
Performance Programming

B087928

March 31, 2016



1 Introduction

Computer simulation is a massive, and rapidly growing, application in science. Processing

power increases exponentially with time however we can also greatly extend what we can

simulate by carefully considering the efficiency, or performance, of our program. Therefore

correct code is far from our only consideration when writing a program. There are many ways

to perform any function and some are a lot better than others. This can be for reasons of

performance readability or robustness.

We report on the optimisation of a molecular dynamic code. The code implements molecular

dynamical algorithms correctly however it has been purposely written poorly in order to give a

lot of scope for improvement. The aim is to achieve an optimisation of the code particularly in

relation to runtime on Morar without breaking the ’correctness’ of the code.

We shall discuss what aspects of the code gives bad performance and shall follow the process

we took to optimise it. Each time a potential source of considerable inefficiency is identified a

solution is proposed and implemented and the resulting speed compared to that of the previous

version of the code. We shall also see later how we took difficulty to implement and develop-

ment risk into account when deciding which path of optimisation to take. Code maintainability

was an important factor.

All runs were done on Morar, where we reserved an entire socket and requested the same

core for each run. This code was serial but extra cores were reserved in order to get the most

consistent results. Each timing shown throughout this report is the average of five runs with the

above stimulations.

2 Profiling

An initial profile was taken of the code using pgprof profiling tool. This had many purposes.

It gave a convenient way of checking the time for the program to run as well as showed in

which functions the program was spending most of its time.

Times taken when profiling the code will be longer than a normal run since there is an

overhead associated with the profiling. This was not considered important in the optimisation

1



process as the focus was to see if-and why- our changes had a positive impact on performance.

Thus all runs and times are taken while profiling the code and so slightly underestimate the

speed of the code after each optimisation which is worth baring in mind.

Details from initial profiling may be seen in table 1.

Table 1: Initial Profile.

Function Time (seconds) % of runtime

evolve 468.31 77%

force 90.00 15%

add_norm 47.11 8%

Total Runtime 605.42 100%

The program spends a negligible amount if time in other functions with have been excluded;

we are only interested in optimising sections of the code that take a considerable amount of

time. It is not essential to know what these functions do seeing how the distribution of runtime

changes is helpful in following our optimisation process.

3 Memory Access

The effect of memory access on runtime used to be insignificant. Moore’s law predicts that

CPU power roughly doubles every 1.5 years, however memory access improvements are much

slower due to limitations on memory bandwidth and latency- limited by the speed of light

which was never a consideration with ’old’ processors because data could not be processed fast

enough for this to be an issue.

The first performance issue considered in the optimisation of this molecular dynamic simu-

lation was Memory access. This was done before compiler optimisation because the compiler

can not perform memory location related optimisations. It does sometimes attempt loop rever-

sal however this is not possible if more than just simply switching loops is required, as is mostly

the case in this code. Furthermore, memory access can cause massive performance issues on

modern computers and therefore is expected to yield the greatest initial speedup.

2



3.1 Dynamic Vs. Static Arrays

The first issue considered in regards to memory access was the declaration of pointer arrays

which initially is how all arrays are declared in the program. The size of these pointer arrays

are declared dynamically but with values that are hard coded into the program.

Static arrarys are kept on stack memory which is Last In First Out (LIFO) data structure,

hence the name. New variables/arrays are pushed onto stack at compile time and then destroyed

when a function exits. Stack memory is closely optimised by the CPU. Dynamically declared

arrays are kept on heap memory which is slower and must be accessed by pointers. Variables

are written to heap during runtime and are accessed using pointers. The main advantage of this

is that our variable size is unrestricted and we may change array sizes during runtime. However

since our arrays are all declared at the beginning of the program and unaltered it is favourable to

use static variables/arrays. This also frees us from the responsibility of needing to manage the

memory in the program as memory on stack is automatically freed when we exit the function

on which theyre declared. Hence we also avoid any memory leakage1.

Table 2: Profile after all variable/array declarations have been changed from dynamic to static.

Function Time (seconds) % of runtime

evolve 396.30 76%

force 83.02 16%

add_norm 41.19 8%

Total Runtime 521 100%

Speedup: 1.16

From table 2 we see a significant performance increase by changing all variables/arrays from

dynamic to static declaration. Additional to the aforementioned reasons, this is also because

variables saved on heap must be accessed by pointers where we encounter the issue of pointer

chasing2 which destroys Instruction Level Parallelism (ILP). Speedup is the runtime as a mul-

tiple of initial runtime.

1Failure to release memory when application is finished with it
22Pointer Chasing refers to the multiple consecutive memory accesses via pointers.

3



3.2 Contiguous Vs. Non-Contiguous

Consider the declaration of a 2D array, or list of lists:

array[M][N];

Memory structures are a feature of the programming language. In C, which is the language

used here, this is contained in the hardware’s memory as:

Figure 1: array[M][N] stored in memory.

Access to contiguous3 elements always gives a performance benefit over access to non-

contiguous memory. Thus if we have an operation on the elements array_[i][j] in nested for

loops over i and j we have two distinct ways of accessing elements based on our ordering of

the loops which makes a big different in speed to the accessed memory. If we have the i as the

outer loop, and j as the inner then our access looks like this:

Figure 2: Order of memory access to array[i][j] with nested for loops, j on the inside loop and

i on outside loop. Every element is accessed contiguously.

However if we reverse the order of these loops so that i is the inner loop then our access

looks like this:
3Occupying consecutive addresses in memory.

4



Figure 3: Order of memory access to array[i][j] with nested for loops, i on the inside loop and j

on outside loop. Elements are accessed non-contiguously, every element accessed is N memory

addresses apart.

Clearly the prior is far more desirable. In this case it is easy for the program to predict what

element is to be accessed yet and hence write sections of the array to cache. Modern processors

rely very heavily on caches so this form of optimisation is expected to have a massive effect on

program efficiency. Dependency of the operation we wish to perform in the for loop may limit

the possibility of changing order of the loops as we shall see in 3.3.

Following the above discussion we shall discuss the two ways we considered for improving

memory access within the molecular dynamics simulation. In this program we deal with N bod-

ies, each with an associated position, velocity and force which have three vector components

contained in memory as:

Figure 4: Order in which vector components are stored in memory. Note: x1, y1, z1 is the

vector pertaining to body 1 etcetera.

We hence considered how this memory was accessed in the code. Consider the following

code snippet. We iterate over l in the inner most for loop. This corresponds to the form of

access as shown in figure 3 ie. we access x1 then y1 then z1 then x2 then y2 etcetera. It was

noticed that several of the sections (or algorithms) in the code had this flaw. This is not as

simple as the example given above, we can not simply hoist the loop over Ndim to the outside

because this would change the algorithm. Here, as in several other places throughout the code

5



care needed to be taken to ensure the result remained unmodified and, as we shall see in section

3.3 this was not possible in all cases.

k = 0;

for(i=0;i<Nbody;i++){

for(j=i+1;j<Nbody;j++){

for(l=0;l<Ndim;l++){

delta_pos[l][k] = pos[l][i] - pos[l][j];

}

k = k + 1;

}

}

The following code snippet has been improved from the one above for more efficient memory

access and is an example of how memory access was optimised elsewhere in the code also.

for(l = 0; l < Ndim; l++){

k = 0;

for(i = 0; i < Nbody; i++){

for(j = i + 1; j < Nbody; j++){

delta_pos[l][k] = pos[l][i] - pos[l][j];

k = k + 1;

}

}

}

Table 3: Profile after memory access has been improved by changing modifying loop ordering.

Function Time (seconds) % of runtime

evolve 276.94 72%

force 53.99 14%

add_norm 52.26 14%

Total Runtime 384 100%

Speedup: 1.58

6



Further loop reordering was later utilised when we inlined the add_norm and force routines.

Though these shall be commented on later as we follow the optimisation process.

3.3 Alternative Memory Locations

We mentioned that we considered two options for optimising memory access in the code.

We have discussed the one we have implemented- changing the structure and order of loops to

make memory access more contiguous. We saw massive benefits from this method however it

is limited for some of the algorithms within the code.

To calculate the position vector of the N particles we need to make the following calculation

for each body i:

r =
√
xi ∗ xi+ yi ∗ yi+ zi ∗ zi (1)

There is no way to reorder loops to improve memory access here as all of xi, yi and zi are

needed in each calculation. To overcome this problem we considered saving data to memory in

an alternative way, this can be seen in figure 5.

Figure 5: Alternative order to store vector components in memory. Note: x1, y1, z1 is the

vector pertaining to body 1 etcetera.

This structure of memory makes the calculation of r in equation (1) much faster to calculate

as the 3 elements required for each calculation are contiguous in memory. This is thought to be

the case for one other loop in the code also as this other loop contained a similar calculation.

Therefore the code performance may have benefited greatly from this alternative memory struc-

ture, especially since it appears that it would then be possible to have all major loops accessing

contiguous addresses in memory. However, as we mentioned in the introduction, difficulty

to implement and development risk must be taken into consideration. It would no longer be

any sense to use 2 dimensional arrays and format of indices must be changed everywhere in

7



the program. For example instead of pos[1][i] representing the y position of particle i we

would have pos[3*i+1]. Similar changes are required when reading writing data and in ar-

ray declaration. This was attempted but the final version was giving a different result for bugs

that could not be detected and so we returned to a version that worked.

Further optimisation of this code should involve reconsidering the way data is stored in

memory as we described above.

4 Compiler Optimisation

Many optimisations are attempted by the compiler. We may choose the level of optimisation

by selecting compiler flags that each have their own specific meaning to the compiler. We

included these in our Makefile under compiler flags. The first we included was Minfo.

-Minfo Minfo instructs the compiler to produce information on the compiler‘s actions on the

code. This was introduced first so that we could see what changes the compiler made to the code

with the introduction of each new compiler flag as well as just the effect on performance. From

this information it was possible to determine the shortcomings of the compiler‘s optimisations

and could be used during further optimisation.

-fastsse This option creates a generally optimal set of flags for targets that support SIMD

capability. They incorporate optimization options to enable use of vector streaming SIMD

instructions (64-bit targets) and enable vectorization. It is the ‘fast‘ way to implement compiler

optimisation. This was used first to see the effect of a naive but effective all purpose compiler

flag. The effect on performance may be seen in table 4. Some more time than before has been

used in other functions but not significant enough to show here. We can see that this flag is

likely to increase performance though we must also take into consideration that the code has

spent longer in the force function. So it is possible for this flag to have negative effects on

performance if used naively. We shall now also consider flags with more specific and narrow

implications.

-Mpia=fast,inline This also allows inter-procedural optimisation analysis and optimisation.

Further it allows routine inlining. Inlining the functions we use reduces the overhead in function

calls.

8



Table 4: Profile after after including -fastsse compiler flag.

Function Time (seconds) % of runtime

evolve 191.99 61%

force 63.01 20%

add_norm 51.42 14%

Total Runtime 307 100%

Speedup: 1.98

-Munroll Invokes the loop unroller to unroll loops, executing multiple instances of the loop

during each iteration. We do some manual unrolling later so we shall show the mechanics of

this more explicitly then.

Table 5: Profile after including -Mpia=fast,inline and -Munroll compiler flags.

Function Time (seconds) % of runtime

evolve 262.46 99%

Total Runtime 263 100%

Speedup: 2.30

We notice that the force and add_norm functions have dropped off too negligible runtime

values since the functions have been inlined at compile time.

-Mvect Vectorisation is the functionality of the compiler recognising parallelism within codes

as modern CPUs can perform multiple operations per cycle in their functional units. To utilise

vectorisation within loops they must not contain subroutine calls. Thus we inlined all functions

manually at this point so that we could achieve maximum benefit from compiler vectorisation.

This should not always be done but all subroutines in this program were very short and so did

not make the code significantly more difficult to read and maintain.

9



-Mprefetch This enables the compiler to selectively emit instructions to explicitly prefetch

data into the data cache prior to first use. Some of these prefetch instructions are already

embedded in -Mvect.

The result from profiling may be seen in table 6.

Table 6: Profile after including -Mvect and -Mprefetch compiler flags.

Function Time (seconds) % of runtime

evolve 223.66 99%

Total Runtime 224 100%

Speedup: 2.70

-O4 We also include the -O4 flag which includes a lot of the instructions already present from

previous flags and so gave only a small further performance benefit.

5 Loop Fusion and Loop Fission

The aim of loop fusion is to increase the program‘s speed by reducing the total number of

instructions required to control loops in the code- like ending the loop and iterating a counter.

To do this we amalgamate loops that ran over the same indicies.

The use of functions in the original code made it more difficult to detect potential optimisa-

tion. Subroutines provide a useful way to modularise code but in this case the subroutines were

one line or one loop. As we discussed in section 4 we inlined all these functions. When we did

this it was noticed that several more loops could be reordered and then fused with other loops.

As well as this there were several sections of code that contained nested for loops that could be

fused with a a large nested for loop section.

The following code snippet was originally 6 different loops this is an example of of fusion

operations that as carried out throughout the program.

10



for(i = 0; i < Nbody; i++){

r[i] = ((pos[0][i] * pos[0][i]) + (pos[1][i] *

pos[1][i])+(pos[2][i] * pos[2][i]));

r[i] = sqrt(r[i]);

for(j = 0; j < Ndim; j++){

f[j][i] = -visc[i]*(vel[j][i] + wind[j]) -

(G*mass[i]*M_central*pos[j][i])/(pow(r[i],3));

}

}

Table 7: Profile after all fusion.

Function Time (seconds) % of runtime

evolve 171.83 99%

Total Runtime 172 100%

Speedup: 3.52

Loop fusion will always decrease the number of loop control instruction but does not neces-

sarily improve performance. We may wish to split one loop into two because there is increase

in data locality within each loop- this is called loop fission.

In the above code snippet we can see that we have a case of non-contiguous memory access

as in figure 3 for both the f[j][i] update and the r[i] update operations. However we can not

fix this in the r[i] case as this is the problem discussed at length in section 3.3. Since we can’t

switch the order of this nested loop, fission is the best option. Splitting this into two loops

allows us to, at least, switch the order of the loops for one of the operations. See the following

snippet for this implementation. Notice that we have hoisted the inner loop to the outside in

the latter for loop improving memory access. This improved the performance by decreasing

runtime another 10 seconds approximately.

for(i = 0; i < Nbody; i++){

r[i] = ((pos[0][i] * pos[0][i]) + (pos[1][i] *

pos[1][i])+(pos[2][i] * pos[2][i]));

11



r[i] = sqrt(r[i]);

}

for(j = 0; j < Ndim; j++){

for(i = 0; i < Nbody; i++){

f[j][i] = -visc[i]*(vel[j][i] + wind[j]) -

(G*mass[i]*M_central*pos[j][i])/(pow(r[i],3));

}

}

6 Array Padding

Array padding is adding additional, unused, space between arrays, or dimensions of arrays,

in memory. This is done it is easier to transform loops than arrays (since loop transforms are

always local in the program). Thus we can reduce cache conflict misses. We padded the space

between dimensions of arrays by
√
Nbody = 64.

7 Loop Unrolling

The aim of loop unrolling is similar to that of loop fusion: we want to reduce the overhead

involved in controlling the loop. It involves writing instructions such that multiple tasks, which

would have each taken a loop iteration previously, may be completed in one loop operation.

We discussed in section 4 that the compiler shall attempt to do this, however we helped by

unrolling some loops manually. The compiler could then further unroll further out loops- if the

loops were originally nested.

Consider the following code snippet that was identified to be unrolled manually.

for(j = 0; j < Ndim; j++){

for(i = 0; i < Nbody; i++){

f[j][i] = -visc[i]*(vel[j][i] + wind[j]) -

(G*mass[i]*M_central*pos[j][i])/(pow(r[i],3));

}

}

12



Originally we had changed the loop ordering here in order to get more efficient memory

access which is why the loop over Ndim (which is of size 3) is the outermost loop. It was a

concern that unrolling this loop in the way we have would destroy the memory access benefits

we gained previously as now the order of memory access is f[0][0], f[1][0] etcetera. But there

is a distinct difference in this case: the computer is writing data starting at address of &f[0][0],

&f[1][0], &f[2][0] etcetera to different cache lines so that we have contiguous memory accesses

for each of these lines of execution.

for(i = 0; i < Nbody; i++){

f[0][i] = -visc[i]*(vel[0][i] + wind[0]) -

(G*mass[i]*M_central*pos[0][i])/(pow(r[i],3));

f[1][i] = -visc[i]*(vel[1][i] + wind[1]) -

(G*mass[i]*M_central*pos[1][i])/(pow(r[i],3));

f[2][i] = -visc[i]*(vel[2][i] + wind[2]) -

(G*mass[i]*M_central*pos[2][i])/(pow(r[i],3));

}

This implementation decreased the total runtime of the code by about 10 seconds, which

was considerable given the speedup so far. We identified more similar loops to unroll. One

in particular is worth discussing as since it dominates most of the runtime. This code section

involved a lot more work than the previous code snippet; it consisted of three nested for loops,

2 over Nbody and a 3rd, outermost one (placed there during the first stage of optimisation

for purpose of more efficient memory access) over Ndim. Hence the resulting optimisation

benefit from unrolling this outermost loop was very significant. A few new variables need to

be declared to make the unrolling work however this effect to performance was negligiable

compared to the performance gain due to unrolling. In table 8 we can see the profile of the

code after these optimisations. It is a massive improvement over the previous version.

Table 8: Profile after all manual loop unrolling.

Function Time (seconds) % of runtime

evolve 99.58 99%

Total Runtime 100 100%

Speedup: 6.07

13



Optimisation by unrolling was very successful in several loops. However, one loop, with the

difference that this loop contained an array that was of size 3*Nbody*Nbody (while the other

two loops contained arrays at most length 3*Nbody), was found decreased performance when

unrolled This is believed to be because there was more cache difficulties due to the length of

this array and so it was important to not unroll loops without after ensuring that it has benefited

the performance of the code.

Conclusions

If the size of arrays required in the program is known before runtime then it is usually

favourable to declare static arrays as they are kept on the smaller, fast ‘stack‘ memory. This is

also safer as the CPU manages the freeing of this memory when it has fallen out of scope in the

program.

Memory access is one of the most significant factors in the performance of a code on a

modern computer. It is important to consider the operations that we are expecting to be involved

in our program when deciding how our values are stored in memory. Recall that having data in

memory in the order x1, x2, .... xN, y1, y2 ... etcetera precluded the arrangement of contiguous

memory access for some operations such as equation (1). Whatever way we finally decide to

save data to memory will always have advantages and disadvantages. It is usually better to stick

with the way you have chosen and try to make the code work to its advantages than making

a global change to the code that requires a lot of programmer effort and development risk and

may, in the end, result in discovering as large a problem as the one that motivated the change.

Compiler flags can be very useful tools to quickly and relatively safely improve code perfor-

mance. If we wish to get the possible performance it‘s important to know what optimisations

the compiler is attempting, or has achieved. This will give an insight to section of the codes

that should be manually optimised or even tweeked slightly so that the compiler may have a

better chance to optimise it- or optimise it further. As well as a method of optimisation in itself,

subroutine inling can uncover further potential optimisations at low cost of maintainability if

the subroutine is short as they all were in this code.

Loop fusion is a useful method of optimisation and can have a big impact on performance if

the operations within the loop all have similar data access locality. Otherwise it may be best to

14



leave the loops separate or separate existing loops.

Effective loop unrolling can be achieved even when it seems that we are breaking contiguous

memory access if the data structures involved are of appropriate sizes such that we can exploit

different lines of cache or registers. This can very quickly have a negative effect however if the

data stucture is not of appropriate size.

The final runtime, without profiling was 95.67 seconds. This was a speedup of 6.33 over the

original code.

15


