
MSc in High Performance Computing

Coursework for Threaded Programming Part 2

The object of this assessment is to implement an alternative loop scheduling algo-
rithm in OpenMP.

You are provided with a piece of code which contains two loops which have been
parallelised with OpenMP directives. Instead of using the work sharing loop direc-
tive, the loop is scheduled ”by hand” using a parallel region. The implementation
you are provided with corresponds to the STATIC schedule kind. The code mea-
sures the execution time for 100 repetitions of each loop, and includes a verification
test for each loop.

The code can be found on the course pages on Learn. You may choose to work
with either the C (loops2.c) or Fortran 90 (loops2.f90)version.

You should always compile the code with the -O3 option to ensure a high level
of sequential optimisation, but you must not alter the routines which contain the
body of the parallel loops.

We will use the term chunk in the same sense as in the OpenMP standard, i.e.
a contiguous, non-empty subset of the iterations of a loop.

Affinity scheduling

Affinity scheduling can be described as follows:

• Each thread is initially assigned a (contiguous) local set of iterations.

• For a loop with n iterations, and p threads, each thread’s local set is ini-
tialised with n/p iterations. (If p does not divide n exactly, choose a suitable
distribution of the extra iterations.)

• Every thread executes chunks of iterations whose size is a fraction 1/p of the
remaining iterations its local set, until there are no more iterations left in its
local set.

• If a thread has finished the iterations in its local set, it determines the thread
which has most remaining iterations (the “most loaded” thread) and executes
a chunk of iterations whose size is a fraction 1/p of the remaining iterations
in the “most loaded” thread’s local set.

• Threads which have finished the iterations in their own local set repeat the
previous step, until there are no more iterations remaining in any thread’s
local set.

1



You should take great care with the implementation of this algorithm to ensure that
threads are correctly synchronised.

Once you have implemented the algorithm, run your code on on 1, 2, 4, 6, 8,
12 and 16 threads and compare the results to the best built-in OpenMP schedule
which you determined in Part 1 of the coursework.

Submission

You are required to submit the following:

1. A written report.
(Guideline length: 8-12 pages including figures and tables.)

2. Source code.

The deadline for both report and source code is 12.00pm Friday 4th December 2015.
Your report should contain the following sections:

• a short introduction;

• a discussion of your implementation of the affinity scheduling algorithm, wtih
particular attention to the data structures used and how the threads are syn-
chronised. (Note that this section must be comprehensible without reference
to the source code);

• a discussion of the results of running the affinity scheduling algorithm, includ-
ing appropriate graphs and/or figures;

• some brief conclusions.

Your report should not contain any background material.

The code will be marked on design and readability as well as correctness and per-
formance.

The maximum available mark for this assessment is 70. Marks will be allocated as
follows:

• Report content and presentation out of 30.

• Source code out of 40.

2


