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Introduction

e An elliptic curve E over the field Q is defined by

an equation of the form

Yo+ aiTy + asy = o° + arx” + aur + ag

with coethicients a; € QQ such that the curve is
non-singular.

e Using a suitable change of coordinates, the
equation above can be simplified to

v =2+ Az + B

with A, B € Z. In this presentation we assume
that all elliptic curves E are specified in this form.

The Group Law

e Finding points on £ with coordinates in C or R is
not hard. On the other hand, locating points with
coordinates strictly in Q can be quite difficult.

e [f we can locate two rational points P, () on E
then in general we can draw a line through P, ()
which is guaranteed to intersect the curve at
another rational point R’

e Since E' is symmetric about the x-axis we can
reflect R to obtain another rational point R. We
name this method of obtaining R addition and
we write P + () = R.
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Figure: Addition on elliptic curves

e [f we define a point at oo so that every vertical
line on the plane intersects this point, we see that
P+oco=P.

o [t can then be demonstrated that E(Q), the set
of rational points on £, along with the operation
of addition and oo as the identity form a group.

o [t’s not difficult to see that E(Q) is also abelian.
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Points of Finite Order Points of non-Finite Order
o Let Ep(Q) denote the set of points in F(Q) of o Write F in the form y* = (z — e1)(x — e3)(x — €3)
finite order (or torsion points). One can show with ey, e9, 3 € Z. We define
that this forms a subgroup of E(Q). 0 EQ) — (Q°/Q%) @ (Q*/Q) & (Q*/Q™}

(x,y) — (x —e1, T —ey x—e3)
o (1, 1, 1)

for points with y = 0.

Consider the elliptic curve E given by y* =
77 +4x. We have the obvious torsion point (0, 0).
Performing a quick computer search we also find

e The map ¢ is a homomorphism with ker(¢)
= 2F(Q). This allows us to prove the following:

e Theorem (Weak Mordell-Weil) E(Q)/2E(Q)

s finite for all elliptic curves E.

the torsion points (2, +4). There are in fact no
other torsion points implying that

Er(Q) = {00, (0,0), (2, £4)} ~ Z, Mordell-Weil Theorem

where the structure is obtained by examining how
the points interact with each other.

e 'To generalize the Weak Mordell-Weil Theorem we
introduce a quadratic form called the canonical
height of a point, denoted iL(P)

e Given any constant c there exist only finitely many
points P with h(P) < c.

e Theorem (Mordell-Weil) E(Q) is finitely gen-
erated for all elliptic curves E.

Lutz-Nagell Theorem

e Theorem (Lutz-Nagell) Let P = (z,y) be a
point on E. If y # 0 then y* | 4A° + 27B%.

e Using the above result one can demonstrate that
E7r(Q) is finite. As a result, Ep(Q) is a finite
abelian group so that

Er(Q~Zu®- &Ly

e Theorem (Mazur) E7(Q) is isomorphic to
one of the below for all elliptic curves E':

L, with 1 <n <10 or n = 12;
ZQ@ZQnWIth1Sn§4

e Since F/(Q) is a finitely generated abelian group
by the above, we must have that

EQ)~Er(QoeZ
where r € N is called the rank of F.

e The results above are the basis for the descent pro-
cedure described to the right-hand side. Making
use of a theorem due to Silverman and the height
pairing allows us to obtain a generating set also.

Example

Consider the elliptic curve E given by y* = 2° + 18362 + 11961. Using the Lutz-Nagell theorem enables
us to search through a finite number of possibilities to obtain the torsion point P = (12,189). We have
2P = (12, —189) and 3P = oco. Our computer finds no more torsion points therefore

Er(Q) =400, (12,£189)} ~ Zs.

Next, using the descent procedure described on the right-hand side we obtain a set of two independent
points of non-finite order, namely (—6,27) and (39, 378). We cannot make this set any larger therefore

E(Q) ~Zs® Z°
with generating set {(12, 189), (—6,27), (39, 378)}.

Descent Procedure

o We have that

E(Q)/2E(Q) = Er(Q)/2E7(Q) ® (Z/2Z)

and
|Er(Q)/2Er(Q) ® (Z/22)"] = 2

® The integer ¢ can be determined using the
Lutz-Nagell Theorem and associated results by

first calculating Ep(Q) and then taking its
quotient.

® We can determine a finite set of possible triples

(a,b,¢) € (Q*/Q) @ (Q*/Q**) & (Q*/Q*?)
which places an upper bound on r.
o 'To reduce this bound as much as possible we

eliminate triples which do not vyield p-adic
points for a certain finite set of primes p.

This is done by encoding everything in
matrices, applying a few transformations and
then solving a final system of linear equations.

®In most cases the new bound is exact and gives
r. To check this we run a computer search to
find r independent points of non-finite order in

E(Q).
o We then have that

EQ)~Er(QeZ

where we have just determined Ep(Q) and 7.
@ Finally, to find a set of generators we perform a
computer search through a finite (albeit large)

set of possible points P € Q x Q which satisty

h(P) < ¢

for a certain constant ¢, and use the height

pairing to check for independence and reduce
the set.
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