

Introduction

• An *elliptic curve* E over the field \mathbb{Q} is defined by an equation of the form

 $y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$ with coefficients $a_i \in \mathbb{Q}$ such that the curve is non-singular.

• Using a suitable change of coordinates, the equation above can be simplified to

$$y^2 = x^3 + Ax + B$$

with $A, B \in \mathbb{Z}$. In this presentation we assume that all elliptic curves E are specified in this form.

The Group Law

- Finding points on E with coordinates in \mathbb{C} or \mathbb{R} is not hard. On the other hand, locating points with coordinates strictly in \mathbb{Q} can be quite difficult.
- If we can locate two rational points P, Q on E, then in general we can draw a line through P, Qwhich is guaranteed to intersect the curve at another rational point R'.
- Since E is symmetric about the x-axis we can reflect R' to obtain another rational point R. We name this method of obtaining R addition and we write P + Q = R.

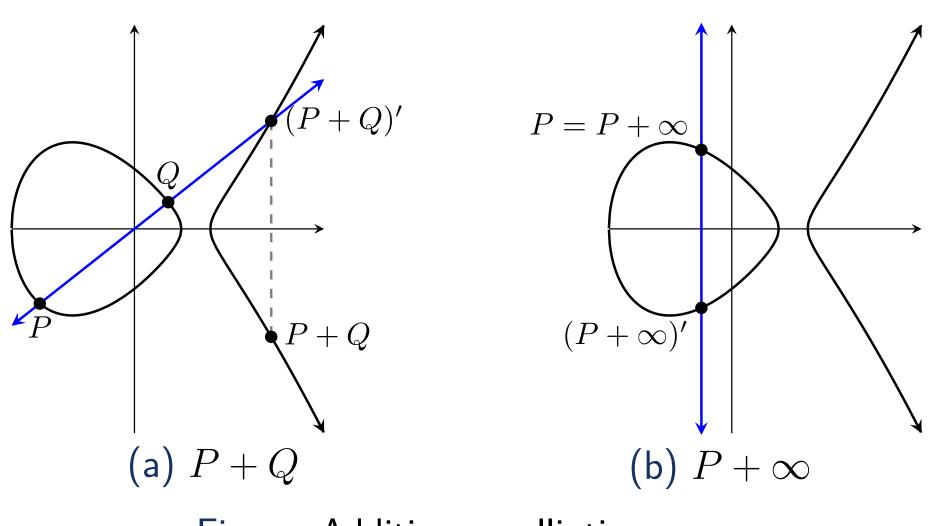


Figure: Addition on elliptic curves

- If we define a point at ∞ so that every vertical line on the plane intersects this point, we see that $P + \infty = P$.
- It can then be demonstrated that $E(\mathbb{Q})$, the set of rational points on E, along with the operation of addition and ∞ as the identity form a group.
- It's not difficult to see that $E(\mathbb{Q})$ is also abelian.

Arithmetic Aspects of Elliptic Curves

David Bodiu

Supervised by Prof. Nicolas Mascot

Points of Finite Order

• Let $E_T(\mathbb{Q})$ denote the set of points in $E(\mathbb{Q})$ of finite order (or torsion points). One can show that this forms a subgroup of $E(\mathbb{Q})$.

Example

Consider the elliptic curve E given by $y^2 =$ $x^3 + 4x$. We have the obvious torsion point (0, 0). Performing a quick computer search we also find the torsion points $(2, \pm 4)$. There are in fact no other torsion points implying that

 $E_T(\mathbb{Q}) = \{\infty, (0,0), (2,\pm 4)\} \simeq \mathbb{Z}_4$

where the structure is obtained by examining how the points interact with each other.

Lutz-Nagell Theorem

- Theorem (Lutz-Nagell) Let P = (x, y) be a point on E. If $y \neq 0$ then $y^2 \mid 4A^3 + 27B^2$.
- Using the above result one can demonstrate that $E_T(\mathbb{Q})$ is finite. As a result, $E_T(\mathbb{Q})$ is a finite abelian group so that

$$E_T(\mathbb{Q}) \simeq \mathbb{Z}_{p_1^{k_1}} \oplus \cdots \oplus \mathbb{Z}_{p_n^{k_n}}.$$

• Theorem (Mazur) $E_T(\mathbb{Q})$ is isomorphic to one of the below for all elliptic curves E: \mathbb{Z}_n with $1 \leq n \leq 10$ or n = 12; $\mathbb{Z}_2 \oplus \mathbb{Z}_{2n}$ with $1 \leq n \leq 4$.

Example

Consider the elliptic curve E given by $y^2 = x^3 + 1836x + 11961$. Using the Lutz-Nagell theorem enables us to search through a finite number of possibilities to obtain the torsion point P = (12, 189). We have 2P = (12, -189) and $3P = \infty$. Our computer finds no more torsion points therefore $E_T(\mathbb{Q}) = \{\infty, (12, \pm 189)\} \simeq \mathbb{Z}_3.$

Next, using the descent procedure described on the right-hand side we obtain a set of two independent points of non-finite order, namely (-6, 27) and (39, 378). We cannot make this set any larger therefore

 $E(\mathbb{Q}) \simeq \mathbb{Z}_3 \oplus \mathbb{Z}^2$

with generating set $\{(12, 189), (-6, 27), (39, 378)\}.$

Points of non-Finite Order

• Write *E* in the form $y^2 = (x - e_1)(x - e_2)(x - e_3)$ with $e_1, e_2, e_3 \in \mathbb{Z}$. We define $\varphi: E(\mathbb{Q}) \to (\mathbb{Q}^{\times}/\mathbb{Q}^{\times 2}) \oplus (\mathbb{Q}^{\times}/\mathbb{Q}^{\times 2}) \oplus (\mathbb{Q}^{\times}/\mathbb{Q}^{\times 2})$ $(x, y) \mapsto (x - e_1, x - e_2, x - e_3)$ $\infty \mapsto (1, 1, 1)$

for points with $y \neq 0$.

• The map φ is a homomorphism with ker(φ) $= 2E(\mathbb{Q})$. This allows us to prove the following: • Theorem (Weak Mordell-Weil) $E(\mathbb{Q})/2E(\mathbb{Q})$

is finite for all elliptic curves E.

Mordell-Weil Theorem

• To generalize the Weak Mordell-Weil Theorem we introduce a quadratic form called the *canonical height* of a point, denoted $\hat{h}(P)$.

• Given any constant *c* there exist only finitely many points P with $\hat{h}(P) \leq c$.

• **Theorem** (Mordell-Weil) $E(\mathbb{Q})$ is finitely generated for all elliptic curves E.

• Since $E(\mathbb{Q})$ is a finitely generated abelian group by the above, we must have that

 $E(\mathbb{Q}) \simeq E_T(\mathbb{Q}) \oplus \mathbb{Z}^r$

where $r \in \mathbb{N}$ is called the rank of E.

• The results above are the basis for the descent procedure described to the right-hand side. Making use of a theorem due to Silverman and the height pairing allows us to obtain a generating set also.

Descent Procedure • We have that $E(\mathbb{Q})/2E(\mathbb{Q}) \cong E_T(\mathbb{Q})/2E_T(\mathbb{Q}) \oplus (\mathbb{Z}/2\mathbb{Z})^r$ and $|E_T(\mathbb{Q})/2E_T(\mathbb{Q})\oplus (\mathbb{Z}/2\mathbb{Z})^r|=2^{t+r}$ **2** The integer t can be determined using the Lutz-Nagell Theorem and associated results by first calculating $E_T(\mathbb{Q})$ and then taking its quotient. **3**We can determine a finite set of possible triples $(a, b, c) \in (\mathbb{Q}^{\times}/\mathbb{Q}^{\times 2}) \oplus (\mathbb{Q}^{\times}/\mathbb{Q}^{\times 2}) \oplus (\mathbb{Q}^{\times}/\mathbb{Q}^{\times 2})$ which places an upper bound on r. • To reduce this bound as much as possible we eliminate triples which do not yield p-adic points for a certain finite set of primes p. This is done by encoding everything in matrices, applying a few transformations and then solving a final system of linear equations. ⁵In most cases the new bound is exact and gives r. To check this we run a computer search to find r independent points of non-finite order in $E(\mathbb{Q}).$ **6**We then have that $E(\mathbb{Q}) \simeq E_T(\mathbb{Q}) \oplus \mathbb{Z}^r$ where we have just determined $E_T(\mathbb{Q})$ and r. Finally, to find a set of generators we perform a computer search through a finite (albeit large) set of possible points $P \in \mathbb{Q} \times \mathbb{Q}$ which satisfy $\hat{h}(P) < c$ for a certain constant c, and use the height pairing to check for independence and reduce the set.

[1] Collaboration, The LMFDB. The L-Functions and Modular Forms Database. 2022, http://www.lmfdb.org. [2] Washington, Lawrence C. Elliptic Curves: Number Theory and Cryptography. Chapman and Hall/CRC, 2008.

References