
t-Distributed Stochastic Neighbourhood
Embedding

Abstract
In this manuscript we present a concise introduction to the t-SNE technique which
involves configuring probability distributions to provide a low-dimensional represen-
tation of some dataset. This in turn allows one to extract information regarding the
structure and clustering of the data from the original higher-dimensional map.

1 Stochastic Neighbourhood Embedding
The SNE technique was first introduced by Hinton and Roweiss [HR02] and forms
the basis for the t-SNE technique. It begins by considering each sample as a point
in n dimensions, where n denotes the number of variables. Each point xi is then
considered individually and assumed to have a Gaussian distribution centered about
itself. As a result, one may describe the similarity of any other point xj to xi through
the conditional probability

pj|i =
exp

(
−‖xi − xj‖2 /2σ2

i

)∑
k 6=i exp

(
−‖xi − xk‖2 /2σ2

i

)
where the denominator serves as a normalising constant. We also set pi|i to zero for
convenience. One should observe that pi|j = pj|i cannot be implied from the above so
that pj|i cannot be assumed to be symmetric. We shall discuss how to determine the
σi later.

A similar procedure is followed when considering the lower-dimensional counterparts
yi. Each point yi is again considered individually and assumed to have a Gaussian
distribution centered around itself. In this particular case however, we assume that
the Gaussian has the same variance for each point yi. This is primarily because cal-
culating σi is a computationally intensive task. We need only perform it once for the
high-dimensional probabilities above, but doing it for hundreds or thousand of iter-
ations whilst determining the optimal set of low-dimensional points yi is unfeasible.
Consequently, we let σi = 1√

2
for all i. This particular standard deviation is chosen

out of convenience: choosing anything else will only result in a rescaled version of the

1

final map. Therefore, the similarity of a point yj to yi is modelled by

qj|i =
exp

(
−‖yi − yj‖2

)∑
k 6=i exp

(
−‖yi − yk‖2

)
where once again the denominator serves as a normalising constant and qi|i = 0. Having
defined a probability distribution for each point in both the high and low dimensions,
we can now measure the mismatch between them using the Kullback-Leibler divergence.
Moreover, one can define a natural cost function by summing over the mismatch be-
tween all probability distributions Pi and Qi (centered about the respective datapoints
xi and yi) to get

C =
∑
i

KL (Pi‖Qi) =
∑
i

∑
j

pj|i log
pj|i
qj|i

.

SNE then attempts to minimise the cost function above via gradient descent. The
gradient at each point yi can be calculated and is given by

δC

δyi
= 2

∑
j

(
pj|i − qj|i + pi|j − qi|j

)
(yi − yj) .

Initially, we do not have a set of points yi to calculate the corresponding qj|i, so a random
sample is first generated from a Gaussian centered about the origin with relatively small
variance. Explicitly, the update is then given by

Y(t) = Y(t−1) − ηδC
δY

+ α(t)
(
Y(t−1) − Y(t−2))

where Y(t) is usually a n × 2 vector of two-dimensional yi points at iteration t. The
factor η (usually set around 100) is called the learning rate and α(t) (usually varying
between 0.5 and 1) is the momentum, which aids the algorithm with “getting out” of
sub-optimal local minima since the cost function is not convex.

Before we consider other methods of improving the current SNE algorithm, we take a
brief look at how the σi are determined for the high-dimensional probabilities pj|i. The
perplexity Perp is global variable which is defined as

Perp (Pi) = 2H(Pi)

where H(Pi) is the Shannon entropy of the probability distribution centered about the
point xi, given by

H (Pi) = −
∑
j

pj|i log2 pj|i.

2

When we say that the perplexity is a global variable we mean that Perp(Pi) = Perp(Pj)
for all i, j. The perplexity is usually set between 30 and 50, and by using the equa-
tions above along with the equation for pj|i one can can determine the corresponding
σi (albeit not analytically). It is useful to notice that the perplexity increases mono-
tonically with the standard deviations σi . Heuristically, the perplexity indicates the
number of points within a cluster. The following plots below from [WVJ16] illustrate
this well:

2 Symmetric SNE
When using the SNE algorithm it is most often the case that pj|i 6= pi|j and pj|i 6= pi|j.
In other words, the probability of xj being the neighbour of xi is not the same as the
probability of xi being the neighbour of xj (and similarly for yi, yj). To remedy this
one may consider the joint symmetric probability distributions defined by

pij =
exp

(
−‖xi − xj‖2 /2σ2

)∑
k 6=l exp

(
−‖xk − xl‖2 /2σ2

)
and

qij =
exp

(
−‖yi − yj‖2

)∑
k 6=l exp

(
−‖yk − yl‖2

)
where the only difference is that we’re now summing over all possible pairs in the
denominator. However, a consequence of defining the higher-dimensional affinities in
this fashion is that outliers are modelled quite badly. Indeed, consider an outlier xi.
Then |xi − xj| is large for all xj, which in turn provides a very small affinity pij for
all points xj. As a result, the cost function, by definition, is affected very little by
the position of the outlier in the lower-dimensional map: varying the value of yi and
therefore qij does not produce a noticeable effect. To fix this, we let

pij =
pj|i + pi|j

2n

3

which ensures that each point xi makes a “significant” contribution since
∑

j pij >
1
2n

for all i. This ensures that the positions of all the corresponding points in the lower-
dimensional map are given some attention.

3 t-SNE
Although symmetric SNE manages to preserve the clustering, the low-dimensional rep-
resentation of the data produced provides no evident distinguishment between these
clusters: they all intersect each other to some degree. We’d like to “push” these clus-
ters farther apart from each other. Using a Student t-distribution with one degree of
freedom for the lower-dimensional distribution allows us to do this.

Student t-distribution
Gaussian distribution

Recall that ideally, we hope to find a set of low-dimensional points yk such that pij = qij
for all i, j, where we usually use Gaussian distributions for both pij and qij. However,
consider instead switching to a Student t-distribution when modelling the qij. The
fat tails of the t-distribution ensures that points which are “far apart” in the high-
dimensional space are modelled by points even farther apart in the lower-dimensional
space. Similarly, points which are “close” in the high-dimensional space will be mod-
elled by points which are even closer in the lower-dimensional space. This forces the
clusters in the lower-dimensional space to become more dispersed between themselves
and therefore more distinguishable.

4

Mathematically the lower dimensional affinities will be given by

qij =

(
1 + ‖yi − yj‖2

)−1∑
k 6=l

(
1 + ‖yk − yl‖2

)−1
and the corresponding gradient can be calculated to be

δC

δyi
= 4

∑
j

(pij − qij) (yi − yj)
(
1 + ‖yi − yj‖2

)−1
which is used with the aforementioned update to iterate through the lower-dimensional
points.

Ultimately, t-SNE compares very favourably to the other data-reduction techniques
with respect to data visualisation primarily due to its ability to create space between
the various clusters. The visualisations below illustrate this well:

(a) t-SNE (b) Sammon

(c) PCA (d) Isomap

5

The plots above were produced using the Banknote Authentication dataset available
from [Loh12]. In this particular instance, both t-SNE and Isomap perform particu-
larly well, whereas the Sammon mapping and PCA suffer from what is known as the
“crowding problem”. However, for the larger MNIST dataset, Isomap is outperformed
by t-SNE [VdMH08]:

VAN DER MAATEN AND HINTON

0
1
2
3
4
5
6
7
8
9

(a) Visualization by t-SNE.

(b) Visualization by Sammon mapping.

Figure 2: Visualizations of 6,000 handwritten digits from the MNIST data set.

2590

VISUALIZING DATA USING T-SNE

(a) Visualization by Isomap.

(b) Visualization by LLE.

Figure 3: Visualizations of 6,000 handwritten digits from the MNIST data set.

2591

(a) t-SNE (b) Isomap

4 Further Optimisations
1. The raw t-SNE algorithm is quadratic in both its computational and memory

complexity. This constraint makes the algorithm unfeasible for larger datasets.
To solve this problem, whilst also using all the available datapoints, one creates a
neighbourhood graph and uses random walks between the points to calculate the
high-dimensional affinities. A more detailed explanation of this technique can be
found at [VdMH08].

2. To further aid with the memory complexity of the algorithm, one may apply
Principal Component Analysis to initially reduce the dimension of the dataset.
The dimensionality of the samples is usually reduced to around 30 before t-SNE
is applied.

3. Using an adaptive learning rate, increasing the momentum over time and employ-
ing methods such as early compression and early exaggeration [VdMH08] to aid
with the formation of clusters and create space can serve to make the algorithm

6

more effective in general.

References
[HR02] Geoffrey E Hinton and Sam Roweis. Stochastic neighbor embedding. Ad-

vances in neural information processing systems, 15, 2002.

[Loh12] Volker Lohweg. UCI machine learning repository, 2012. Available at https:
//archive.ics.uci.edu/ml/datasets/banknote+authentication#.

[VdMH08] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of machine learning research, 9(11), 2008.

[WVJ16] Martin Wattenberg, Fernanda Viégas, and Ian Johnson. How to use t-sne
effectively. Distill, 1(10):e2, 2016.

7

https://archive.ics.uci.edu/ml/datasets/banknote+authentication#
https://archive.ics.uci.edu/ml/datasets/banknote+authentication#

	Stochastic Neighbourhood Embedding
	Symmetric SNE
	t-SNE
	Further Optimisations
	References

