first is the Metropolis algorithm. Which is well documented over the

last fifty years and is most frequently used in Monte Carlo simulations [1]. It is based on a

local change procedure. The second is the Wolff Cluster algorithm [7]. This is a non-local

clustering algorithm which was especially designed for spin systems and has efficiencies which

greatly exceeds Metropolis in the critical region.

3.2.1 Metropolis Algorithm

As discussed in section 3.1.3 if equation (3.10) is satisfied for each change of state then

the sample will converge to equation (2.1). We also discussed that we want the system to

change often enough so that we reach equilibrium as quickly as possible. Thus we wish to

maximise P (µ → ν), our aim shall be to make it of order one. This will be the case if the

diffences in energy ∆E = Eν−Eµ isn’t too large. The way we accomplish this in Metropolis

algorithm is by only considering single spin changes. si,j = ±1→ si,j = ∓1
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If we consider equation (2.13) we see that change of a single spin results in the change

of sign for four terms si,jsi,j+1, si,jsi+1,j, si−1,jsi,j, si,j−1si,j in the sum. Thus the change in

the energy for each bond connected to si,j is ±2 ie. from −1 to +1 or vice versa. In two

dimensions we have four nearest neighbours and thus the maximum change in energy for the

single spin flip is ±8. Or, more generally if the model has z nearest neighbours then

|∆E| ≤ 2z ⇔ Eµ ≤ Eν − 2z (3.11)

The selection probability g(µ→ ν) may be chosen arbitrarily as discussed in the previous

section and so we decide to choose it systematically; we’ll start with the first site in the

lattice and then go to the second, and so on. We can clearly reach any possible state of the

system by this process thus it satisfies ergodicity. We now have

A(µ→ ν)

A(ν → µ)
= e−β(Eν−Eµ) (3.12)

Where we set A(ν → µ) to 1, as discussed and use the algorithm proposed by Metropolis:

A(µ→ ν) =

e−β(Eν−Eµ) Ev − Eµ > 0

1 Eν − Eµ ≤ 0
(3.13)

So if the change of state lowers the energy then we always accept the new state. To

implement this acceptance ratio in our algorithm we first choose a spin site; say, the first in

our lattice. Then we calculate the change in energy that would result from flipping the spin.

If this satisfies the Metropolis condition (3.13) then the new state is accepted. This process

is repeated for each site as we ’sweep’ through the lattice. A large number of sweeps through

the lattice are made so that equilibrium is reached and so that we have many states in our

sample to measure quantities like energy and magnetisation. Each ’sweep’ of the lattice is

taken to be a single ’timestep’ of the Metropolis algorithm. This is not always the case but

is the convention used in this paper.

Currently, our Metropolois condition (3.13) requires us to calculate the energy of the

system for each state it is in, or which it selects as a possible transition. This is very costly

since a calculation of the energy involves every site in the lattice. We are considering an

entire lattice sweep as a single timestep and thus are calculating energy almost L2 more
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times than we’d like to. However, since spin flips and the associated change in energy is

local we can consider this more simply.

Assume that the system is in state µ and considering the transition to state ν, which

differes by value of one spin sνk = −sµk , sνj = sµj ∀j 6= k. Then

Eν − Eµ = (−
∑
〈ij〉

sνi s
ν
j )− (−

∑
〈ij〉

sµi s
µ
j )

= −
∑
〈ik〉

sµi (sνk − s
µ
k)

= 2
∑
〈ik〉

sµi s
µ
k

∆E = 2sµk

(∑
〈ik〉

sµi

)
(3.14)

Now we only need to calculate the sum over the nearest neighbours to determine the result

of the Metropolis condition and hence we have cut computation time considerably.

At the end of each timestep we measure observables magnetisation and energy using equa-

tions (2.12) and (2.13). Once the simulation has ran over a sufficient number of timesteps,

the criteria for which will be determined by thermalisation and correlation time discussed

later, we then estimate expectation values for these observables using equation (3.3). The

error for which scales as 1/
√
N for sample size N, as will be discussed later.

Now energy per bond is

< e >=
1

Nl

< E >=
1

2N
< E >

(from equation (2.11)) where −1 ≤ e ≤ 1. We also have that the magnetization per site is

< m >=
1

N
< M >

where 0 ≤ m ≤ 1 and β = 0 =⇒ a perfect disorder (m = 0) and the ground state is at

β =∞, (m = 1).

The magnetic susceptibility and heat capacity can finally be derived using equations (2.7)

and (2.8) where the constant k is now the number of sites N - not to be confused with the

number of elements in the sample. Finally, β may be changed and analysis of of observables

at the new temperature may commence.
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3.2.2 Cluster Algorithm

The cluster algorithm [7], is a non-local spin flip algorithm that changes the system from

state µ to state ν by flipping a group, or cluster, of like spins. A single site is chosen from the

lattice at random with probability 1/N. This site is called the seed (sseed). We then look at

the nearest neighbours; if they have the same spin as the seed, they are added to the cluster

with the probability Padd. This process is repeated for each new member of the cluster until

there are no new members, at which point all the elements of the cluster are flipped. Sites

may be considered more than once for addition to the cluster if they appear as neighbours

to more than one site in the cluster.

Figure 3.1: Two spin configurations that differ by the flip of a Wolff cluster. The bonds that

are destroyed/created during the transition belong to the boundary of the cluster. Figure

from Computational Physics [1].

Now, we are left with the task of determining the value of Padd that satisfies detailed

balance. Similarly to our plan in the Metropolus algorithm, we want to determine if the

resulting state ν decreases the energy. So we want to add a member to the cluster if it is

likely that it will decrease the energy of the system to have that spin flipped. From figure

3.1 we can see that the bonds between mutual elements of the cluster do not change sign,

as they are flipped together. The links whose signs change (ie. bonds that are broken or

created by the flip) are highlighted in this figure. So it is easy to see that the change in

energy is determined by the situation at the boundary of the cluster. Therefore, when we

break a bond we incur an energy different of +2J, and similarly creating a bond incurs a

difference of -2J.

We can also see, from figure 3.1, that any bonds that are broken/created in the change

from state µ→ ν is created/broken in the change from ν → µ.
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Suppose that the number of bonds broken in going from µ → ν is r, and the number of

bonds broken in the transition ν → µ is s. Then

Eν − Eµ = 2J(r − s)

. Now equation (3.10) becomes

g(µ→ ν)A(µ→ ν)

g(ν → µ)A(ν → µ)
= e−2Jβ(r−s) (3.15)

So the probability of ’not’ adding a site at the boundary is 1 − Padd. Thus g(µ → ν) =

(1− Padd)r and g(ν → µ) = (1− Padd)s. Putting these two equations into (3.15) we have

(1− Padd)r−s
A(µ→ ν)

A(ν → µ)
= e−2Jβ(r−s) (3.16)

which implies

A(µ→ ν)

A(ν → µ)
= (e−2Jβ(1− Padd))(s−r) (3.17)

We now choose Padd such that equation (3.17) is equal to 1. This means that we can take

the acceptance ratios A(µ → ν) and A(ν → µ) also to be one, so that once the cluster has

been constructed, the new configuration (state ν) will always be accepted. Hence we never

build a cluster that we don’t flip and our algorithm shall be as efficient as possible. Thus we

use

Padd = 1− e−2βJ (3.18)

There is a non-zero probability, and actually typical of high temperatures, that the cluster

shall only consist of the seed site. Since the seed site is chosen at random, and any site may

be chosen, any state of the system can be obtained in a finite number of steps. Therefore

the Wolff Cluster algorithm satisfies ergodicity.

Observables are measured in the same way as using the Metropolis algorithm, however

now a timestep is taken to be a single cluster flip.
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3.3 Thermalization

When a system is in thermal equilibrium with a resevoir of a given temperature, a typical

state has energy that differs very little from its average value and belongs to a restircted

region of phase space. Thus when we choose an initial state which is far from this region then

the system must perform a thermalising procedure through a series of states until it finds the

region of typical states. This process in Monte Carlo simulation is known as thermalization.

This gives rise to two problems; choosing an appropriate initial configuration, ie. hot or

cold, that will reduce the length of this thermalisation, and finding a criteria to determine

when the system is thermalised so that we can start measuring observables. The difference

that a choice of initial configuration can make is demonstrated in figure (3.2). In addition to

hot and cold we may also use an old state start. This is usually done when we are calculating

observables across a large heat spectrum. A small number of sweeps are carried out on a

particular temperature, then the temperature is changed slightly and the final configuration

at the last step is used as the first configuration for the next. This reduces thermalization

time as for the most part the difference in expectation values of observables when we change

the temperature by small amounts are small.

Figure 3.2: β = 0.48, Thermalization for three hot starts and one cold start in a cold region.

Note how the thermalization time for the cold start is much less. The only change in each of

the hot starts is the random number seed. One of the simulations has not even had enough

time to thermalize.

From figure 3.2 we can also see that we have different thermalization times for different

random number seeds, despite having the same initial start. This gives rise to a potential
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criteria for testing for thermalization. In figure (3.3) we have the same inital start at the

same temperature for four independent sets of random numbers. This time enough timesteps

have been given for each to converge. This value of convergence is the systems magnetization

for the given temperature. The expectation value of magnetisation is then given by equation

(3.3).

(a) Simulations all converge after 1500 monte

carlo steps.

(b) Zoomed in on thermalized region. Observ-

ables magnetisation can be measured at this

point.

Figure 3.3: Thermalization for four hot starts cold region at β = 0.48, L=100. When the

timestep histories of the monitored quantities converge, we are confident that the system

has been thermalized.

3.4 Autocorrelations and Correlations

So far we have been assuming that the measurements we have taken have come from

independent states. However, since the algorithms change a finite number of spins at each

iteration, the states used at each timestep may be statistically correlated. For example, in

the Metropolis algorithm we have defined one timestep to be a sweep of the entire lattice.

Thus we may expect that we have reached new state that is in no way correlated to the

previous state. This is true for certain temperatures, however when we are close to a phase

transition, in the critical region, the behaviour is not so trivial. Consider figure 3.4a, which

shows a spin configuration for the L=100 Ising model, where black dots are spin down sites

and white are spin up sites. It appears to have a random (disordered) nature. A local change

algorithm such as Metropolis has no problem changing individual spins in this case as the
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nearest neighbours of each individual spin are, in general, a even mix of ’up’ and ’down’

spins. Thus, according to equation (3.14) the probability of flipping will likely be of order

1. However, as we can see from figure 3.4b, the neighbours of any given spin are likely to

have four neighbours with like spins and thus we have a small ∆E which tends to make the

probability of flipping very large. This causes the Metropolis algorithm to mostly change

the spins at the boundary of the clusters (in figure 3.4b). It should now be clear that an

entire sweep of the lattice is not enough to obtain an independent spin configuration.

In the way we have just described it can be understood how spins that are quite far apart

in the lattice may still have mutual influence over one another, this is seen to be significant

at close distances, as in figure 3.4a, or at large distances, as in figure 3.4b. This introduces

a new variable that is known as the correlation length ξ.

(a) β = 0.2 Correlation lengths are

small and it is easy to change indi-

vidual spins.

(b) β = 0.43 Like spins have clus-

tered together as the correlation

length diverges.

Figure 3.4: Spin configurations for non-critical and critical regions. L=100.

To quantify the magnitude of correlations between configurations separated by t timesteps

we construct the autocorrelation function. If we consider an observable O, and let O(t) be

it’s value after t Monte Carlo timesteps. Then the autocorrelation function pO(t) of O is

pO(t) =
〈(O(t′)− 〈O〉)(O(t′ + t)− 〈O〉)〉t′

〈(O − 〈O〉)2〉
(3.19)

Where 〈...〉′t is the average value over the configurations in the sample ie. for each different

t′ with t′ < tmax − t. We clearly have pO(0) = 1 which is required as a configuration is
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clealry fully correlated itself. When pO(t) fluctuates about zero, we may consider that we

have reached a statistically independent configuration.

The autocorrelation function should be the same, within statistical error, for a any run

using the same temperature and observable4. pO(t) drops exponentially:

pO(t) ≈ e−t/τO (3.20)

Where τO is known as the autocorrelation time, and is also a constant for an observable

at a particular temperaure. equation (3.20) is not exact because we have only accounted for

the drop off between 1 and the next highest eigenvalue of the Markov Matrix. We generally

consider that we have an independent measurement when t = 2τO ie. when

pO(t) = e−2 ≈ 0.14

Therefore, if tmax is the number of timesteps taken then we have tmax/2τO statistically

independent measurements.

(a) Exponential decay according to equation

(3.20).

(b) Zoomed in region. We can see fluctuations,

averaging at zero.

Figure 3.5: Autocorrelation Function L=50. For magnetization with the Metropolis algo-

rithm in the non-critical region.

4pO(t) can be quite different for different O or β and lattice sizes L
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An accurate measurement of τO is not easy as it requires tmax � τO. For measurements

that give us a very large autocorrelation time, we try instead to take measurements every

τO steps. To avoid being swamped by data.

Beating autocorrelations is crucial in Monte Carlo simulations since they are the main

obstacle for studying large systems, which in turn is essential for taking the thermodynamic

limit without the systematic errors introduced by finite size effects.

We may also measure the correlation between two points on the lattice. That is, how two

points si and sj vary together. This can be simply calculated by the product of the variance

of these two sites, known as the correlation function:

gij = 〈(σi − 〈σi〉)(σj − 〈σj〉)〉 (3.21)

Similarly to the autocorrelation function, this has an exponential decay given by

gij = e−|i−j|/ξ (3.22)

which we can see falls off as we examine points further apart, scaled by the value of the

correlation length: ξ = ξ(β, L).

3.5 Critical Exponents

We must introduce a new variable known as the ’reduced temperature’, t

t ≡ βc − β
βc

(3.23)

This approaches zero at the critical point (β → βc), and so is used to describe how

observables behave as they approach the critical temperature.

χ ∼t−γ (3.24)

C ∼t−α (3.25)

ξ ∼t−ν (3.26)

τ ∼t−νz (3.27)
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Note: τ has two critical exponents as convention so that it may be easier to relate τ and

ξ.

These observables clearly diverge for exponents > 0, however this may only be seen in the

thermodynamic limit; as for a finite system, these observables are clearly analytic5 as they

can be derived using the partition function. However, on a finite lattice these observables

have a maximum6 in a pseudocritical temperature βc(L)

lim
L→∞

βc(L) = βc (3.28)

While ξ � L the model should behave approximately as an infinite system. However, at

critical temperature we have ξ ∼ L, so finite size effect becomes significant. So, on a finite

lattice we take the pseudocritical region, β = βc(L), and so we have that ξ(t, L) ∼ L. This

implies that in the region of βc(L:

t ∼ L−1/v (3.29)

and thus equations (3.24 - 3.27) become

χ ∼Lγ/ν (3.30)

C ∼Lα/ν (3.31)

ξ ∼L (3.32)

τ ∼Lz (3.33)

This is referred to as finite size scaling, and provides us with a convenient way of calculating

critical exponents, as shall be discussed later.

3.6 Statistical Errors

The determination of statistical errors is of central importance in order to assess the quality

of a measurement and predict the amount of resources needed for reaching a specific accuracy

goal.

5The sum in equation (2.4) is as set of analytic functions, however impractical it may be to solve.
6They appear to diverge at the critical point but do have an analytic peak. This can be seen in figures

5.7 and 5.8.
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3.6.1 Errors of Independent Measurements

Using the assumption that the source of statistical errors are the thermal fluctuations

around the average value of an observable, we conclude that its expectation value can be

estimated by the mean of the sample and its error by the error of the mean. Thus we

calculate the mean of the fluctuations in the thermalised region: We take n samples in the

thermalised region and thus our sample mean is given by:

Ōn =
1

n

n∑
i=1

Oi (3.34)

This is an unbiased7 estimator of the mean. Now the error of the unbiased estimator Ōn

is an estimator of the statistical error which is given by:

σ2
O =

1

n− 1
{ 1

n

n−1∑
i=0

(Oi − Ō)2}

σ2
O =

1

n− 1
(〈O2〉 − Ō2) (3.35)

Following our discussion in section 3.4 it is possible to see that each successive value Oi

are not guaranteed to be statistically independent. If τO is the autocorrelation time, with

unit of number of measurements n̂, then according to section 3.4, we have

nO =
n

2τO
(3.36)

independent measurements. For this reason the error given in equation (3.35) is referred

to as näıve error.

The real error should be given by

σ2
O =

1 + 2τO
n− 1

(〈O2〉 − 〈O〉2)

≈ 1

n/2τO
(〈O2〉 − 〈O〉2)

≈ 1

nO − 1
(〈O2〉 − 〈O〉2) (3.37)

7It gives the correct mean for finite n and not only in the limit n→∞
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where we have gotten the second and third lines by assuming τO � 1 and using equation

(3.36).

3.6.2 Blocking

A natural way to ensure that our measurements are statistically independent is to divide

the n measurements into nb number of bins and increase the size of these bins until the error

levels off ie. when the number of elements in a bin b is > 2τO and nb = nO. This will

ensure that each bin contains a statistically independent set of results. This process of error

handling is referred to as the blocking method.

We define Ob,i as the average value of observable O in bin i. Following equation (3.37) we

can calculate error using:

σ2
Ob

=
1

nb − 1
(〈O2

b 〉 − 〈Ob〉2) (3.38)

Where we can be confident that we have a correct representation of error if b ≥ 2τO. If

b is too small then the error will be underestimated (of course b = 1 is the näıve error)

then we shall underestimate the error. In this case the b should be increased until the error

levels off, stops increasing, and remains at a constant value, then we have discovered the

true statistical error for the sample n.

This also gives us a method of calculating errors for our derived observables. If we consider

again the equations for calculating susceptibility and heat capacity from magnetisation (2.7)

and energy (2.8), we see that a sample of the measured observables are required to get

a measurement of these derived observables. Thus, using the blocking method we may

calculate these derived observables for each bin of data, as if that bin were an entire sample.

From this we have a new sample of nb values of the derived observables from which we may

calculate the error once again by using equation (3.35). Note that, we may consider each of

these measurements as having come from sufficiently uncorrelated configurations.
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Chapter 4

Exact and Statistical Calculations

As discussed, our metropolis and cluster algorithms give statiscical approaximations of the

expectation value of an observable at a given temperature. These estimates have errors as

explained in section 3.6, which can be beaten down by higher Monte Carlo steps. The error

however remains non-zero. As discussed in section 2.1 we can calculate our expectation value

by using equation (2.4). Since this requires us to examine each possible state computation

time goes up as quickly as number of states, which for lattice size of L = 100 we have 2100×100

states. Thus, far beyond numerical calculation. For a smaller lattice, this is possible.

4.1 An Exact Computational Approach.

In this section we calculate exact solutions for observables in the 3× 3 and 4× 4 models.

The exact solution of the observables were calculated using equation (2.4) where it was

necessary caluculate the energy (and magnetization) in every possible state of the system.

The corresponding number of states are: 23×3 = 512 and 24×4 = 65 536. Thus, it was

impractical to lattice sizes greater than this as a L = 5 already gives 25×5 = 33 554 432

states!

A comparison for the exact solutions for spontaneous magnetization and energy with

different lattice sizes is shown in figures 4.1a and 4.1b. To illustrate what these might look

like closer to the thermodynamic limit (N →∞) we include a statistical solution at L = 100

from data generated by the Metropolis algorithm.

We can see that for smaller lattices there appears to be a ’smoothing out’ of the critical

region so that the change in magnetization and energy is less extreme. This implies that
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(a) Spontaneous Magnetization. (b) Energy.

Figure 4.1: Exact solutions for different lattice sizes with statistical L = 100 for comparison

to a large system.

there would be a smaller divergence of the magnetic susceptibility and heat capacity in the

critical region as they are the variance of magnetization and energy respectively. This is

indeed shown to be the case and discussed further in section 5.3.

It is also noticable from figure 4.1a that in the cold region (β > βc) lattice size has

no significant effect and small magnetization acts very similarly to how it would in the

thermodynamic limit.

4.2 Testing the Algorithms

The analytical solution to the L=3 Ising model is shown by in figure 4.2. Expectation

values for the magnetization (figure 4.2a) and energy (figure 4.2b) and their associated errors

were calculated using methods discussed in section 3.6 for both the Cluster and Metroplois

Algorithm.

An agreement to the exact solution for these observables within the range of the error bars

can be seen giving convincing evidence that our algorithms and error data analysis give an

accurate statistical description of the model at these lattice sizes.
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(a) Spontaneous Magnetization L = 3. (b) Energy L = 3.

Figure 4.2: In both figures the results calculated using each algorithm agree with the exact

solution within statistical error as can be seen from the error bars. The points for the two

algorithms are taken at different values of β so that they are both clearly visable on the

graph.

Figure 4.3: β = 0.48, L = 100 Algorithm comparison in cold region.

From figure 4.3 we see an agreement between algorithms once thermalised despite the

very different paths taken to reach equilibrium. It is obvious, without the plot legend, which

algorithm has created each result. Clearly we have a set of successive large ’jumps’ from the

cluster algorithm where the first large cluster of like spins has been formed.
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Chapter 5

Simulations

5.1 Monte Carlo Histories

Computing Monte Carlo histories ie. the value of an observable at a particular temperature

as a function of number of Monte Carlo steps, gives us a very good idea about thermalisation

times. It is shown in figure 5.1 that for both algorithms longer thermalisation is required for

larger lattice sizes.

(a) Metropolis. (b) Wolff Cluster.

Figure 5.1: Magnetization per site for the Ising model for both algorithms with β = 0.48.

Thermalization from a hot start takes longer for a large system.

In both cases the system undergoes a thermalisation process through a set of states until

the observables of the system converge to a value about which they will fluctuate only slightly.
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In figure 5.2a we notice that there is no major difference in thermalisation time when we

compare different lattice sizes. This can be understood by recalling that we defined our

Metropolis timestep as an entire sweep through the lattice. A disordered state has lower

energy than an ordered state so every potential change, when all spins are aligned, will be

accepted by equation (3.12). Thus the difference of lattice size is irrelevant. Hot region

thermalisation in the Cluster algorithm, however, appears to depend on lattice size. This

may also be understood if we assume that cluster sizes are small in this region. Which can

be seen to be the case in figure 5.3. Since a timestep in this case would be flipping a single

spin per step and hence for larger systems this will be very costly. We can now see the

importance of clearly defining a Monte Carlo step.

(a) Metropolis. (b) Wolff Cluster.

Figure 5.2: Magnetisation per site for the Ising model for both algorithms with β = 0.1.

Thermalization from a cold start takes longer for a large system for the cluster algorithm

given how we have defined our Monte Carlo steps and the fact that cluster don’t grow large

in the hot region.

We include at the end of this section a graph of the average fraction of spins flipped

per Monte Carlo step for the Wolff Cluster and Metropolis algorithms as a function of

temperature as it gives a good graphical idication of the discussion above. This was simulated

by a 102 lattice for 10,000 Monte Carlo steps in each case.
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Figure 5.3: The plot shows the average cluster size for the Wolff Cluster algorithm and the

number of sites flipped per sweep for the Metropolis algorithm as a fraction of the lattice

size N for the range of temperatures shown.

5.2 Sample Size

Considering equation (3.35) we may think that error will fall off as we increase the size of

the sample, in a way close to 1/
√
n− 1. We consider that this is a rough approximation as

the (〈O2〉 − 〈O〉2) should only be changing slightly, for each sample size. It can be shown

that

σO ∝ 1/
√
n (5.1)

This is illustrated in figure 5.4.
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(a) Error Versus sample size n. (b) Error is proportional to 1/
√
n.

Figure 5.4: Relationship between error and sample size. L = 100. β = 0.1 Metropolis

algorithm.

This relationship gives us a way of choosing our accuracy by creating a sufficently large

sample n according to (5.1).

5.3 Observables and their critical exponents

We simulated the Ising model using the Metropolis algorithm on lattices of size N = 102,

N = 202, N = 502 and N = 1002, at a range of temperatures 0 < β < 1. Each simulation

was began in a hot (random) state with 50,000 Monte Carlo steps. For the hot region

β < βc(≈ 0.44) this start was very close to equilibrium behaviour of the system, it was found

that thermalisation for this region was generally less than 1,000 sweeps and so we could

safley expect the system to be thermalised after 3,000 steps. The number of sweeps required

elsewhere (in the pseudocritical region and above) was found to be 30,000 to have safely

thermalised. This difference in thermalisation times is easily seen looking back at figure 3.2.

In the thermodynamic limit, the 2-dimensional Ising Model undergoes a second order

phase transition1. However, for a finite lattice size the free energy, and it’s derivatives, must

always be analytic, since the free energy is F = F (Z), where the partition function for a

finite lattice is a finite sum of exponentials. Thus the ’phase transition’ that we might appear

to see will always be continuous for a finite system. This is seen to be the case in figure 5.5

1Has a discontinuity in the first derivative of the order parameter, generally taken to be the free energy.
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which shows spontaneous magnetisation per spin for different lattice sizes. Notice how the

’phase transition’ is more gradual for smaller lattices.

Figure 5.5: Ising Model spontaneous magnetisation per spin for lattice sizes N = 102,

N = 202, N = 502 and N = 1002.

As we previously discussed we take the absolute value of magnetisation, which implies

that we will always slightly overestimate it’s value in the hot region. This is a source of

systemmatic error that must be noted however may not be relevant for calculating values of

interest as we are generally more interested in the critical region.

The blocking method, described in section 3.6.2, was used to accurately determine the

statistical error seen in figure 5.5. Derived observables, magnetic susceptibility and heat

capacity were also calculated using this method. For most of the range (β < 0.4, β > 0.5) it

was possible to use small bin sizes to overcome autocorrelation time. We can see from figure

5.6 that for β = 0.4 a bin size of 50 was sufficient to consider each bin to be a statistically

independent measurement. This was therefore taken as the bin size for the regions above. In

the critical region however, a bin size of 10,000 was required to give accurate measurements

of error and the derived observables. For this reason a much larger sample size for these
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temperatures was used. The highest of these was 1,000,000 for the sample sitting closest

to the critical point (β = 0.44), this also helped to beat down error in this region. This is

reflected in figure 5.5. However, being required to perform 1,000,000 timesteps at a single

temperature is extremely costly and is the major problem caused by critical slowing down

seen very significantly in the Metropolis algorithm.

Figure 5.6: β = 0.4. L = 100. Metropolis. Error for increasing bin size.

Smaller bin sizes were required for the smaller lattices in both the critical and non-critical

regions. In general the required bin size at each temperature was determined by systemat-

ically increasing bin size while subtracting the error found using the previous bin size from

the error using the current bin size. When this converged sufficiently close to zero the bin

size was accepted and that value of error was recorded. Deciding when the difference in the

error was sufficiently close to zero is a source of systematic error but recall that we generally

consider states that have a correlation of less than 0.14 to be de-correlated so we are not

providing any additional source of statistical error by this approach.

Overcoming the effect of varying autocorrelation times was essential for deriving magnetic

susceptibility and heat capacity. As these are the variance of magnetism and energy respec-

tively, using a bin size that was too small ie. (b < 2τO) not only underestimates the error in

the derived observables, but far more significantly underestimates the values of the derived

observables themselves. This problem was largely significant at the critical temperature.

Thus the correct bin size was required to satisfy b ≥ 2τm, 2τe, 2τχ, 2τC .
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Figure 5.7: Magnetic Susceptibility of the Ising Model for lattice sizes N = 102, N = 202,

N = 502 and N = 1002. Where they are not visable, the error bars are smaller than the

points shown.

The magnetic susceptibility, χ, is shown to be almost independent of lattice size when

β takes on values away from the critical region. This is also seen to be the case for heat

capacity shown in figure 5.8. Their values in this region are increasing according to equations

(3.30) and (3.31). We take ν = 1 as it has been found to be in literature. Thus we may

estimate γ and α in the following way: from equation (3.30) we deduce

χL′

χL
u aγ

CL′

CL
u aα (5.2)

where L′ = L · a. Before preceeding to implement equation (5.2), we re-calculated the

values of χ and C at the critical values using 200,000 steps of the Wolf Cluster algorithm.

Where these values agreed with those of the Metropolis within the calculated error, we used

the their average value to calculate the critical exponents. The agreed upon value of χ and

C at the critical temperatures are shown in table 5.1.
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Figure 5.8: The famous divergence of heat capacity for lattice sizes N = 102, N = 202,

N = 502 and N = 1002. Where they are not visable, the error bars are smaller than the

points shown.

Table 5.1: χ and C in the pseudo-critical region.

L χ C

200 349.40 ± 0.081 0.769 ± 0.0057

100 103.89 ± 0.041 0.625 ± 0.0048

50 30.306 ± 0.040 0.527 ± 0.0080

20 6.03 ± 0.013 0.406 ± 0.005

10 1.78 ± 0.014 0.318 ± 0.0090

From these values, ten estimates of each γ and α were found by using equations (5.2)

to relate the results from each of the simulated lattice sizes. The average of these values

were accepted and the error was calculated from the square root of the variance of those ten

values:
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γ =1.76± 0.023 (5.3)

α =0.29± 1.5 (5.4)

It must be noted that the errors in the above equations account for the statistical fluc-

tuations of the system, they are not systematic. Thus it is possible for the true value of

these constants to lie outside the error range. This is indeed the case for α as the generally

accepted value α 0. This is because

We notice that lattice size has a much larger effect on magnetic susceptibility than it does

on heat capacity at critical temperature. This is reasonable when we recall that these are

the variance of magnetism and energy respectively. As we can see from the figure below

(5.9), and from figure 5.7, we have a much greater variance of magnetisim due to different

lattice sizes than for energy where the difference is barely visible.

Figure 5.9: Ising Model energy per link for lattice sizes N = 102, N = 202, N = 502 and

N = 1002. We may recall that the L=3 and L=4 lattice in figure 4.1b were only slightly

different to this.
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5.4 Critical Slowing Down

The z in equations (3.27) and (3.33) is refered to as the dynamic critical exponent and is

a property2 of the algorithm which is used to solve the Ising Model. This is in contrast to

the other critical exponents which are constants of the model.

A algorithm with z > 0 suffers from critical slowing down. From equation (3.33) we can

see that this is the main obstacle for studying large systems. Thus it is our aim to calculate

z for the Metropolis and Cluster algorithm to determine how much of an improvement the

Cluster algorithm is at handling critical slowing down.

Figure 5.10: Autocorrelation functions for lattice sizes L=10; L=20; L=50; L=100 for the

Metropolis algorithm. Sitting on the critical temperature β = 0.440687. Note p(0) = 1 on

all cases.

In figure 5.10 we have plotted the autocorrelation function for the observable magnetisation

in the critical (or pseudo critical) region for the Metropolis algorithm. This was done for

1,000,000 timesteps as we require tmax � τ as discussed in section 3.4. It can be clearly

seen that there are much larger autocorrelation times for larger lattice sizes. According to

2Where it is relevant only in the pseudocritical region βc(L) where we have ξ ∼ L.
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equation (3.33) we can predict that the difference in these autocorrelation times should be

given by

τL′

τL
= az (5.5)

where L′ = L ·a, this can easily be derived from equation (3.33). First we must determine

τ from the graph3.

Having calulated p(t) to produce the graph we may calculate τ using equation (3.20).

Where τ is the decay constant and it’s expectation value can be derived from the average

of these computed values. This relation clearly does not hold for the entire region shown

in figure 5.10 however. But we expect an exponential decay until at least t = 2τ . This

corresponds to p(t) = e−2 as discussed in section 3.4.

A linear fit of the log of the autocorrelation function, figure 5.11, for pm(t) > e−2 ≈ 0.14

confirms that we may take equation (3.20) to be satisfied in this region. We must still note

that this is an approximation. It can be seen from the figure that there is a small curvature

for a low number of timesteps. If we recall our discussion in section 3.1.3, we argued that

the eigenvalues of the Markov Matrix (P) fall off as we take P to higher powers. Hence the

difference between 1 and the next highest eigenvalue gives the exponential autocorrelation

time. This is neglecting the contribution from the third; fourth; etcetera largest eigenvalues,

the contribution of which would be most significant for a small number of timesteps. This

is a source of systematic error.

The values of τ obtained from the data is shown in table 5.2. Using the values from table

5.2 and equation (3.20) we find that

zMetropolis = 2.11± 0.073 (5.6)

where the error was found from the standard deviation of the 24 values of z. Six of which

were obtained from the τs of the four different lattice sizes, and the similar data created in

3Technically we should be using τm and pm(t) in this as, magnetisation was the observable used. However,

we shall refer to these as τ and p(t) for convenience as only one observables needs to be considered while

calculating z.
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Figure 5.11: Plot of log(pm(t)) against t for pm(t) > 0.14 and lattice sizes L=25; L=50;

L=100. Sitting on the critical temperature β = 0.440687.

the same way using three different random number seeds than the one used to create the

data in table 5.2. The same process was used to calculate zcluster, except we had 40 estimates

of z due to our extra simulation of the 1002 system.

Considering that for L = 100 we only get an independent measurement every 2τ u 866

sweeps of the lattice, it is very costly to examine the critical region for larger systems where

the autocorrelation time will more than quadruple each time we double L. Ie. for an L=200,

we’d expect that we require greater than 40, 000 sweeps for each independent measurement.

Considering that each sweep will also require 4 times more calculations due to our definition

of a step, this value of z makes it impractical to study large systems using the Metropolis

algorithm. This is the effect of severe critical slowing down.

Table 5.2: Autocorrelation Times (βc) for magnetization.

L τMetropolis τCluster

200 — 5.7 ± 0.74

100 434 ± 10 4.2 ± 0.52

50 104 ± 4 3.2 ± 0.38

20 15.6 ± 0.6 2.2 ± 0.19

10 4.46 ± 0.04 1.61 ± 0.12
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Note: Computing τm for the Metropolis for the 2002 lattice would have required not only

long simulation time per Monte Carlo step but also a very large sample as we recall that we

require tmax � τ however we can see from the trend that τ here will be > 1,600.

Figure 5.12: Autocorrelation functions for lattice sizes L=10; L=20; L=50; L=100 for the

Metropolis algorithm. Sitting on the critical temperature β = 0.440687.

The autocorrelation function for the same lattice sizes, using data generated by the cluster

algorithm is shown in figure 5.12. The autocorrelation times are also shown in table 5.2.

Using these results we find

zcluster = 0.47± 0.051 (5.7)

This can be compared to the bininning method. We recall that when we calculate the

error using equation (3.35) we underestimate the error since we have used states that are

not statistically independent. We overcame this in our measurements by putting the mea-

surements in bins and increasing our bins until the error stopped increasing which meant we

had an independent sample. We also recall that the error increase began to plateau when

number of elements in each bin (bin size) = 2τ . Thus we can compare the plateau expected

when binning, shown in figure 5.13. We can see that for both Metropolis 5.13b and Cluster

5.13a algorithms the error does indeed begin to plateau at 2τ by considering the values in

table 5.2. It is arguable where this does ’plateaus’, but if we recall that at t = 2τ we still
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have an autocorrelation of ≈ 0.14 and thus we expect that the error will still raise for a while

when are bins are larger than 2τ .

(a) Metropolis. (b) Wolff Cluster.

Figure 5.13: L = 100 Binning method.

Initial calculations of critical exponents yielded results with error that did not explain the

difference between the computed value and the generally accepted ones. It was concluded

that a bin size greater than 2τ was desirable and so we considered difference bin sizes in figure

5.13 to be representative of the plateaued region. The highest of these were 10,000 which

was the bin size used to produce the figures in table 5.2. The values of τ produced using

different random number seeds, as discussed previously, were also calculated for different bin

sizes.
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Chapter 6

Conclusions

The Ising model in 2-dimensions and zero magnetic field undergoes a second order phase

transition from a phase with no magnetisation to one with spontaneous magnetisation. How-

ever, for a finite system there is no discontinuity in the observables or their derivatives.

Observables such as magnetic susceptibility and heat capacity which diverge in the thermo-

dynamic limit have a finite analytic maximum for the simulations made.

It is possible to compare the exact and statistical solutions for systems that are small

enough such that their partition function is directly calcuable. For a working algorithm and

a sufficient amount of data the exact and statistical solutions should always agree within the

estimate of statistical error for any given temperature.

In the cold region thermalisation depends on lattice size for both algorithms. In the

hot region lattice size has little or no effect on the thermalisation time of the Metropolis

algorithm and in fact there is a also very small effect of system size on autocorrelation times

in this region. It generally takes less than 10 Monte Carlo steps to thermalise reatively large

lattice sizes. It was clear to us from figure 5.3 that the fantastic efficiencies of the Metropolis

algorithm in this region was due to the average fraction of lattice sites flipped per Monte

Carlo step. When we compare this to the average cluster size at similar temperatures it is

clear why one would prefer to use the Metropolis algorithm to simulate the system at hot

temperatures.

While the fraction of spins flipped per Monte Carlo step in the Metropolis algorithm

remains reasonably sized when we approach the critical region, it was found that due to

the formation of clusters in the lattice and the fact that the local change property of the
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Metropolis algorithm causes it to move clusters by predominantly changing their boundaries,

there are always many sites that reamin the same for a large number of Monte Carlo steps.

We found that this was the cause of the extremely large correlation times of the system and

hence the reason for its severe critical slowing down. The dynamic critical exponent of the

algorithm was estimated to be 2.11 ± 0.073 which agrees well with literature (z = 2.17).

This value of z implies that we more than quadruple autocorrelation times when we double

L. This is clearly a major problem if we want to study large systems.

We can see from figure 5.3 that cluster size is quite large in the critical region. This

combined with the fact that the Wolff Cluster algorithm is able to flip large cluster of spins

at a time, rather than slowly moving their boundaries, makes it much more efficient at

handling critical slowing down. Considering that the Wolff Cluster uses a randomly chosen

initial seed it is easy to see that there shall be no sites that will be made ’difficult’ for it to

reach as is the at the centre of cluster for the Metropois algorithm. The dynamic critical

exponent of this algorithm was estimated to be 0.47±0.051 which agrees well with literature

(z = 0.52).

Critical exponents which are properties of observables in the model and independent of

the algorithm used to calculate them were caluclated for magnetic susceptibility and heat

capacity. We clearly have a very fast divergence of magnetic susceptibility (χ) which was

calculated to have critical exponent γ = 1.76 ± 0.023. This compared very well with the

literature (γ = 7/4). It was clear from our graphs of heat capacity (C) as a function of

inverse temperature (figure 5.8) diverges in the thermodynamic limit, however, at a much

slower rate than the magnetic susceptibility. Thus our calculated value of α = 0.29 ± 1.5

seems reasonable. However it is agreed in literature that this critical exponent is 0. It is

thought that this is due to the fact that the heat capacity has a logarithmic divergence. This

may account that for relatively small systems α appears to be non-zero. It is necessary to

consider how one can determine alpha accurately.
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