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Introduction

•An elliptic curve E over the field Q is defined by
an equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

with coefficients ai ∈ Q such that the curve is
non-singular.
•Using a suitable change of coordinates, the
equation above can be simplified to

y2 = x3 + Ax + B

with A, B ∈ Z. In this presentation we assume
that all elliptic curves E are specified in this form.

The Group Law

•Finding points on E with coordinates in C or R is
not hard. On the other hand, locating points with
coordinates strictly in Q can be quite difficult.
• If we can locate two rational points P, Q on E,
then in general we can draw a line through P, Q
which is guaranteed to intersect the curve at
another rational point R′.
•Since E is symmetric about the x-axis we can
reflect R′ to obtain another rational point R. We
name this method of obtaining R addition and
we write P + Q = R.
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Figure: Addition on elliptic curves

• If we define a point at ∞ so that every vertical
line on the plane intersects this point, we see that
P +∞ = P .
• It can then be demonstrated that E(Q), the set
of rational points on E, along with the operation
of addition and ∞ as the identity form a group.
• It’s not difficult to see that E(Q) is also abelian.

Points of Finite Order

•Let ET (Q) denote the set of points in E(Q) of
finite order (or torsion points). One can show
that this forms a subgroup of E(Q).

Example

Consider the elliptic curve E given by y2 =
x3+4x. We have the obvious torsion point (0, 0).
Performing a quick computer search we also find
the torsion points (2,±4). There are in fact no
other torsion points implying that

ET (Q) = {∞, (0, 0), (2,±4)} ' Z4

where the structure is obtained by examining how
the points interact with each other.

Lutz-Nagell Theorem

•Theorem (Lutz-Nagell) Let P = (x, y) be a
point on E. If y 6= 0 then y2 | 4A3 + 27B2.
•Using the above result one can demonstrate that

ET (Q) is finite. As a result, ET (Q) is a finite
abelian group so that

ET (Q) ' Z
p

k1
1
⊕ · · · ⊕ Zpkn

n
.

•Theorem (Mazur) ET (Q) is isomorphic to
one of the below for all elliptic curves E:

Zn with 1 ≤ n ≤ 10 or n = 12;
Z2 ⊕ Z2n with 1 ≤ n ≤ 4.

Points of non-Finite Order

•Write E in the form y2 = (x− e1)(x− e2)(x− e3)
with e1, e2, e3 ∈ Z. We define
ϕ : E(Q)→

(
Q×/Q×2)⊕ (

Q×/Q×2)⊕ (
Q×/Q×2)

(x, y) 7→ (x− e1, x− e2, x− e3)
∞ 7→ (1, 1, 1)

for points with y 6= 0.
•The map ϕ is a homomorphism with ker(ϕ)

= 2E(Q). This allows us to prove the following:
•Theorem (Weak Mordell-Weil) E(Q)/2E(Q)
is finite for all elliptic curves E.

Mordell-Weil Theorem

•To generalize the Weak Mordell-Weil Theorem we
introduce a quadratic form called the canonical
height of a point, denoted ĥ(P ).
•Given any constant c there exist only finitely many
points P with ĥ(P ) ≤ c.
•Theorem (Mordell-Weil) E(Q) is finitely gen-
erated for all elliptic curves E.
•Since E(Q) is a finitely generated abelian group
by the above, we must have that

E(Q) ' ET (Q)⊕ Zr

where r ∈ N is called the rank of E.
•The results above are the basis for the descent pro-
cedure described to the right-hand side. Making
use of a theorem due to Silverman and the height
pairing allows us to obtain a generating set also.

Example

Consider the elliptic curve E given by y2 = x3 + 1836x + 11961. Using the Lutz-Nagell theorem enables
us to search through a finite number of possibilities to obtain the torsion point P = (12, 189). We have
2P = (12,−189) and 3P =∞. Our computer finds no more torsion points therefore

ET (Q) = {∞, (12,±189)} ' Z3.

Next, using the descent procedure described on the right-hand side we obtain a set of two independent
points of non-finite order, namely (−6, 27) and (39, 378). We cannot make this set any larger therefore

E(Q) ' Z3 ⊕ Z2

with generating set {(12, 189), (−6, 27), (39, 378)}.

Descent Procedure

1 We have that
E(Q)/2E(Q) ∼= ET (Q)/2ET (Q)⊕ (Z/2Z)r

and
|ET (Q)/2ET (Q)⊕ (Z/2Z)r| = 2t+r

2 The integer t can be determined using the
Lutz-Nagell Theorem and associated results by
first calculating ET (Q) and then taking its
quotient.

3 We can determine a finite set of possible triples
(a, b, c) ∈

(
Q×/Q×2)⊕(

Q×/Q×2)⊕(
Q×/Q×2)

which places an upper bound on r.
4 To reduce this bound as much as possible we
eliminate triples which do not yield p-adic
points for a certain finite set of primes p.
This is done by encoding everything in
matrices, applying a few transformations and
then solving a final system of linear equations.

5 In most cases the new bound is exact and gives
r. To check this we run a computer search to
find r independent points of non-finite order in
E(Q).

6 We then have that
E(Q) ' ET (Q)⊕ Zr

where we have just determined ET (Q) and r.
7 Finally, to find a set of generators we perform a
computer search through a finite (albeit large)
set of possible points P ∈ Q×Q which satisfy

ĥ(P ) < c

for a certain constant c, and use the height
pairing to check for independence and reduce
the set.
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