CPCC

MSc in High Performance Computing
MSc in High Performance Computing with Data Science
Programming Skills Coursework 2 - Development

Adrian Jackson, Mark Bull, David Henty, Alan Simpson, Mike Jackson

September 18, 2015

1 Introduction

In this coursework you will implement a sequential version of a two-dimensional predator-prey model
with spatial diffusion using Fortran, C, C++, Java or Python. The aim is to produce a “best practice”
scientific code within a full development framework (i.e. revision control, build tools, unit test framework
etc).

The coursework is a group exercise where you will collaborate with your fellow students in small groups
to implement the model. The groups are randomly assigned by the course organiser, based on the pro-
gramming languages you are familiar with.

Your mark is based upon your group’s source code. You also submit a, non-assessed, contribution ques-
tionnaire.

2 Modelling pumas and hares in a landscape

You are going to model the interaction of pumas (predator) and hares (prey) in a two-dimensional land-
scape. Pumas eat hares. Without hares, pumas decline and die out through lack of food. Without pumas,
hares breed and increase in numbers forever. Both animals tend to spread out (or diffuse) to fill parts of
the landscape where there are fewer of their own kind. Their landscape contains areas of water where
neither pumas nor hares can live.

Partial differential equations can be used to model the behaviour of pumas and hares within a landscape:

0H 0’H 0°H
&S_TH_QHP+]€<Z92:U+523/>
oP 0’P 9°P

where:

e M is the density of hares (prey).

e P is the density of pumas (predators).

r is the birth rate of hares.

a is the predation rate at which pumas eat hares.

b is the birth rate of pumas per one hare eaten.

m is the puma mortality rate.

k is the diffusion rates for hares.

[is the diffusion rates for pumas.

Do not worry if you don’t understand these equations, as discrete versions that can be used in your
program will be introduced shortly. What the equations say is that:

e The change in hares over time is affected by the birth rate of hares, the rate at which hares are
killed by pumas and the diffusion of hares through the landscape.

e The change in pumas over time is affected by the birth rate of pumas, which also depends on the
hares available as food, the natural death rate of pumas, and the diffusion of pumas through the
landscape.

2.1 Numerical approximation

The mathematical model above treats time and space as continuous quantities but continuous quantities
cannot be handled directly by a computer. We need to use a discrete approximation. To do this, we can
divide space and time up into discrete units. The landscape can be modelled as a rectangular grid, of
dimension N, x N, where IV, is the number of columns and N, is the number of rows, and where each
grid square can be either land or water. Within each grid square there will be a number of hares, H,,,
and pumas, P,,, living in it, where H,, and P, are >= 0.

Land

Figure 1: 2-dimensional landscape grid. Squares are indexed by column then by row from the bottom-
left.

Time can be modelled by successive, discrete, time-steps, of size At. The numbers of hares and pumas
in the landscape at next time step depend on the numbers present in the current time-step. So, the new
number of hares, H, at time ¢ + At, in a specific grid square, is given by:

H = HE o A (rHE — aHJOPI 4 ((HES, + HOS, + HYS, + H94) - N HE)

1—17 7,
The number of hares in a grid square at the next time step equals the number of hares there at present
adjusted by the change in population of hares over the timestep. The population change is a combi-

nation of the number of hares born in that square (where r is the hare birth rate), the number of hares

2

killed in that square (which depends on number of pumas in the square, where a is the puma predation
rate) and the number of hares that move into or out of that square from the neighbours (where & is the
diffusion/migration rate).

Nj; is the number of “dry” (i.e. non-water) grid squares out of the four squares neighbouring the square
1,7 (to the north, south, east and west). From this approximation, we assume that hares cannot move
diagonally nor can they swim.

The new number of hares, P, at time ¢ + At, in a specific grid square, is given by:
PR = P+ At (bHYU P — mP + 1 (PR, + PRI, + POy + Poy) — Ny Po9))

The number of pumas in a grid square at the next time step equals the number of pumas there at present
adjusted by the change in population of pumas over the timestep. The population change is a combi-
nation of the number of pumas that die in that square (where m is the puma death rate), the number of
pumas born in that square (which depends on number of hares in the square where b is the puma birth
rate) and the number of pumas that move into or out of that square from the neighbours (where [is the
diffusion/migration rate). Pumas, like hares, cannot move diagonally, nor can they swim.

We can assume that the distance between grid squares is 1 i.e. Az = Ay = 1, as scaling can be absorbed
into the diffusion terms, £ and [.

2.2 More on the birth and death of hares and pumas
Let’s look at the birth of hares:
old old
HY 4+ At (rHY;)

As an example, let’s take the basic unit of time as 1 month, and let’s assume that every pair of hares breeds
3 times a year (once every 4 months) and each produces a litter of 5 baby rabbits (called leverets). So,
in 4 months, 2 hares produce 5 more hares, so each hare produces 0.625 hares a month, so the hare birth
rate, 7 is 0.625. To check that this is correct, let’s substitute into our equation: Hj*" = 2+ 4(0.625 x 2)
which equals 7 (the 2 parents and the 5 offspring).

As we could have thousands of hares breeding continuously, we can use a much smaller value of At.
A value for r can depend upon the units chosen e.g. months, days etc. Likewise, it can improve the
scalability of our model if, instead of recording the hare, and puma, populations as integers, we record
them as real numbers in terms of densities per grid square e.g. 3.53 hares per hectare.

As for the death of hares:
old old old pold
H + At (rHij —aH} Py)

Hares only die through being eaten by pumas, not naturally, so more pumas means more hares are killed.
More hares also means more are killed as they are easier to find.

Looking at the birth of pumas:
old 1d pold
P+ At (bej Py)

Unlike hares, the birth rate of pumas (b) depends not only on the number of their own kind but also on
their available food, the hares.

As for the death of pumas:
1d 1d pold 1d
PC + At (bej‘ P —mPy)
Pumas differ slightly in that, unlike hares, they have no predators, so die at a natural rate (m).

3

2.3 More on movement of hares and pumas across the landscape

We could just model a single population over the whole landscape, but this is not very realistic. We want
a finer-grained model which allows for different densities of pumas and hares at different points in the
landscape. Our model will be more realistic if we model how animals move around the landscape. For
hares, we have a diffusion term, k:

0°H 0°H
k +
0%x = 0%y

In the discrete form of our equation, this is represented as a “random walk”:

old old old old old
k((HPS; + HYS; + HSy + HYS) — NigHY)

i—1j %

The number of hares in surrounding squares is summed. From this is subtracted the number of hares in
the current grid square multiplied by the number of surrounding land-only grid squares (/V;;). The total
value is then multiplied by a hare diffusion term, k.

For pumas a similar calculation is used, with a puma diffusion term, [.

3 Starting your coursework

Groups of between 3-4 students are randomly assigned by the course organiser, based on the program-
ming languages you are familiar with.

You should get together in your group and create your design and list of tasks. The tasks are up to your
group and do not have to be single-person tasks, you are free to work together as you think best. You
should ensure that the overall amount of work each member of your group does is equally divided.

Here are some examples of tasks that could be suggested (although not all of these may be appropriate
for your group’s design and task breakdown).

e Set up and maintain a source code repository (e.g. Subversion or Git).
e Create the build environment.
e Define tests.

e Implement the computational kernel.

Implement the I/O part of the code.
e Implement the test framework.

Write documentation.

Note that you are not required to use this list or any of the items on it for your tasks. It is provided as an
example of the sorts of tasks you could consider.

Once the tasks have been defined you should assign them amongst the group members to ensure that each
person does (roughly) equal amounts of work. As development proceeds it may be necessary to change
the tasks or re-assign work to ensure that people have the correct amount of work to do. It will also be
beneficial to assign tasks to people’s skills wherever possible.

You should ensure that everyone has some coding/development work.

Any conflicts that cannot be resolved within the group will be mediated by the course organiser, on
request.

4 Development

As it is your source code that is submitted and marked, you should use good programming practice such
as comments, function descriptions and definitions, etc. You are strongly encouraged to put your code
and tests under revision control, use a build tool (e.g. Make or ANT) and implement tests since you will
be marked on these.

It is expected that all groups will get a working implementation.

4.1 Landscape

Your code must be able to handle landscapes up to 2000 x 2000 grid squares (1 <= N, <= 2000 and
1 <= N, <= 2000).

Your code must be able to cope with arbitrary “water” grid squares, where hare and puma population
values are always zero.

The hare and puma densities should be modelled with two-dimensional double precision floating point ar-
rays. C programmers are strongly encouraged to use either statically declared arrays, or the arralloc ()
routine. This routine’s (. h and . c files) are in the LEARN area for this coursework (see Appendix 9).!

The boundary conditions are H = P = 0 on the edges of the landscape. This can be implemented by
adding a halo of grid squares around the edges of the landscape and making them all “water”.

4.2 Inputs

Your code must be able to read in a bitmask ASCII file describing which points are land or water. The
format of this file consists of one line giving N, and N, column and row, dimensions, followed by a
sequence of space separated ones and zeros (land=1, water=0). For example:

77

1111111
1111111
1111011
1111001
1110000
1110000
100000O00O

The LEARN area for this coursework (see Appendix 9) has examples. See Appendix 10 for how you can
generate your own land/water mask files.

The user must be able to set all the parameters in the equations. These are as follows, with suggested
default values in brackets:

r is the birth rate of hares (0.08).

a is the predation rate at which pumas eat hares. (0.04)

b is the birth rate of pumas per one hare eaten (0.02).
e m is the puma mortality rate (0.06).

e £ is the diffusion rates for hares (0.2).

'We provide arralloc to simplify the process of allocating memory in C as it generally causes a lot of problems for people
and wastes a lot of time unnecessarily. arralloc wraps up all the complexities of malloc and provides a nice clean interface
for creating arrays. However, if you are confident with your C and are happy to do your own memory allocation then feel free to
do so.

e [is the diffusion rates for pumas (0.2).

e At, the size of the time step (0.4).

In addition, the user must also be able to set 7', the number of time steps between outputs (see below).

You can use random initial densities of H and P, say in the range 0 to 5.0, or you could find out what
happens when a large group of pumas are placed in a confined area, with a uniform distribution of hares.

Run the simulation from time ¢ = 0 to ¢ = 500.

4.3 Outputs

Your program must output:

e A “Plain PPM” file every 7' timesteps, where T’ is the number of time steps between outputs. “Plain
PPM?” is a simple uncompressed ASCII format (like PGM but colour). Run man ppm for details.

e Average values of H and P over the grid at regular intervals. These averages can be calculated
across the grid as a whole, or just across land-only grid squares. How you output this (whether
you put the values into a file or just print them to standard output) is up to you. The frequency of
output is up to you, depending on how you wish to interpret “regular intervals” but the number of
intervals must be greater than than 1.

e When the simulation completes, the total time that was taken to execute the model simulation.
Again, how you output this is up to you.

4.4 Implementing the equations

Implement the discrete approximations of the equations, as they are defined above.

Using more accurate approximations of the time-derivatives and of the equations - using optimisations
of the equations themselves derived numerical analysis techniques - should not be attempted. This is a
programming skills exercise not a numerical analysis one, and an important aspect of programming skills
is meeting the requirements of the customer, which, in this case is implementing the equations as defined
above.

The implementation should be sequential, this is not a parallel programming exercise.

4.5 User interface
Your program must be runnable from the command-line in batch mode, and once started, your program
should run the simulation and output the results without need for user interaction.

Whether you also support other interface approaches e.g. an interactive command-line interface or a GUI
is up to you.

4.6 Testing

Testing is important for any code so you need to ensure that you can validate the results of the code you
produce, especially if you make changes to fix bugs or optimisations.

Using a test framework can help to automate the running of your tests, and reporting of their results.

5 Source code

Please note that your code and tests must satisfy the following:

e It must be possible to build and run your code and tests on the Physics Computational Lab ma-
chines.

e It must be possible to build and run your code and tests from the command-line.

e If your code or tests requires additional packages or software to build or test that are not already
available on the Physics Computational Lab machines then you should document what these pack-
ages or software are, where to get them, and how to set them up.

Non-working or non-compiling code will be marked down accordingly.
You must also provide some documentation, which should include:

o Information on the programming language, revision control, debuggers, build tools, and test tools
you have used.

e How to build your code.
e How to run your code.

e How to run your tests.

6 Contribution questionnaire

Every member of the group should complete their own contribution questionnaire. This summarises
what you as an individual contributed to the coursework and how you felt each other member of the
group contributed. Only the markers will see the contribution questionnaires.

The LEARN area for this coursework (see Appendix 9) contains copies of the questionnaire:

e Microsoft Word, ContributionQuestionnaire.doc

o ITEX, ContributionQuestionnaire.tex

7 Submission and marking

You are required to submit the following:

e Source code (this includes build scripts, test code etc) and documentation together in a zip or
tar.gz file.

e Contribution questionnaire.

Submissions are done via the Turnitin submission tool from within LEARN, under Coursework Submis-
sion.

The filename of your source code submission and contribution questionnaire must both include your exam
number (e.g B123456) which appears on your matriculation card. You should also include the course
identifier, PS for Programming Skills and the identifiers for this coursework: SC for source code and CQ
for the contribution questionnaire. For example B123456-PS—-SC.ziporB123456-PS-SC.tar.qgz,
for your source code, and B123456-PS—CQ.doc or B123456-PS—-CQ.pdf for your contribution
questionnaire.

While every member of the group needs to submit the source code so that we can return marks to all
students via Turnitin and LEARN, only one of these (per group) will be marked. The one to be marked
will be picked from a member of the group at random.

7

7.1 Deadline
The deadline for submission your source code and questionnaires is 14:00 Friday 6th November (week
7) 2015 for all students.

Submission are allowed up to 5 calendar days after the deadline, with a 5% deduction per day or part-day
late.

If you submit your coursework by the deadline then it will be marked, and you cannot submit an amended
version later on, to be marked.

If you do not wish the submitted version to be marked after the deadline, and intend submitting an
amended version after the deadline, then it is your responsibility to let the course organiser know, in
advance of the deadline, that the submitted version should not be marked.

7.2 Marking

Marks will be awarded as follows:

e Source code

— Correctness 20

Design 15

Presentation and readability 10
Use of tools and frameworks 5

Sub-total 50

e Documentation Sub-total 10

e Total 60

Your source code and documentation will be marked. Everyone in your group will get the same mark
for these. The contribution questionnaires will be used to moderate the marks in cases where the contri-
bution of effort is unbalanced across the group. However, if all group members view each other to have
contributed at the same level then each individual will get the same mark.

To summarise,

FinalMark = ((SourceCode + Documentation) + / — Moderation)

8 Questions

Feel free to e-mail the course organiser if you have any questions. Questions of interest to the whole
class will be anonymised and them, plus their answer, forwarded to the whole class.

There follows answers to common questions...

8.1 Can we use GitHub or BitBucket?

Yes. BitBucket is preferable as it allows you to create a private Git repository you can share amongst
your team without allowing others to view it.

8.2 Sharing files and repositories across accounts

On the Physics Computational Lab machines, you can give each other read/write access to your files and
directories (including any repository you create in your home directory) as follows.

Suppose your user name is s12345. First you need to ensure others can read your directory:

$ chmod go+rx /Home/s12345

If you have private files, that you don’t want others to see, run the following on those files and directories:
$ chmod go-rx /home/sl12345/your-private-file-or—-directory

Do man chmod for more information.

If you have a directory you want a fellow student e.g. s99999, to be able to read/write, for example
shared-directory, you can set up an access control list:

$ setfacl -R -m u:s99999:rwx shared-directory

This allows s99999 to read, write or execute files in shared-directory and any sub-directories. You can
then add other users the same way.

To disable this and remove s99999’s permissions you can do:
$ setfacl -R -x u:s99999: shared-directory
To see the current access control list you can do:

$ getfacl shared-directory

Doman setfacl and man getfacl for more information.

For repositories, users can then use them as they would a repository they have created in their home
directory.

8.3 Can .PPM files and screen dumps be provided as evidence that we’ve met the
requirements of the practical?

Yes, but these will be considered as supplementary evidence. The code itself is the primary evidence that
you have met the requirements.

8.4 Can we use someone else’s algorithm to calculate random numbers (so long
as we put in a reference for it)?

Yes. Some languages provide built-in libraries for random number calculation, some do not. If your
chosen language does not then feel free to use a third-party algorithm, library or package. Make sure you
provide a reference for it and also that its licence allows you to use it (open source licencing is covered
in Software Development next semester).

8.5 Other questions

e What should our code do if the population density becomes negative?
e How should the location of the landscape file be provided to the program?

e How robust should our program be in terms of valid or invalid user input values?

e How should we visualise the population of hares and pumas across the landscape at a specific point
in time, using “Plain PPM” files?

e How do we get round the “Plain PPM” restriction that “No line should be longer than 70 charac-
ters”?

e Is it OK to use global variables?

This are all design decisions you need to make. There are many options available. Choosing an appro-
priate solution is one of the challenges of this coursework.

9 Appendix - coursework files on LEARN

To access the LEARN area for this coursework:

1. Log-in to LEARN at http://www.learn.ed.ac.uk OR via http://www.myed.ed.ac.uk, using your
EASE username and password.

2. Click My Courses.
3. Click Programming Skills(2015-2016)[SS1-SEM1].
4. Click Coursework.

To download a file, right-click on the associated link and select Save As...

10 Appendix - how to create your own landscape

The LEARN area for this coursework (see Appendix 9) has a pnm2dat executable (and its source code).
This converts PNM files, produced by gimp to to ASCII files.

You can create your own landscape as follows:
1. Start the image manipulation program gimp.
Select File => New....
Choose the height and width (assuming one grid square = one pixel).
Click Advanced Options.
Select Colour space: Greyscale.
Click OK.
Draw your map.
Select File => Export As...

Enter a filename with an ending .pnme.g. file.pnm

© % ® 2 Nk WD

—_

Click Select File Type

[
—

. Select PNM image

._
N

Export.

—
W

. Select Data Formatting: Ascii

_
&

Click Export.

—_
W

. Select File—->Quit to exit

10

16. Run pnm2dat file.pnm file.dat to convert the PNM file to the same format as the sup-
plied input file. Dark points (greyscale < 128) are considered land (represented as 1 in the . dat
file, light points (greyscale > 128) are water (represented as 0 in the . dat file).

To change brush size in gimp, select Windows => Dockable Dialogs => Tool Options.

11

