
Coursework 2 - Programming Skills

Anthony Bourached, James Clark, Ishita Mathur, Zhuowei Si

General Information
Programming Language
We decided to use C as the programming language because some members of the team were familiar
and others wanted to learn more about the programming language.

Compiler
From the beginning, we decided it was important to use open source tools for the development of this
project. It made sense to use the GNU compiler, gcc, as it is the leading open source compiler for C
programs.

Build Environment
In keeping with using open source tools, we used GNU Make for our automated build environment.
The team was familiar with this tool as we had used it previously in class.

Version Control
As the team may be working away from the CP Lab machines, we decided a private code repository on
Bitbucket was the ideal choice. This also provided us with a web interface to easily see any changes
that have happened. Bitbucket allows Git or Mercurial for the type of repositiory. We chose Git because
we have more experience with it.
A log of commits has been included in the git.log file.

Libraries
During the development, we used existing libraries to make the development easier. Most of the
libraries used are standard with the GNU compiler. The following list shows some of the libraries used:

 ranlux for random number generation [included in source code, Lüscher 2015]
 argp.h for argument parsing [on CPLab machines]
 OpenMP for timing [on CPLab machines]
 CUnit for unit testing [on CPLab machines]

Debugging Tools
Three major debugging tools were used during the development of this project:

 Valgrind was used to check for memory leaks and other memory issues.
 ddd, the GUI frontend to gdb, was used to check for any subtle errors during runtime, the

program has to be compiled with the -g flag for debugging.
 Cppcheck was used to spot any other errors in the code while developing.

How to Build

To compile the program, simply run:

 make clean && make

To compile the unit tests, the command is:

 make clean && make test

How to Run
The program can be run, after compilation, by typing:

 ./population [-N] [-S] [-t T] [-v] [-c config.file] Landscape.dat

The landscape.dat file is required and is an ASCII file that describes the land and water squares in the
landscape. There are some sample landscapes in the `landscapes` directory.

Example:
 ./population landscapes/islands.dat

The optional runtime options are enclosed in []. The following table shows what these arguments
mean:

Short Option Long Option Meaning Notes

-N --no_output_files No files will be written to the
disk

-S --silent No output will be written to
stdout during the simulation

Output before and after
the simulation will still
be written to stdout

-t T --interval=T Manually specifying a time
step to write an output to disk

Overrides the timestep
given by the verbose
option

-v --verbose Turns on verbose output

-c config.file --config=CONFIG_FILE Used for supplying a
configuration file

-? --help Display a short help message

--usage Display all the options

How to Run Tests
The tests can easily be run after compiling them by running:

 ./population-test

Output
Depending on the runtime flags, at every 25, 10 or T steps, an image of the landscape is written to the
`outputs` directory.

Configuration File
The configuration file is a text file that takes a list of real numbers such as:

 hare birth rate
 hare death rate
 puma birth rate
 puma death rate
 hare diffusion rate
 puma diffusion rate
 time step

All of the parameters must be included. An example configuration file is:

 0.08
 0.04
 0.02
 0.06
 0.2
 0.2
 0.4

References
• Ranlux Random Number Generator, Martin Lüscher, 19-Feb-2015

http://lusher.web.cern.ch/luscher/ranlux/, Accessed 19-Oct-2015

http://lusher.web.cern.ch/luscher/ranlux/

	 General Information
	 How to Build
	 How to Run
	 How to Run Tests
	 Output
	 Configuration File
	References

