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1 Introduction

When we develop correctly working code we are then usually interested in performance. Knowl-

edge of software used and good coding practise may help us to develop code that works effi-

ciently but we wish to test that this is the case.

If we want to be confident that we have developed efficient code then it is necessary to conduct

performance tests. In this report we do this for population dynamics code that we developed in

a previous coursework.

Our aim is to see how well our code works; this shall involve determining where the code

spends a lot of its time and why. This will give us an insight to whether or not there is a lot of

time wasted in areas where a lot of calculation is not required. We may find that our coding

technique was inappropriate for the problem.

Throughout our analysis we have only timed the main iterative loop as all expensive computa-

tion takes place in this region and in particular, as we shall see from the profiling section, in the

update simulation and update animal functions. Morar was used to produce all results for this

report.

2 Performance tests and Analysis

2.1 Compiler Flags

Turning on optimization flags makes the compiler attempt to improve the code performance at

the expense of compilation time and possibly the ability to debug the program.

By default the gcc compiler (which was used here) has the flag -O0 which aims to minimise

compilation time. Each compiler flag has its own advantages and disadvantages.

In this section we shall examine the effect of different compiler optimisation flags on the run-

time to find which one is most appropriate for our program. We used a bash script to compile

and run the program with a different compiler flag each time. We ran the program ten times for

each flag and took the average as the expectation value for the runtime of the program with that

flag. The standard deviation of these values was used as the error. The results may be seen in

table 1.
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Table 1: Runtime for different compiler flags.

Compiler Flag Runtime (s)

-O0 (Default) 14.75 ± 5.54

-O 10.96 ± 3.81

-O1 9.97 ± 1.74

-O2 10.31 ± 3.21

-O3 9.72 ± 1.76

-Ofast 6.20 ± 1.30

-Os 8.43 ± 2.72

-Og 11.05 ± 4.63

We expect -O, -O1, -O2, -O3, -Ofast to each be faster than the last since they each contain

most of the optimisations of the previous flag plus something extra. -Ofast can produce a

highly sequentially efficient executable. -Os aims to reduce the size of the code. -Og only

allows optimisations that do not interfere with debugging, so we don’t expect it to be the most

efficient but is useful if we are compiling the code a lot while we are debugging.

We ran these simulations on a 100×100 landscape, 100% of which was land. From the results

we determined that -Ofast was the best optimisation flag for the problem. This flag is used

throughout the rest of the performance testing.

2.2 Profiling

To identify and quantify the main source of overhead we included -pg compilation flag. Run-

ning with this flag allowed us to examine the profile of the program using pgprof to see where

the code was spending most of its time.

We analysed landscapes that were 100% land and of size 100×100, the results may be seen in

table 2. Approximately 99% of time is spent in these three functions alone. Thus we know this

is where we need to look for performance issues.
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Table 2: Percentage time spent in functions. 100% Land

Functions Percentage of Time

update_simulation 48.69%

update_animal 41.65%

get_neighbour_count 7.51%

In table 3 we have analysis from a 10% land configuration. Comparing tables 2 and 3 we

can see that if we have a much lower proportion of land we spend most of our time in the

update_simulation function. This is because we do not need to call update_animal for all water

grids throughout the landscape.

Table 3: Percentage time spend in functions. 10% Land

Functions Percentage of Time

update_simulation 86.70%

update_animal 13.24%

The runtime for the 100% and 10% land simulations were 6.41s and 5.09s respectively. This

difference in runtime can be predicted to be due to the time spent in the update_animal and

get_neighbour_count functions.

2.3 Proportion of Land and Water

In figure 1 we have plotted runtime as a function of percentage land for a 100×100 landscape.

We computed the time at each percentage 10 times and used the average as the expectation

value and the standard deviation as the error.

It is obvious that if we have no land, only water, then there is nothing significant to calculate.

However, when we run our program it must loop through the entire landscape at every timestep

regardless of whether or not there has been a change. This explains why we have significant

compute time even when 0% of our landscape is land. We can see, as we would expect, that

a higher percent of land incurs a higher runtime. But it is notable that the performance of the

program does not depend very heavily on the amount of land- the extra compute time here is

predominantly due to the time spent in update_animal as was found when we examined the

profile.

3



Figure 1: Runtime against percentage of landscape land.

It is obvious from this analysis that the choice to do a sweep of the entire landscape to perform

an update is one that effects performance significantly. For simulations with water we are

spending a large percentage of compute time in areas where there is nothing to calculate.

2.4 Landscape Size

Finally we’d like to examine the effect of landscape size on computation time. For these simu-

lations we have used landscapes with 100% land.

We can see in figure 2 that runtime depends heavily on landscape size. Runtime is directly

proportional to the area of the landscape. This implies that the program is spending almost all

its time working through the grids one by one. Therefore there is very little overhead which is

consistent with our results from profiling.
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Figure 2: Runtime against size of landscape.

3 Conclusions

The program spends most of its time in update simulation where there are many loops and

conditional statements that take time to work through. A consequence of this is that grid points

where there is nothing to calculate do not cost much less than grid points where we need to

calculate the population change. Our approach to solving the problem by visiting every grid

point each iteration causes there to be very little overhead but also means that we do a lot

of unnecessary calculations due to the program examining grids that contain water at every

iteration.

Further code development and tests should involve producing a program with a higher overhead

that only needs to loop over land grids. Only then may it be determined which approach gives

best results for given landscapes. It is expected that our solution is the most appropriate for

landscapes that are mostly land. This is because in this case it is necessary to update every
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grid point each iteration. However, with this suggested alteration, we’d expect to see a larger

difference in performance between majority water landscapes and majority land landscapes

than that seen in figure 1.

Performance analysis can be very important in determining the correctness of our approach

to problems and to highlight possible improvements or alternative algorithms. We conclude

that the most important elements and the focus of our analysis should be determining on what

tasks the program spends most of its time; if this is where we expect; if the distribution of

time is sensible or should the program be able to do some tasks faster. Ways that we did this

in this report were profiling and examining the effect of different input data on runtime and

determining the cause.

When we are happy with our program architecture we can see what compiler optimisations give

us the best resulting performance.
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