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Abstract
The theory of elliptic curves is both vast and profound spanning several fields and ar-
eas in mathematics. In this treatise we confine ourselves to approaching the subject in
a predominantly-algebraic fashion resorting to some geometry and analysis whenever
deemed instructive or necessary. After providing motivations and laying the necessary
groundword we examine the unexpected group law for elliptic curves and briefly dis-
cuss its analogue for the related singular curves. Afterwards, we divide the remaining
investigation into two broad segments: the more tractable finite order points and the re-
maining points of infinite order, culminating in a procedure for determining the general
structure of the group of rational solutions for any elliptic curve over Q. The procedure
may also be duly extended to provide a complete generating set if required.
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1 Background and History
For the purposes of this short historical summary one can assume that an expression
resembling “y2 = cubic polynomial” indicates an elliptic curve. Before we begin, it
should be noted that this manuscript does not treat the subject of elliptic curves over
the complexes and the associated topic of elliptic functions, however, the history of
our work is closely tied to it, therefore we include some developments related to it for
completeness.

3rd century: The first recorded instance of an elliptic curve appears (unsurprisingly)
in Diophantus’ Arithmetica. In the 24th problem of book IV he finds rational solutions
to the curve y(6− y) = x3 − x.

13th century: Fibonacci enconters a problem related to elliptic curves at the court of
the Holy Roman Emperor Frederick II, specifically, finding a rational number r such
that r2 − 5 and r2 + 5 are both rational squares. The origins of this question actually
date back to certain Arabic manuscripts from the 8th century.

17th century: Bachet translates Arithmetica from Greek into Latin with an appendix
containing Fibonacci’s problem above. It also contains an interesting original result
regarding rational solutions to the elliptic curve y2 = x3 + c.

17th century (again): Around 10 years later Fermat acquires a copy of the transla-
tion above in whose margin he makes his famous comment. The related problem will
resurface later. Fermat’s collected works also include numerous references to problems
involving elliptic curves such as y2 = x3 − 2.

17th century (again): Newton begins to classify cubic curves, including those of the
form y2 = ax3 + bx2 + cx+ d. He provides a geometric interpretation for the methods
employed by Diophantus and Bachet when finding rational solutions to their respec-
tive problems. This would ultimately lead to the formulas for adding points on elliptic
curves.

18th century: Euler acquires a copy of Fermat’s collected works and verifies many of
his hypotheses, including (at least) two regarding elliptic curves. He also works on the
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congruent number problem––a generalized version of Fibonacci’s problem above––still
related to elliptic curves.

19th century: Jacobi points out a possible connection between cubic curves and ellip-
tic functions. Around 10 years later Eisenstein provides a proof verifying this. Around
20 years later Clebsch introduces the idea of parameterizing cubic curves by elliptic
functions, and Weierstrass adapts an addition formula for elliptic functions to these
cubic curves.

20th century: Poincaré publishes a celebrated paper unifying many of the previous
ideas mentioned. Mordell, Hasse and Weil continue to make significant contributions
to the subject. Andrew Wiles and Richard Taylor provide a proof of Fermat’s Last
Theorem [Wil95], in which elliptic curves play a prominent role.

21st century: Elliptic curves begin to enter widespread use as a cryptographic method.
Amongst many others, a currently popular area of research revolves around determining
whether the “rank” of an elliptic curve is bounded or not. We will encounter this concept
in one of the later sections below.
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2 Introduction

2.1 Motivation

We begin our foray into the field of elliptic curves by first considering a seemingly
innocuous question: Is it possible to find three consecutive numbers, whose product
forms a square? If such numbers exist, how many can we find? Algebraically, we’re
asking for solutions to the equation y2 = x(x + 1)(x + 2), and geometrically we’re
looking for points on the curve defined by the equation above.

We begin by first looking for such solutions in the “largest” domain, that is, in C. It
shouldn’t take too long to figure out that the problem can be solved quite easily if we
assume knowledge of one of the most ubiquitous theorems in complex analysis: the
Fundamental Theorem of Algebra.

Indeed, let x be any complex number of choice. Then the expression y2−x(x+1)(x+2)
becomes a quadratic polynomial in C with exactly two roots by the aforementioned
result, which correspond to two solutions of the equation in C. Since the choice of x is
arbitrary, one deduces that there are infinitely many solutions in this domain, in fact
an uncountably infinite number of solutions.

If we now restrict our field of vision, we can consider the problem in R, where the
answers may not be the same. In this domain we can now provide an illustration of
the curve traced out by the given equation:

−2 −1 1

−2

2

X

Y

Figure 2.1

The graph of the curve certainly presents some interesting features, however, it need
not be consulted any further in this case since the problem has a complete algebraic
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solution.

The manner in which the problem is solved is nearly the same but with some additional
alterations. Let x ∈ R satisfy x ≥ 0. Then x(x + 1)(x + 2) ≥ 0 and we can take the
square root of both sides to obtain y = ±

√
x(x+ 1)(x+ 2), which yields two solutions

for any particular value of x ≥ 0. Since, the range which we can choose x from is
infinite, we once again end up with an (uncountably) infinite set of solutions.

Placing even further restrictions, we find ourselves in Q. The method employed for
the previous two domains can no longer be applied here: we’re not guaranteed to
end up with rational solutions after applying it (as it involves taking square roots).
However, there are clearly some “obvious” rational solutions, namely (−2, 0), (−1, 0)
and (0, 0). Are there any other rational solutions besides these though? Since we’re at
the beginning of our journey we might try a computer search, but we’d be out of luck.
These are in fact the only rational solutions to the equation.

We might try to take a look at other equations of the form y2 = x(x + n)(x + 2n),
but we’d find ourselves in a very similar situation to the one above when n < 5. Upon
letting n = 5 though, our computer finds the first non-obvious solution: (−9, 6). The
other obvious solutions to the equation y2 = x(x + 5)(x + 10) would be (−10, 0),
(−5, 0) and (0, 0). We could try to setting our computer loose again in order to find
more rational solutions but we notice something interesting about the graph.

−10 −5 5

−20

20

(0, 0)

(−9, 6)

X

Y

−10 −5 5

−20

20

(0, 0)

(−9, 6) (− 50
9 , 100

27 )

X

Y

Figure 2.2

If we draw a line through the obvious point (0, 0) and the non-obvious point (−9, 6)
we intersect the curve at a new point. We can check if this point is rational by doing
a little algebra. The equation of the line passing through our two points is y = −2

3
x.
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Subbing this into our elliptic curve equation we get

(−2

3
x)2 = x3 + 15x2 + 50x =⇒ x3 +

131

9
x2 + 50x = 0.

If a cubic has three distinct roots x1, x2, x3 then the coefficient of the x2 term will be
−(x1 + x2 + x3). Since we already have two of the roots we can easily find the third.
In particular, we can see that the third root will also be rational

−(0− 9 + x3) =
131

9
=⇒ x3 = −50

9
.

To find the y coordinate we just plug in x3 into the line equation to obtain y3 = 100
27

.
We’ve just been able to find a new rational point on the curve by using two previously
known rational points! If you’re wondering why we didn’t try this earlier with the
obvious rational points it’s because you need at least one non-obvious point for the
method to work.

We can use the method above with any two known points to obtain another rational
point on the elliptic curve. However, there is no guarantee that the resulting rational
point will always be new. It could very well happen that after a while, all our combi-
nations of known rational points yield nothing new. We do not have a method yet for
determining the size of the solution set.

Having said that, we’ve definitely made some steps in the right direction, but before
we go any further we’d like to formalise and place everything above in a more general
context. We’ll begin by defining elliptic curves.

2.2 Definitions

Definition 2.1. An elliptic curve E over a field K is defined by the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with ai ∈ K such that the curve is non-singular.

The form of equation above is usually referred to as the Generalized Weierstrass Equa-
tion for an elliptic curve, but can be readily simplified if the characteristic of the field
K is neither 2 nor 3.

Indeed, suppose that the characteristic of K is not 2. We divide the equation by 2 and
complete the square to obtain(

y +
a1x

2
+
a3
2

)2
= x3 +

(
a2 +

a21
4

)
x2 +

(
a4 +

a1a3
2

)
x+

(
a23
4

+ a6

)
.
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Relabelling the bracketed terms above we then have

y21 = x3 + a′2x
2 + a′4x+ a′6.

Furthermore, suppose that the characteristic of K is not 3 either. Effecting the substi-
tution x = x1 − a′2

3
and performing some relabelling again yields

y21 = x31 + Ax1 +B.

Finally, for simplicity, we remove the now-unnecessary subscripts to get

y2 = x3 + Ax+B

with A,B ∈ K. The equation above is referred to as the Weierstrass equation for an
elliptic curve and is the form which will be used throughout most of this discourse.

Example 2.1. Since we’re currently interested in K = Q which does not have char-
acteristic 2 nor 3 we shall be able to express any elliptic curve over Q in the form
displayed above. In particular the curve y2 = x(x + 5)(x + 10) can be transformed to
y2 = x3 − 25x. �

Notice also that since the transformation from the Generalized Weierstrass equation to
the Weierstrass equation is linear, old rational points correspond to new rational points
on the transformed curve and vice versa. In particular, finding rational solutions to the
Generalized Weierstrass equation for a particular elliptic curve is equivalent to finding
rational solutions for the corresponding Weierstrass equation.

For the remainder of this discourse we shall assume that the field which we are working
over is Q and that curves are in their corresponding Weierstrass equation unless stated
otherwise.

3 The Group Law

3.1 Addition

The procedure outlined in the in the first section for generating a third rational point
from two previously known rational points is formally known as addition. More gen-
erally, if we know two points P and Q on some elliptic curve E, then we can obtain
a third point P + Q = R by the line method described above. Well, nearly. This
isn’t quite the definition of adding points on elliptic curves. We need to carry out one
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more crucial step. Once the third point is obtained, it is reflected through the x-axis.
This is always possible since elliptic curves are symmetric about the x-axis (take the
square root of both sides of the equation). There are a few reasons for taking this last
step, but primarily it’s because it turns out that this modified operation allows us to
define a group structure on the set of all rational points on the curve. We will turn our
attention to this important result shortly.

Having now defined addition for distinct poins, one should begin to wonder whether
there is a corresponding natural definition for adding a point to itself. That is, if
P = Q, then what should P + Q look like? Fortunately, there is a very natural way
of definining this, namely, imagine the point Q 6= P creeping slowly towards P on the
elliptic curve E. The line going through both of these points then tends to the tangent
of the elliptic curve at the point P . Consequently, P + P should equal the reflection
of the point on the elliptic curve through which the tangent line at the point P passes
through. The graph below should make this last statement a little bit clearer.

Another pertinent question one should be asking is whether there exists a point resem-
bling 0 on the curve, that is, whether there exists a point Q, such that for all points
P on the curve, P +Q = P . The short and deflating answer is that there are no such
points. However, using a little bit of projective geometry we can define a point at infin-
ity (denoted ∞) which non-intuitively lies simultaneously at the “very” top and at the
“very” bottom of the graph. For an intuitive explanation of this unusual phenomenon
see [Spe96]. Geometrically, any vertical line on the graph will intersect this point at
infinity.

P

Q

(P +Q)′

P +Q

P (2P )′

2P

P = P +∞

(P +∞)′

Figure 3.1

Now that we’re done with the particulars of defining addition on an elliptic curve, we
can figure out the general form of the resulting point.
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Lemma 3.1. (Addition formulae) Let E be an elliptic curve of the form y2 = x3 +
Ax+B. Suppose that we know two points P1 = (x1, y1) and P2 = (x2, y2) on the curve
satisfying P1, P2 6=∞. Let P3 = (x3, y3) be the resulting point of P1 + P2. Then:

1. If x1 6= x2, we have

x3 = m2 − x1 − x2, y3 = m (x1 − x3)− y1, m =
y2 − y1
x2 − x1

.

2. If x1 = x2 but y1 6= y2, then P1 + P2 =∞.

3. If P1 = P2 and y1 6= 0, we have

x3 = m2 − 2x1, y3 = m (x1 − x3)− y1, m =
3x21 + A

2y1
.

4. If P1 = P2 and y1 = 0, then P1 + P2 =∞.

Proof. 1.If x1 6= x2, then the slope of the line passig through P1 and P2 is m = y2−y1
x2−x1

.
Subbing the line into the equation for the elliptic curve we get

(m(x− x1) + y1)
2 = x3 + Ax+B =⇒ x3 −m2x2 + ... = 0.

Notice that the x coordinates of P1 and P2 satisfy the equation above when plugged
in because they lie on both the curve and the line. We now use the fact that the
coefficient of the second order term of a monic cubic is the sum of its roots multiplied
by negative one. In our case this means that −(x1 +x2 +x3) = −m2. Since we already
know x1 and x2 we can just rearrange to get x3 = m2 − x1 − x2. To finish off, we sub
in x3 to get y3 = m (x1 − x3)− y1.
2. If x1 = x2 but y1 6= y2 then P2 is the reflection of P1 in the x-axis. Consequently,
the line passing through both of them is vertical and therefore intersects the curve at
∞. Reflecting the point ∞ over the x-axis we get ∞ again.

3. If P1 = P2 and the y coordinate is nonzero, we are looking for the tangent to the
point P1 on the curve. To obtain this we need to find the slope first. If we perform
some implicit differentiation on the equation of the elliptic curve we obtain

2y
dy

dx
= 3x2 + A =⇒ m =

dy

dx
=

3x21 + A

2y1

We can then perform the exact same steps as for part 1, with x1 as a double root
(since line is tangent at P1 rather than intersecting) to obtain x3 = m2 − 2x1 and
y3 = m(x1 − x3)− y1.
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4. We can see from the implicit differentiation carried out in part 3 that the tangent
to any point with y coordinate will be infinte. This just means that the tangent line is
vertical. Consequently, the third point of intersection is ∞ and reflecting this across
the x-axis we get ∞ again. �

The case when either of the points is ∞ is trivial. Moreover, notice that we have also
demonstrated that the sum of any two rational points on an elliptic curve results in
another rational point on the elliptic curve, as alluded to earlier. Technically though,
this is true only if we treat the point∞ as a rational point also, which we shall assume
henceforth.

3.2 Addition as a Group Operation

We now formally state our assumption from the preceding section:

Definition 3.1. Let E be an elliptic curve over Q of the form y2 = x3 +Ax+B. Then

E(Q) =
{

(x, y) ∈ Q×Q | y2 = x3 + Ax+B
}
∪ {∞}

that is, E(Q) denotes the set of all rational points on the curve E along with the point
at infinity.

We’ve seen from Lemma 3.1 that the sum of two rational points on an elliptic curve
yields another rational point, that is, if P,Q ∈ E(Q) then P + Q ∈ E(Q). At this
instance, we may begin considering whether (E(Q),+) might form a group. It turns
out that it actually does.

Lemma 3.2. Let E be an elliptic curve over Q of the form y2 = x3 + Ax + B. Then
(E(Q),+) forms a group.

Proof. Closure is implied by Lemma 3.1. For the identity we have the point at infinity.
Now dealing with inverses, given any point P on E(Q), we can define −P to be the
reflection of the point P through the x-axis. This ensures that the line passing through
P and −P is vertical which in turn gives P + (−P ) = ∞. The last property which
remains to be verified is associativity, that is, whether

(P +Q) +R = P + (Q+R).

holds. Unfortunately, the proof of this property is not so straightforward and spans
several pages. We refer the interested reader to [Fri17]. �
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To compensate for the lack of proof with regards to the associativity property above, the
reader may find it interesting to note that if we let the symbol ⊕ denote the operation
of basic addition, that is, without reflection across the x-axis then the following are
tantamount

(P +Q) +R = P + (Q+R) ⇐⇒ (P ⊕Q)⊕−R = −P ⊕ (Q⊕R).

which provides a corresponding semi-associative rule for the ⊕ operation, and also
demonstrates why ⊕ is not associative in general, thereby disqualifying (E(Q),⊕)
from forming a group.

From here on we shall use E(Q) to denote the group (E(Q),+) in order to simplify
notation. The fact that E(Q) turns out to be a group will prove to be of invaluable
help in the work that follows. Before moving on to the next section one should also
notice that E(Q) is in fact abelian. This follows from the fact that for any two points
P,Q on the elliptic curve E, the line passing through the points P and Q is same as
that passing through the points Q and P .

3.3 Addition on Singular Curves

Before moving on, it is important to be able to distinguish between singular and non-
singular cubic curves. By Definition 2.1 the former are not elliptic curves.

2 4

−10

−5

5

10

X

Y

(a) y2 = x3 − x− 1

−1 1 2

−2

2

X

Y

(b) y2 = x3 − 2x+ 1

−2 2

−2

2

X

Y

(c) y2 = x3 − x+ 1
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(d) y2 = x3

−5 5 10

−20

20

X

Y

(e) y2 = x3 − 27x+ 54

Figure 3.2

The first three cubic curves contain no singularities and are therefore elliptic curves.
The last two cubic curves both contain singularities at the red points and as such
are not elliptic curves. Assuming that our cubic curve is in Weierstrass form, there
is a simple method for determining whether the cubic curve is non-singular, that is,
whether it is an elliptic curve.

Lemma 3.3. A curve y2 = x3 + Ax+B is singular if and only if the discriminant of
the cubic is zero, that is, 4A3 + 27B2 = 0.

Proof. Let F (x, y) = y2 − (x3 + Ax + B) denote the implicit function for an elliptic
curve E. By definition, a point P on the curve is singular if the partial derivatives Fy

and Fx at the point P are both zero. We have Fy = 2y and Fx = 3x2 + A. Setting
these both equal to zero gives y = 0 and Fx = 0.

First, notice that if y = 0 then plugging this into the equation of the curve we get
x3 + Ax + B = 0. Secondly, notice that Fx = 0 if and only if d

dx
(x3 + Ax + b) = 0.

We therefore have that the cubic itself and its derivative are both zero at the point of
singularity. This is true if and only if there is a double root present, which means that
the discriminant of this cubic must be zero, that is, 4A3 + 27B2 = 0.

The other direction is easily obtained by traversing back up the argument. �

Example 3.1. The curve y2 = x3 displayed in fourth figure above has A,B = 0 so
it’s clearly singular. On the other hand, the corresponding Weierstrass equation of
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y2 = x(x+ 5)(x+ 10) is y2 = x3 − 25x which is nonsingular since (−25)3 6= 0. �

The method above is useful if the curve is given in Weierstrass form. However, one
can look at the partial derivatives directly also, which may be more convenient some-
times than transforming a curve into Weierstrass form and then applying the result
above.

Example 3.2. The implicit function for the last curve in the grid above is F (x, y) =
y2 − x3 − x2. We have Fy = 2y and Fx = −3x2 − 2x. Setting these both equal to 0 we
obtain the singular point (0, 0), which implies that this curve is singular. �

Example 3.3. The implicit equation of y2 = x(x + 5)(x + 10) is F (x, y) = y2 − x3 −
15x2 − 50x, and Fx = −3x2 − 30x− 50, Fy = 2y. Setting these both equal to 0 again
yields no points on the curve, which means that the curve is non-singular. �

In what follows we shall concern ourselves very briefly with determining some properties
of singular curves analogous to those which will be studied for non-singular elliptic
curves.

Using elements in the proof of Lemma 3.3, we know that a cubic curve in Weierstrass
form is singular only if y = 0 and the corresponding cubic has at least a double root.
Since a cubic has at most three roots, the curve will be singular when we have either
a double or triple root. We consider these two cases separately.

Suppose that the curve has a triple root at y = 0. Then y2 = (x− a)3 which becomes
y2 = x3 after a change of coordinates with singularity at (0, 0). Consider the set

EN(K) = {(x, y) ∈ K ×K | y2 = x3, (x, y) 6= (0, 0)} ∪ {∞}

of non-singular points on the curve. Then EN(K) = (EN(K),+) actually forms a
group where the operation “+” is the aformentioned elliptic curve addition. Checking
for identity and inverses is trivial. Associativity can be generalised from Q to any
arbitrary field K, and for closure we just need to ensure that the sum of two points
is never (0, 0). However, by examining the graph (see Figure 3.2 (d)) or doing the
required algebra, it is not difficult to see that any line passing through (0, 0) can only
intersect at most one other point on the curve. Consequently, since we cannot have a
line passing through (0, 0) and two other distinct points on the curve, no two points can
sum to give (0, 0), demonstrating closure. We therefore obtain that EN(K) is a group.
We have the following theorem concerning the structure of EN(K) [Was08]:
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Theorem 3.4. Let E a curve over a field K defined by y2 = x3. Then the map

ψ : EN(K)→ K

∞ 7→ 0, (x, y) 7→ x

y

is a group isomorphism, where K is regarded as a group under addition. �

For the second scenario, a double root implies a curve of the form y2 = (x+ a)(x+ b)2

which by a simple change of coordinates becomes y2 = x2(x + c) (see Figure 3.2 (e)).
We define EN(K) correspondingly for this curve E which also turns out to be a group.
The following theorem demonstrates this and gives the possible structures for EN(K)
[Was08]:

Theorem 3.5. Let E be a curve over a field K defined by y2 = x2(x + c) with c 6= 0.
Define γ =

√
c. Define the map

ψ : EN(K)→ K(γ)×

∞ 7→ 1, (x, y) 7→ y + γx

y − γx.

1. If γ ∈ K, then ψ is a group isomorphism where K× is regarded as a group under
multiplication.
2. If γ /∈ K, then ψ induces a group isomorphism

EN(K) ∼=
{
u+ γv | u, v ∈ K, u2 − cv2 = 1

}
where the right-hand side is regarded as a group under multiplication. �

The results above demonstrate that removing the corresponding singularities from each
curve ensures that the remainings set of solutions EN(K) forms a group. In particular
we have that EN(Q) forms a group for each singular curve. It should be noted however,
that although EN(Q) and E(Q) form groups with exactly same operation for their
respective singular and non-singular curves, our results in the following sections will
demonstrate that their structures are in fact quite different.

4 Points of Finite Order

4.1 Torsion Subgroup

From the previous section, we now know that E(Q) forms a group for our elliptic curve
y2 = x(x + 5)(x + 10). Recall that our primary goal was finding whether the set of
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solutions to the elliptic curve E, that is, E(Q), is finite or infinite. To solve this we split
E(Q) into two: the set of points with finite order and the set of points with non-finite
order. In this section we concentrate on the former.

Definition 4.1. Let E be an elliptic curve over Q of the form y2 = x3 + Ax+ B and
let E(Q) be the set of all rational points on this curve. We define

ET (Q) = {P ∈ E(Q) | ∃n ∈ N : nP =∞}

to be the set containing all points in E(Q) which have finite order. ET (Q) is called
the torsion subgroup of E(Q). Henceforth, we refer to points of finite order as torsion
points.

Lemma 4.1. Let E be an elliptic curve over Q of the form y2 = x3 + Ax + B. Then
ET (Q) is a subgroup of E(Q).

Proof. We can just check the group axioms one by one. We obviously have∞ ∈ ET (Q).
Furthermore, we obtain associativity (and commutativity) for free since ET (Q) ⊂
E(Q). This allows us to prove the next property. For inverses, if nP = ∞ then
taking the inverse of both sides we obtain −nP = n(−P ) = ∞ also. For closure,
if P1, P2 ∈ ET (Q) then nP1 = mP2 = ∞, which means that nm(P1 + P2) = ∞,
demonstrating that P1 + P2 must be an element of ET (Q) also. �

Example 4.1. Recall the elliptic curve y2 = x(x + 1)(x + 2). We stated that the
only rational points on this curve were the obvious (0, 0), (−1, 0) and (−2, 0). To
check whether any of these are torsion points we might look at multiples of each point.
Indeed, it’s not difficult to see that for any of the preceding rational points P we have
2P = ∞. This follows either from a direct calculation using Lemma 3.1 or by simply
drawing the tangent to each of the points on the curve.

The point ∞ is obviously a torsion point also, but we did not have any notion of
such a point in the beginning. As a result, for this elliptic curve E we have that
ET (Q) = E(Q) = {(0, 0), (−1, 0), (−2, 0),∞}. Futhermore, by playing around with
the elements, or by noticing that |ET (Q)| = 4 and that three of the elements have
order 2 we can deduce that ET (Q) ∼= Z2 ⊕ Z2. �

In the example above we were handed E(Q). Moreover, E(Q) and hence ET (Q) were
known to be finite, however, we don’t know whether this will the case in general.
Ideally, we’d like to find a method which enables us to find the torsion points in E(Q)
without any of these assumptions, which is what we set out to do now.
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Figure 4.1

4.2 The Lutz-Nagell Theorem

Definition 4.2. Let x, y be relatively prime integers. Consider the rational number
x
y

= pr x
′

y′
, where the prime p does not divide x′y′. We define the p-adic valuation to be

vp

(
x

y

)
= r.

We also define vp(0) =∞.

Example 4.2. Let q = 52

3
. Then v3(q) = −1, v5(q) = 2 and vp(q) = 0 for all other

primes p. �

Definition 4.3. Let E be an elliptic curve of the form y2 = x3+Ax+B with A,B ∈ Z.
Then for any positive integer r and prime p we define

Ep,r = {(x, y) ∈ E(Q) | vp(x) ≤ −2r, vp(y) ≤ −3r} ∪ {∞}.

In other words, Ep,r is the set of rational points on the curve E whose x coordinate
has at least p2r in it’s denominator, and whose y coordinate has at least p3r in its
denominator.

Convention: In what follows, we write d | q for some rational number q, if d divides the
numerator of q. Similarly, we also write d ≡ r (mod p) if the r is the remainder after
dividing the numerator of q by d.

Lemma 4.2. Let E be an elliptic curve given by y2 = x3 + Ax + B with A,B ∈ Z.
If (x, y) ∈ E(Q) then vp(x) < 0 if and only if vp(y) < 0. If the previous is true, then
there also exists a positive integer r such that vp(x) = −2r and vp(y) = −3r.
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Proof. Since y2 = x3 + Ax + B we must have that the denominator of the left-hand
side must equal the denominator of the right-hand side. Using this, along with the fact
that A,B ∈ Z, we can see that p divides the denominator of y if and only if it divides
the denominator of x. This proves the first part.

Now, let a be the greatest positive integer for which pa divides the denominator of y.
Then we must have that p2a divides the denominator of y2 exactly. Similarly, if b is
the greatest positive integer such that pb divides the denominator of x, then p3b must
divide x3 + Ax + B exactly. Consequently, we must have that 2a = 3b, which implies
that a = 3r and b = 2r for some positive integer r. By hypothesis, this now means
that p3r divides the denominator of y and p2r divides the denominator of x. �

Lemma 4.3. Let E be an elliptic curve given by y2 = x3 + Ax + B with A,B ∈ Z.
Define the variables t = x

y
and s = 1

y
. Then, the point (x, y) ∈ E(Q) belongs to Ep,r if

and only if p3r | s . If p3r | s then pr | t.

Proof. It’s not difficult to see that (x, y) ∈ Ep,r implies p3r | s. On the other hand,
suppose that p3r | s. Then by definition, p3r divides the denominator of y. By Lemma
4.2 it therefore follows that p2r divides the denominator of x. For the second part, if
p3r | s then by definition p3r divides the denominator of y. Applying Lemma 4.2 again
we obtain the result. �

Lemma 4.4. Let E be an elliptic curve given by y2 = x3 + Ax + B with A,B ∈ Z.
Define the variables t = x

y
and s = 1

y
. A line t = c with c ∈ Q satisfying c ≡ 0 (mod p),

intersects the curve s = t3 + As2t + Bs3 in at most one point (s, t) such that s ≡ 0
(mod p). If it exists, the line is not tangent at this point of intersection.

Proof. Suppose not. Then there exist two distinct values s1 6= s2 such that s1 ≡ s2 ≡ 0
(mod p). This is the base case for the induction process. Suppose that s1 ≡ s2
(mod pk) for some k > 1. We wish to show that it then holds for k + 1. Let si = ps′i.
Then s′1 ≡ s′2 (mod pk−1) which implies that s′1

2 ≡ s′2
2 (mod pk−1). It then follows

that s21 = p2s′1
2 ≡ p2s′2

2 = s22 (mod pk+1). In the same manner, s31 ≡ s32 (mod pk+2)
which implies s31 ≡ s32 (mod pk+1). As a result we have that

s1 = c3 + Acs21 +Bs31 ≡ c3 + Acs22 +Bs32 = s2 (mod pk+1)

which completes the induction. Now choosing k such that pk > s1, s2 we obtain s1 ≡ s2
(mod pk) which implies that s1 = s2, which is a contradiction. Hence, there exists at
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most one point (s, t) of intersection between the line and elliptic curve satisfying s ≡ 0
(mod p).

For the second part we begin by finding the slope of the tangent line to the elliptic
curve. We obtain this by implicit differentiation of the elliptic curve equation with
respect to the variable t (the analogue of x). After rearranging everything we get

ds

dt
=

3t2 + As2

1− 2Ast− 3Bs2

Assume now that the line t = c really is tangent to the curve at (s, t). Since this is
a vertical line we must have that 1 − 2Ast − 3Bs2 = 0. However s ≡ t ≡ 0 (mod p)
implies that 1− 2Ast− 3Bs2 ≡ 1 6≡ 0 which is a contradiction, and the result follows.

�

Definition 4.4. Let E be an elliptic curve given by y2 = x3 +Ax+B with A,B ∈ Z.
Then for any positive integer r and prime p we define

λp,r : Ep,r/Ep,5r → Zp4r

(x, y) 7→ p−rx/y (mod p4r)

∞ 7→ 0

where Zpr is a group under addition.

Lemma 4.5. Let E be an elliptic curve given by y2 = x3 + Ax+ B with A,B ∈ Z. If
(x, y) ∈ Ep,r but (x, y) /∈ Ep,r+1 we have λp,r(x, y) 6≡ 0 (mod p).

Proof. Notice that

{(x, y) ∈ Ep,r | vp(x) = −2r, vp(y) = −3r} = {(x, y) ∈ Ep,r | vp(x/y) = r}.

This is the set of points which are in Ep,r but not in Ep,r+1. Therefore λp,r(x, y) =
p−r(prx′/y′) = x′/y′ with p - x′y′ which implies that λp,r(x, y) 6≡ 0 (mod p). �

Proposition 4.6. Let E be an elliptic curve given by y2 = x3 +Ax+B with A,B ∈ Z.
Suppose that P1, P2 are points in Ep,r and let P1+P2 = P̄3 = −P3, that is, P1+P2+P3 =
∞. Then P3 ∈ Ep,r and

λp,r (P1) + λp,r (P2) + λp,r (P3) ≡ 0
(
modp4r

)
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Proof. Begin by dividing y2 = x3 + Ax+B by y3 to get

1

y
=
x3

y3
+ A · x

y
· 12

y2
+B · 13

y3
.

Making the substitutions t = x
y
and s = 1

y
we get s = t3 + Ats2 + Bs2. Next, suppose

that P1, P2, P3 ∈ E(Q), P1, P2 ∈ Ep,r lie on the line given by ax+ by+ d = 0. Dividing
by y and making our prior substitution again we obtain at + b + ds = 0. The dual of
the points Pi = (xi, yi) are the P ′i = (si, ti), which lie on the line just obtained.

Using a little projective geometry it can be shown that the order of intersection of the
initial line and elliptic curve at a point Pi, is the same as that of the transformed line
and transformed elliptic curve at the point P ′i . The order of intersection at a point P is
essentially the multiplicity of the root at this point, when the equation for the line and
elliptic curve are combined into one. Therefore “clean” intersections and tangent lines
in the variables x, y correspond to “clean” intersections and tangent lines respectively
in the variables s, t. As a result, we can do apply the addition formulae in the variables
s, t instead of x, y.

Next, suppose that the coefficient of s in the line equation is zero, so that it takes
the form t = −b

a
= c, with c ∈ Q. By hypothesis this line passes through the points

P ′1, P
′
2 ∈ Ep,r. Turning to Lemma 4.3 we get that p3r | s1, s2 and pr | t1, t2 which means

that si, ti ≡ 0 (mod p). Applying Lemma 4.4, there can only be one point with si ≡ 0
which implies that P1 = P2. This means that the line is tangent to the curve at this
point. A second application of Lemma 4.4 insists that the line cannot be tangent to
the curve at such a point, which is a contradiction.

Since d 6= 0 we divide across by it to obtain a line of the form s = αt + β. One can
consider the cases t1 = t2 and t1 = t2 (applying Lemma 4.4 to the former) to obtain
that

α =
t22 + t1t2 + t21 + As22

1− A (s1 + s2) t1 −B (s22 + s1s2 + s21)

By hypothesis, pr | ti, from which it follows that the numerator of α is congruent to
zero modulo p2r. However, since we do not know whether the fraction is in it’s lowest
terms, to secure this result we need to check whether the denominator is divisible by
p. Recall that s1 ≡ s2 ≡ 0 (mod p). As a result the denominator of α is congruent to
1 modulo p, which means it’s not divisible by p. Therefore, α ≡ 0 (mod p2r) indeed.
Combining this with the fact that p3r | si and pr | ti we also obtain that β ≡ si−αti ≡ 0
(mod p3r).
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We now turn our attention to finding the coordinates (s3, t3) of the point P ′3. Since
this points lies on the intersection of the transformed line with the transformed elliptic
curve, we can make the required substitution to obtain

t3 +
2Aαβ + 3Bα2β

1 +Bα3 + Aα2
t2 + ... = 0.

We now reuse the method from Lemma 3.1: the sum of the roots of this equation is
equal to negative one times the coefficient of the t2 term. More explicitly we have that

t1 + t2 + t3 = −2Aαβ + 3Bα2β

1 +Bα3 + Aα2
.

The denominator is not divisible by p therefore, as explained above, we need not worry
whether the fraction is in it’s lowest terms when viewing it modulo any power of p.
Since we’ve just obtained that p2r | α and p3r | β, the right hand side is congruent to
zero modulo p5r, that is

t1 + t2 + t3 ≡ 0 (mod p5r).

A consequence of this congruence is t1 + t2 + t3 ≡ 0 (mod p). Since P1, P2 ∈ Ep,r we
have that p | t1, t2 which implies that t3 ≡ 0 (mod p). This now allows us to easily
verify the fact that s3 = αt3 + β ≡ 0 (mod p3r), which by a change of coordinates
demonstrates that P3 ∈ Ep,r also.

To prove the last part, we use the fact just obtained (in order to apply the map to P3)
along with the congruence again to get

λr (P1) + λr (P2) + λr (P3) ≡ p−rt1 + p−rt2 + p−rt3 ≡ p−r (t1 + t2 + t3) ≡ 0 (mod p4r)

which demonstrates the required congruence relation. �

Corollary 4.7. Let E be an elliptic curve given by y2 = x3 +Ax+B, with A,B ∈ Z.
Then for any positive integer r and prime p, Ep,r is a subgroup of E(Q).

Proof. We check all the group axioms: We have the identity by definition. Associativity
follows from the fact that Ep,r ⊂ E(Q). It’s also not difficult to see that−P = (x,−y) ∈
Ep,r if and only if P = (x, y) ∈ Ep,r. Closure follows immediately from Proposition 4.6.

�

Corollary 4.8. Let E be an elliptic curve given by y2 = x3 +Ax+B, with A,B ∈ Z.
Then for any positive integer r and prime p the map λp,r is a monomorphism.
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Proof. First notice that

λp,r(−(x, y)) = λr(x,−y) = −p−rx/y = −λp,r(x, y)

that is, λp,r(−P ) = −λp,r(P ). Suppose that P1, P2 are points in Ep,r and P1 + P2 =
P ′3 = −P3. Then the image of P1 + P2 is

λp,r (P1 + P2) = λr (−P3) = −λp,r (P3) = λp,r (P1) + λp,r (P2)

where the last equality follows from Proposition 4.6. This proves that the map is a
homomorphism. To show that the homomorphism is injective, note that if λp,r(x, y) ≡ 0
(mod p4r), then vp(x/y) ≥ 5r, which means that (x, y) ∈ Ep,5r. This demonstrates that
the kernel of λp,r is trivial. �

Corollary 4.9. Let E be an elliptic curve given by y2 = x3 + Ax + B with A,B ∈ Z
and p be a prime. If n 6= pk, k > 0, then Ep,1 contains no points of order exactly n.

Proof. Suppose the contrary. Then there exists a point P ∈ Ep,1 of order n = pkn′,
where k ≥ 0 and p - n′. If we multiply P by pk we obtain a point P ′ whose order is
coprime to p. Suppose that r is the largest integer for which P ∈ Ep,r. Then

nλp,r(P ) = λp,r(nP ) = λp,r(∞) ≡ 0 (mod p4r)

From the congruence above, since p - n we have that λp,r ≡ 0 (mod p4r) which by
definition of the map implies that P ∈ Ep,5r. However since we assumed r was the
largest integer, 5r > r provides a contradiction and the result follows. �

Theorem 4.10 (Lutz-Nagell). Let E be an elliptic curve of the form y2 = x3 +Ax+B
with A,B ∈ Z, and let P = (x, y) be a point on the curve. If P has finite order then
x, y ∈ Z. Moreover, if y 6= 0 then y2 divides the discriminant, that is, y2 | 4A3 + 27B2.

Proof. Suppose the first part is false. Then there exists a point P = (x, y) on E(Q)
with either x or y not in Z. This means that x or y is in Q, so we can assume that
there is some prime p dividing the denominator of one. Consequently, by Lemma 4.2,
P ∈ Ep,r for some positive integer r which implies that P ∈ Ep,1. Suppose next that q
is a prime which divides the order of n of P . This means that the order of the point
Q = n

q
P is q. Consequently, Q is also a member of the group Ep,1 since it’s a multiple

of P . Using Corollary 4.9 we therefore obtain that q = p. Now choose an integer j such
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that Q ∈ Ej, Q 6∈ Ej+1. This means that λp,j(Q) 6≡ 0 (mod p). However, we also have
that pλp,j(Q) = λp,j(pQ) ≡ 0 (mod p4j), which means that λp,j(Q) ≡ 0 (mod p4j−1)
implying that λp,j(Q) ≡ 0 (mod p), a contradiction. As a result, we must have that
the coordinates of any torsion point on the curve E(Q) are integral.

For the second part, by Lemma 3.1, if y 6= 0 then 2P 6= ft. By hypothesis, P = (x, y)
has finite order implies the same for 2P = (x′, y′). By the part proven above, this
means that x′, y′ ∈ Z. Using Lemma 3.1 again we can obtain x′ explicitly in terms of
x, y:

x′ =
x4 − 2Ax2 − 8Bx+ A2

4y2

Since x′ is an integer this means that y2 divides the numerator x4− 2Ax2− 8Bx+A2.
Moreover, since y2 = x3 + Ax+ B we know that y2 will divide c1(x4 − 2Ax2 − 8Bx+
A2) + c2(x

3 +Ax+B) for any integers c1, c2. Setting c1 = 3x2 + 4A and c2 = (−3x2 +
5Ax+ 27B2) yields the result. �

Example 4.3. We can now retackle the example from Section 4.1 without making
any of the previous assumptions. As before, let E be the elliptic curve defined by
the equation y2 = x(x + 1)(x + 2) = x3 + 3x2 + 2x. To use the theorem above, we
first need to transform this into its corresponding Weierstrass equation by effecting the
substitution x = x′− 1 (given in Section 2.1), to obtain y2 = x′3− x′. It is not difficult
to show that torsion points on this curve are in bijection with torsion points on the
initial curve.

If y = 0 we have the points (0, 0), (1, 0), (−1, 0). It can be easily verified that these are
torsion points. If y 6= 0 then the discriminant is 4(−1)3 − 27(0)2 = −4. The values
of y for which y2 | −4 are y = ±2. If we sub these into the equation for the curve
and solve for x, we do not obtain any integer values. By Theorem 4.10, since x′ 6∈ Z
it follows that these points are not finite. We’ve now eliminated all possibilities which
means that ET (Q) = {(0, 0), (1, 0), (−1, 0),∞}.
If we apply the inverse transformation (x′ = x + 1) to go back to the original elliptic
curve we obtain ET (Q) = {(0, 0), (−1, 0), (−2, 0),∞} in accordance with Example 4.1.
As we’ve already worked out: ET (Q) ∼= Z2 ⊕ Z2. �

Example 4.4. We now find the torsion points for the curve y2 = x(x + 5)(x + 10).
Converting this to its corresponding Weierstrass equation we get y2 = x3−25x. Setting
y = 0 we obtain the points (0, 0), (5, 0), (−5, 0).
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If y 6= 0, then by Theorem 4.10 we have y2 | 4(−25)3− 27(0)2 = −(2 · 53)2, which then
implies that y | 2 · 53. Unfortunately, none of the values yield a point with integer
coordinates. After applying the inverse coordinate transformation, this means that
ET (Q) = {(0, 0), (0,−5), (0,−10),∞} ∼= Z2 ⊕ Z2 again. �

Example 4.5. Consider the elliptic curve E defined by y2 = x3 + 1. If y = 0 then we
obtain the torsion point (−1, 0). For y 6= 0 we must have that y2 | 4(0)3−27(1)2 = −27,
that is, y | 3 so that y ∈ {±1,±3}. It turns out that each one of these possibilities corre-
sponds to an integer point on the curve, namely (0,±1) and (2,±3). To check if they are
torsion we look at some small multiples and find that 3·(0,±1) =∞ and 6·(2,±3) =∞.
Also, after checking the interactions between the points our suspicions concerning the
structure of E(Q) are confirmed and we have E(Q) = {(−1, 0), (0,±1), (2,±3),∞)} ∼=
Z6. �

It’s not difficult to see that the Lutz-Nagell procedure ensures that ET (Q) is always
finite. We can state this result formally, for any curve E over E(Q):

Lemma 4.11. Let E be an elliptic curve of the form y2 = x3 +Ax+B over Q. Then
ET (Q) is finite.

Proof. If the coefficients A,B are not integers, a suitable change of coordinates (x →
x/c2, y → x/c3 and then multiplying across by c6) produces new coefficients A′, B′ ∈ Z.
One can check that torsion points on the initial curve correspond to torsion points on
the transformed curve, and vice versa. Therefore, it is sufficient to prove the result for
the transformed curve.

If y = 0, then there are at most three corresponding x values (by solving for the
remaining cubic). By Theorem 4.10, if y 6= 0, there are only finitely many values of y
such that y2 divides the discriminant. For each of these, there are again at most three
correspoding x values. Therefore, ET (Q) is finite. �

4.3 Structure

Although the Lutz-Nagell Theorem provides a deterministic procedure for identifying
finite rational points on an elliptic curve, it can benefit from some improvement. If
the coefficients A,B are large it can be very time-consuming to search for all possible
integral points. However, since ET (Q) is a group we could take multiples and combina-
tions of points to find new points. Although this extension is much more efficient than
the original method, we cannot, at any stage, be certain that we have managed to find
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all the torsion points. However, if we deduced the structure of ET (Q) beforehand, the
problem is solved, and the extension becomes viable.

The following theorem places some convenient limits on the structure of ET (Q). Recall
that E(Q) is an abelian group. Consequently, the subgroup ET (Q) is also an abelian
group. Moreover, by Lemma 4.11 it is also finite (see conditions in theorem below).
The original proof can be found in [Kro70]:

Theorem 4.12. Let T be a finite abelian group. Then

T ∼= Z
p
k1
1
⊕ · · · ⊕ Zpknn

with each component a cyclic group under addition. �

The lemma above is extremely useful as it eliminates a sea of possibilities for the
structure of E(Q), however, it does not provide us with a method for obtaining the
specifics. To obtain this we do a little more supplementary work.

Lemma 4.13. Let E be an elliptic curve of the form y2 = x3 +Ax+B with A,B ∈ Z.
Assume that p is an odd prime and that it does not divide the discriminant. Define the
map

ρp : ET (Q)→ E(Zp)

to be the reduction modulo p map. Then ρ(P ) =∞ implies that P =∞.

Proof. The first condition ensures that the discriminant is non-zero modulo p, which
by Lemma 3.3 guarantees that the curve is non-singular modulo p. If P 6= ∞ then
by Theorem 4.10 it has integral coordinates and ρ(P ) 6= ∞. Consequently, it is only
possible to have ρ(∞) =∞. �

In particular, we have demonstrated that for suitable p, the group homomorphism ρp
is an injection. As a result, the order of ET (Q) will have to divide the order of E(Zp).
We use this fact to our advantage in the example below.

Example 4.6. Suppose we wish to find the torsion subgroup of y2 = x3−432x+8208.
A quick calculation shows that the primes which divide the discriminant are 2, 3 and
11. We begin with the smallest prime which we can use. Therefore, consider E(Z5). A
rapid computer search gives E(Z5) = {(3, 2), (3, 3), (4, 2), (4, 3)}. Of course, we must
also include the point ∞ by definition, which means that the order of E(Z5) is 5. As
a result, the order of ET (Q) must also divide 5, which in turn implies that ET (Q) is
trivial or ET (Q) ∼= Z5.
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Now that we’ve found the structure of ET (Q), we can use Theorem 4.10. If we find
at least one non-trivial point we’ll be able to generate the rest because of the group
structure. Otherwise we’ll have to unfortunately search through all possibilities to
reach the conclusion that ET (Q) is trivial.

By the theorem, y2 | 4(−432)3 + 27(8202)2 = (24)2 · (36)2 ·11. As a result we must have
y | 24 · 36. Next, running our computer search we obtain the point P = (−12, 108). We
calculate 5P =∞ which confirms that this point is indeed torsion. We can now use this
point to generate the remaining torsion points: 2P = (24,−108), 3P = (24, 108), 4P =
(−12,−108). Summing everything up, we have

ET (Q) = {(−12, 108), (−12,−108), (24, 108), (24,−108),∞} ∼= Z5.

�

Theorem 4.12 is a result about finite abelian groups in general, and although it places
some helpful constraints on the structure, the number of possible structures are still
infinite. However, if we let G = E(Q) one can obtain (after much laborious work) the
following useful result [Maz77] [MG78]:

Theorem 4.14 (Mazur’s Theorem). Let E be an elliptic curve over Q. Then ET (Q)
is isomorphic to one of the below:

Zn with 1 ≤ n ≤ 10 or n = 12;

Z2 ⊕ Z2n with 1 ≤ n ≤ 4.

In particular, there are only finitely many possibilities for the structure of E(Q). �

The motivation behind all of our investigations thus far have been borne from the
question posed at the beginning, that is, whether the set of rational points on the
curve defined by y2 = x(x + 5)(x + 10) was finite or not. We figured out previously
that (9,−6) lies on the curve. However, now that we know all the torsion points (see
Example 4.4), we can deduce that (9,−6) /∈ ET (Q). Consequently, adding the point
(9,−6) to itself repeatedly will always yield new rational points on the curve, from
which it follows that E(Q) is infinite.

Recall that at the beginning of Section 4.1 we anticipated that it would be necessary
to study both the torsion and non-torsion parts of E(Q) to answer our initial question.
Although the results in this section have demonstrated otherwise, there may be plenty
value remaining in studying the non-torsion part of E(Q) also.
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5 Points of non-Finite Order

5.1 The Weak Mordell-Weil Theorem

In the previous section we were concerned with finding a list of all the torsion points.
Since ET (Q) turns out to be finite, this was fine. Unfortunately, here we cannot expect
to be able to list an infinite number of points. What would be feasible, however, would
be to list the generators if they exist. If there are an infinite number of generators
then this is unfortunate as well, but we first find out whether this is the case. Also,
instead of considering E(Q) − ET (Q) it is actually more conventient to just consider
E(Q) as a whole, since the latter set is only bigger by a finite number of elements and
also has the convenient property of being a group. We first show that E(Q)/2E(Q) is
finite.

To begin with, suppose that E is an elliptic curve over Q of the form y2 = (x− e1)(x−
e2)(x − e3) with e1, e2, e3 ∈ Z. If we assume more generally that a, b, c ∈ Q then a
suitable change of coordinates provides a new curve E ′ with e′1, e′2, e′3 ∈ Z. Moreover,
even if e1, e2, e3 6∈ Q the arguments will still work out, which ensures that the results
below hold for all elliptic curves over Q, however, we refrain from describing this case.
Supposing then that x, y ∈ Q and e1, e2, e3 ∈ Z. Then we can write

x− e1 = au2

x− e2 = bv2

x− e3 = cw2

with a, b, c ∈ Q. We can now rearrange the original equation to obtain( y

uvw

)2
= abc.

Since abc is a square, we can divide both sides by its denominator to get( y

u′vw

)2
= a′b′c′

with a′, b′, c′ ∈ Z. Therefore we may make the assumption that a, b, c are square-free
integers to begin with.

Definition 5.1. Let E be an elliptic curve of the form y2 = (x − e1)(x − e2)(x − e3)
with e1, e2, e3 ∈ Z. We define

S = {p | p is prime and (e1 − e2) (e1 − e3) (e2 − e3) is divisible by p}
to be the set of primes which divide the pairwise differences of e1, e2, e3.
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Lemma 5.1. Let E be an elliptic curve of the form y2 = (x− e1)(x− e2)(x− e3) with
e1, e2, e3 ∈ Z. If p | abc then p ∈ S.

Proof. If p | abc then p divides a, b or c. Assume without loss of generality that p | a.
Since a is square-free, we must have that pk with k odd is the exact power of p dividing
x− e1.
If k = −k′ < 0 then p−k

′ | x − e1. Since e1, e2 are integers, we can find an integer
n such that e1 + n = e2. As a result, x − e1 − n = x − e2. Since p−k′ | x − e1 we
have that p−k′ | x − e1 − pk

′
n

pk′
= x − e2. By a similar argument we also have that

p−k
′ | x− e3. Putting everything together, we must have that p3k = p−3k

′ | y2 exactly,
which is clearly a contradiction. This means that we cannot have k < 0.

Assume then that k > 0. Then we can write x ≡ e1 (mod p). As a result we have
that x − e2 ≡ e1 − e2 (mod p) and x − e3 ≡ e3 − e1 (mod p). By the argument
above, we saw that if one of the factors x − ei had p in their denominator, then all
the factors had p in their denominators. By the contrapositive, since x − e1 does not
have p in its denominator, neither do the other two factors. Therefore, if p 6∈ S then
p - (x − e2)(x − e3). As a result we must have that pk | y2 = (x − e1)(x − e2)(x − e3)
exactly, which is a contradiction since k is odd. It follows that p ∈ S. �

Notice that since (e1 − e2)(e2 − e3)(e3 − e1) has a finite number of prime factors, S is
finite and therefore the possible combinations of a, b, c must also be finite.

Definition 5.2. Let E be an elliptic curve given by y2 = (x− e1)(x− e2)(x− e3) with
e1, e2, e3 ∈ Z. Define

ϕ : E(Q)→
(
Q×/Q×2

)
⊕
(
Q×/Q×2

)
⊕
(
Q×/Q×2

)
(x, y) 7→ (x− e1, x− e2, x− e3) when y 6= 0

∞ 7→ (1, 1, 1)

(e1, 0) 7→ ((e1 − e2) (e1 − e3) , e1 − e2, e1 − e3)
(e2, 0) 7→ (e2 − e1, (e2 − e1) (e2 − e3) , e2 − e3)
(e3, 0) 7→ (e3 − e1, e3 − e2, (e3 − e1) (e3 − e2))

to be the map which maps point each to a corresponding triple (x− e1, x− e2, x− e3)
modulo squares. When x = ei, or equivalently, when y = 0, we have to modify the ith
component so that interacts well with the rest of the map, in other words, we want to
obtain Theorem 5.2.
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Theorem 5.2. Let E be an elliptic curve given by y2 = (x− e1)(x− e2)(x− e3) with
e1, e2, e3 ∈ Z. Then the map ϕ defined above is a homomorphism. Moreover, we have
ker(ϕ) = 2E(Q).

Proof. Suppose that Pi = (xi, yi) is a triple of points with yi 6= 0, which all lie on E
and on the line y = ax+ b. Subbing the line into the equation for the elliptic curve E
we obtain

(x− e1) (x− e2) (x− e3)− (ax+ b)2 = 0

Since we know that the points Pi lie on both the curve and the line we therefore have
that

(x− e1) (x− e2) (x− e3)− (ax+ b)2 = (x− x1) (x− x2) (x− x3)
Next, letting x = ei the equation above becomes

(x1 − ei) (x2 − ei) (x3 − ei) = (aei + b)2

where the right-hand side is clearly an element of Q×2. As a result, the above will be
congruent to 1 when viewed modulo Q×2. Using the definition of the map we obtain

ϕ (P1)ϕ (P2)ϕ (P3) = ((ae1 + b)2 , (ae2 + b)2 , (ae3 + b)2) ≡ (1, 1, 1) = 1.

Moreover, notice that for any component ϕi in the triple we have ϕi ≡ ϕ−1i because
ϕi = ϕ2

i ·ϕ−1i . As a result ϕ(P3) ≡ ϕ(P3)
−1. Then using the congruence above we have

ϕ(P1)ϕ(P2) ≡ ϕ(P3)
−1 ≡ ϕ(P3) ≡ ϕ(−(P1 + P2)) ≡ ϕ(P1 + P2)

where the last congruence follows from the assumption that the elliptic curve is in
Weierstrass form as usual, before it is factored as per the hypothesis. As a result
reflecting across the x-axis has no effect on the x variable and the calculations remain
unchanged. We have thus demonstrated the first assertion in the case that y 6= 0.

Suppose that P1, P2 are points where y1, y2 = 0. Since there are only a finite number of
such possible points (three to be precise), a case by case check confirms the hypothesis
under these circumstances.

Lastly, consider the case where P1, P2 are points subject to y1 = 0 and y2 6= 0.
Assume without loss of generality that P1 = (e1, 0). Considering these two points
only, the restriction of the map ϕ to ϕ2, ϕ3 is the same for both cases y = 0 and
y 6= 0. Since we have proven the case for y 6= 0 above this takes care of ϕ2, ϕ3. To
take care of the remaining case, notice that ϕ1(P )ϕ2(P )ϕ3(P ) = 1, which implies
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ϕ2(P )ϕ3(P ) = ϕ−11 (P ) = ϕ1(P ). Then using the fact that ϕ2, ϕ3 are already known to
be homomorphisms

ϕ1(P1 + P2) = ϕ2(P1 + P2)ϕ3(P1 + P2) = ϕ2(P1)ϕ3(P1)ϕ2(P2)ϕ3(P2) = ϕ1(P1)ϕ1(P2)

which completes the first part of the proof.

For the second part of the theorem we prove only the first inclusion: notice that
ϕ(2P ) = ϕ(P + P ) = ϕ(P )ϕ(P ) = ϕ(P )2 ≡ 1. As a result we have that for any
P ∈ E(Q), 2P belongs to the kernel of ϕ. �

Theorem 5.3 (Weak Mordell-Weil Theorem). Let E be an elliptic curve of the form
y2 = (x− e1)(x− e2)(x− e3). Then E(Q)/2E(Q) is finite.

Proof. As discussed beforehand, we consider the case where e1, e2, e3 ∈ Q, however, the
result holds in general. If e1, e2, e3 ∈ Q, then a suitable change of coordinates gives us
e′1, e

′
2, e
′
3 ∈ Z. Therefore we assume that e1, e2, e3 ∈ Z to begin with. Using Theorem

5.2 we have that the ker(ϕ) = 2E(Q). Consequently, the map

E(Q)/2E(Q) ↪→
(
Q×/Q×2

)
⊕
(
Q×/Q×2

)
⊕
(
Q×/Q×2

)
will be an injection since its kernel is trivial. By Lemma 5.1 there are only finitely many
combinations of triples (a, b, c). Since the image is contained in this set of possibilities,
it follows that the image of ϕ is finite and therefore E(Q)/2E(Q) must also be finite.

�

Example 5.1. In the previous section we worked out that E(Q) was infinite for the
elliptic curve y2 = x(x + 5)(x + 10). In particular, since the point (9,−6) 6∈ ET (Q) it
would generate infinitely many rational points on the curve. We now take a look at
what happens when we view the group modulo 2E(Q).

The torsion group is unaffected since

ET (Q)/2E(Q) = ET (Q)/2ET (Q) ∼= (Z2 ⊕ Z2)/2(Z2 ⊕ Z2) = (Z2 ⊕ Z2)

however, this doesn’t matter too much since the torsion subgroup is always finite to
begin with. Taking a look at our non-torsion point P = (9,−6) we see that 2nP ≡ ∞
for all non-zero integers n. As a result we must have that (2n+1)P ≡ P for all integers
n, which means that the infinite set of rational points generated by P is reduced to
just two points modulo 2E(Q).
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At this very moment, we don’t know whether we’ve considered all points on the curve
E, therefore we cannot draw the desired conclusion just yet. However, as we’ll show
later, every point in E(Q) is a combination of torsion points and P = (9,−6), which
by the procedure just carried out implies that E(Q)/2E(Q) is finite. �

5.2 Heights and the Mordell-Weil Theorem

Along with the results from Section 5.1, we introduce a new concept referred to as the
“height” of a point P on the elliptic curve. Combining the properties of this function
with the Weak-Mordell Weil Theorem will provide a path towards proving the desired
Mordell-Weil Theorem.

Definition 5.3. Let Q = a/b be a rational number in its lowest terms. We define

H(a/b) = Max(|a|, |b|)

to be the height of the rational number Q. Moreover we define, H(∞) = 0.

We now state a very important property of the function H:

Lemma 5.4. Let c ∈ R. Then there are only finitely many rational numbers a/b ∈ Q
for which H(a/b) ≤ c.

Proof. If H(a/b) ≤ c then Max(|a|, |b|) ≤ c. Consequently, we must have that, −c ≤
a, b ≤ c. Since there are only finitely many integers a, b to choose from, this results
in finitely many ordered pairs, each corresponding to a possible rational number, from
which the result follows. �

Since we’ll be taking the height of points on elliptic curves, we defineH(P ) = H(x, y) =
H(x), that is, we completely disregard the y coordinate. We don’t actually lose any
information since the x and y coordinates are still related through the equation of the
elliptic curve. In our work, it will more convenient to consider an extension of this
definition which has nicer properties:

Definition 5.4. Let Q = a/b be a rational number in its lowest terms. We define

h(a/b) = log H(a/b)

to be the logarithmic height of the rational number Q. As a result, h(∞) = 0.

We have the following useful result about the logarithmic height h. Readers who wish
to examine the proof should refer to [Was08].
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Lemma 5.5. Let E be an elliptic curve over Q. Then there exists an upper bound
k ∈ R such that

|h(P +Q) + h(P −Q)− 2h(P )− 2h(Q)| ≤ k

holds for all points P,Q on E. �

The lemma above indicates that the logarithmic height h is close to being a quadratic
form since it nearly obeys the parallelogram law. We can actually deform h to obtain a
corresponding function ĥ (the canonical height) which obeys the parallelogram law so
that it is by virtue a quadratic form. This result along with other convenient properties
of ĥ will be proven after we define ĥ below.

Definition 5.5. Let Q = a/b be a rational number in its lowest terms. We define

ĥ : Q→ R

Q 7→ 1

2
lim
n→∞

1

4n
h (2nQ)

to be the canonical height of the rational number Q. If Q = ∞, then by definition of
h we get ĥ(∞) = 0.

Lemma 5.6. Let E be an elliptic curve over Q. Then the function ĥ is well-defined
over E(Q). Moreover, there exists an upper bound k ∈ R such that∣∣∣∣12h(P )− ĥ(P )

∣∣∣∣ ≤ k

for all P ∈ E(Q).

Proof. For the first part we need to show that the limit exists. We can write

lim
n→∞

1

4n
h (2nP ) = h(P ) +

∞∑
j=1

1

4j

(
h
(
2jP

)
− 4h

(
2j−1P

))
which is a sort of telescoping series. Taking a look at Lemma 5.5 with Q = P we obtain

|h(2P )− 4h(P )| ≤ k

for all points P on E. Now letting P → 2j−1P we get∣∣∣∣ 1

4j

(
h
(
2jP

)
− 4h

(
2j−1P

))∣∣∣∣ ≤ k

4j

32



for some k ∈ R. Since the limit of the upper bound on the jth term converges to zero,
it follows that the infinite sum must also converge. Therefore ĥ is well-defined over
E(Q).

For the second part, we continue with the argument above just a little further. Taking
the sum on both sides of the inequality above we get∣∣∣∣∣

∞∑
j=1

1

4j

(
h
(
2jP

)
− 4h

(
2j−1P

))∣∣∣∣∣ ≤
∞∑
j=1

∣∣∣∣ 1

4j

(
h
(
2jP

)
− 4h

(
2j−1P

))∣∣∣∣ ≤ ∞∑
j=1

k

4j

The leftmost term is equal to 2|1
2
h(P )− ĥ(P )| by definition, whereas for the rightmost

term we have that
∞∑
j=1

k

4j
=
k

3
= 2k′

for some 2k′ ∈ R. Putting this all together we obtain that∣∣∣∣12h(P )− ĥ(P )

∣∣∣∣ ≤ k′

for some k′ ∈ R which is the required result. �

Proposition 5.7. Let E be an elliptic curve over Q. Then ĥ satisfies the following
properties:

1. ĥ(P ) ≥ 0 for all P ∈ E(Q).

2. Given a constant c, there are only finitely many points P ∈ E(Q) with ĥ(P ) ≤ c.

3. ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q) for all P,Q.

4. ĥ(mP ) = m2ĥ(P ) for all integers m and all P .

5. ĥ(P ) = 0 if and only if P is a torsion point.

Proof. 1. Follows immediately from the definition.

2. Let ĥ(P ) ≤ c. Then by Lemma 5.6∣∣∣∣12h(P )− ĥ(P )

∣∣∣∣ ≤ k =⇒ h(P ) ≤ 2(ĥ(P ) + k) ≤ 2(c+ k) = c′
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for some c′ ∈ R. By Lemma 5.2, there are only finitely many points P ∈ E(Q) for
which H(P ) ≤ c′. Since the logarithm is monotonic, and h(P ) = log H(P ), we can
generalize this result to h. Therefore, there can only be finitely many points P for
which h(P ) ≤ c′ holds. As a result, there are only finitely many points P for which
ĥ(P ) ≤ c holds.

3. Using Lemma 5.5 with P → 2nP and Q → 2nQ, then multiplying across by 1
4n

we
obtain

1

4n
|h (2nP + 2nQ) + h (2nP − 2nQ)− 2h (2nP )− 2h (2nQ)| ≤ k

4n

Taking the limit as n→∞ we get∣∣∣ĥ (P +Q) + ĥ (P −Q)− 2ĥ (P )− 2ĥ (Q)
∣∣∣ = 0

which we can rearrange to obtain

ĥ (P +Q) + ĥ (P −Q) = 2ĥ (P ) + 2ĥ (Q) .

4. Assuming that the E is in Weierstrass form, for P = (x, y), we can write P = (x,−y),
the x-coordinate remaining invariant under reflection through the x-axis. Since the
function ĥ only takes the x-coordinate as its argument, ĥ(P ) = ĥ(−P ). Consequently
when considering ĥ(mP ) we may assume that m is non-negative. If m = 0, 1 then
ĥ(mP ) = m2ĥ(P ) holds trivially. We now use a watered-down version of strong induc-
tion to prove the claim entirely.

Suppose that the equality holds for m,m − 1. Then letting P → mP and Q → P in
(3) we obtain

ĥ((m+ 1)P ) = −ĥ((m− 1)P ) + 2ĥ(mP ) + 2ĥ(P )

By assumption ĥ((m − 1)P ) = (m − 1)2ĥ(P ) and ĥ(mp) = m2ĥ(p) so that the right-
hand side now becomes(

−(m− 1)2 + 2m2 + 2
)
ĥ(P ) = (m+ 1)2ĥ(P )

and therefore
ĥ((m+ 1)P ) = (m+ 1)2ĥ(P )

completing the induction procedure.
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5. If P is torsion then mP =∞. Using (4) we get that

m2ĥ(P ) = ĥ(mP ) = ĥ(∞) = 0

Since m 6= 0 we must have ĥ(P ) = 0. To obtain the other direction assume that
ĥ(P ) = 0 to begin with. Then by (4) again, we obtain that ĥ(mP ) = m2ĥ(P ) = 0 for
arbitrary m. By (2) we know that there are only finitely many points whose height is
zero. As a result the set {P, 2P, 3P, ...} of points whose height is zero must be finite.
Consequently, P must be torsion. �

Theorem 5.8 (Mordell-Weil Theorem). E(Q) is finitely generated for any elliptic
curve E over Q.

Proof. By Theorem 5.3 we know that E(Q)/2E(Q) is finite. Let R1, ..., Rn ∈ E(Q) be
representatives for the cosets in E(Q)/2E(Q). Now define c = Maxi

{
ĥ (Ri)

}
and let

P1, P2, ... ∈ E(Q) be all the points which satisfy ĥ(Pi) ≤ c. By the second property of
Proposition 5.7 we may assume that there are only finitely many such points, so that
we can write P1, P2, ... = P1, P2, ..., Pm.

Now let G be the subgroup of E(Q) generated by

P1, ..., Pm, R1, ..., Rn.

Suppose that G 6= E(Q). Then there exists a set of points which belong to E(Q) but
not to G. Let P be the point with the smallest height in this set. We can assume such
a point P exists courtesy of the second property of Proposition 5.7. Now let Ri be
the coset to which the point P belongs to. Since Ri − Ri =∞ (viewed as elements of
E(Q)/2E(Q)), we can write

P −Ri = 2P0

for some point P0 ∈ E(Q). By the fourth property of Proposition 5.7 we have

4ĥ (P0) = ĥ (2P0) = ĥ (P −Ri)

By the third property this is equivalent to

2ĥ(P ) + 2ĥ (Ri)− ĥ (P +Ri)

Applying the first property we get that

2ĥ(P ) + 2ĥ (Ri)− ĥ (P +Ri) ≤ 2ĥ(P ) + 2ĥ (Ri) .

35



Next, since ĥ(Ri) ≤ c and c < ĥ(P ) we have

2ĥ(P ) + 2ĥ (Ri) ≤ 2ĥ(P ) + 2c < 2ĥ(P ) + 2ĥ(P ) = 4ĥ(P )

Since the left-most side above is greater than or equal to 4ĥ(P0), we obtain the in-
equality

4ĥ (P0) < 4ĥ(P ) =⇒ ĥ (P0) < ĥ(P ).

Now if P0 6∈ G this contradicts our choice of P . Therefore we must have that P0 ∈ G.
Combining this with the fact that Ri ∈ G also, we obtain P = Ri + 2P0 ∈ G, which is
a contradiction. Consequently we must have G = E(Q). Since G is finitely generated,
the result follows. �

The result above guarantees that E(Q) is finitely generated, which means that we can
specify E(Q) by listing its generators instead of all of its (possibly infinite) elements.
Moreover, it also provides us with the method for finding these generators. First
however, we specify the procedure for determining the structure of E(Q), and then
indicate an extension which will provide us with the generators as well.

5.3 Structure

Now that we know that E(Q) is a finitely-generated abelian group we can make use of
the following useful Theorem [Sti93]:

Theorem 5.9. If G is a finitely-generated abelian group then

G ∼= T ⊕ Zr

where T is a finite abelian group (see Theorem 4.12), and r is a non-negative integer.
�

Making use of the result above we can now outline a general procedure for determining
the structure of the E(Q):

To begin, notice that the image of the injective map

ϕ :E(Q)/2E(Q) →
(
Q×/Q×2

)
⊕
(
Q×/Q×2

)
⊕
(
Q×/Q×2

)
(x, y) 7→ (a, b, c)

is finite since the choices for a, b, c are finite (see Lemma 5.1). By Theorem 5.9 above
we get that

E(Q)/2E(Q) ∼= T/2T ⊕ (Z/2Z)r
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so that we can consider the latter as the preimage of ϕ. Calculating T by methods from
Section 4, and using the fact that the ϕ is injective and its image is finite allows us to
place an upper bound on the rank r. Unfortunately, the set of possible combinations
of triples (a, b, c) is usually quite large so that the determined upper bound is not close
to the true value of r at all. The next step is to reduce this bound using congruence
relations to eliminate possible triples (a, b, c); more specifically, we consider the natural
map from E(Q)/2E(Q) to E(Qp)/2E(Qp) where Qp denotes the p-adic numbers for
some p ≤ ∞, with Q∞ = R for convenience. This then induces the map

ϕ′ : E(Qp)/2E(Qp)→
(
Q×p /Q×2p

)
⊕
(
Q×p /Q×2p

)
⊕
(
Q×p /Q×2p

)
from which we see that any possible triple (a, b, c) which does not belong to range of ϕ′
(as we vary over primes p) can discarded. The points which are not eliminated by the
process above form a group S2 called the 2-Selmer group. We regard it a group in the
sense of being a subgroup of the larger group (Q×/Q×2)⊕(Q×/Q×2)⊕(Q×/Q×2).

Backtracking a little, notice that |T/2T ⊕ (Z/2Z)r| = 2t+r. As a result, we reduce (as
explained above) until we find an upper bound of the form 2n, where we expect that
n = t + r. To check this we run a computer search to find points in E(Q), obtain
their corresponding images in (Q×/Q×2)⊕ (Q×/Q×2)⊕ (Q×/Q×2) and check whether
they form a subgroup of order exactly 2n. If so, then n = t + r indeed and therefore
r = n− t. If the bound n is sharp, the computer should eventually find points in E(Q)
necessary for creating a group of size 2n in (Q×/Q×2)⊕ (Q×/Q×2)⊕ (Q×/Q×2).

If the bound is not sharp, however, the computer will be stranded searching for non-
existent points—or at least points which cannot make im(ϕ) ⊂ (Q×/Q×2)⊕(Q×/Q×2)⊕
(Q×/Q×2) any larger. One can try to remedy this by going back and attempting to
make the bound sharper, however, this is not always possible. Fortunately, this does not
occur too often: it only occurs in the case that im(ϕ) 6= S2, that is, X2 = S2/im(ϕ) 6=
1. The symbol X denotes the more general Shafarevich-Tate group which arises by
considering n-descent in general for all n ≥ 1, in particular, X2 denotes the 2-torsion
in X.

We can now also extend the procedure above, with the help of Theorem 5.8 and the
result below [Was08] to obtain a method for finding generators for E(Q).

Theorem 5.10 (Silverman’s Theorem). Let E be an elliptic curve over Q of the form
y2 = x3 + Ax+B with A,B ∈ Z. Suppose that P ∈ E(Q). Then P satisfies

−1

8
h(j)− 1

12
h(∆)− 0.973 ≤ ĥ(P )− 1

2
h(P ) ≤ 1

12
h(j) +

1

12
h(∆) + 1.07
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where ∆ = −16 (4A3 + 27B2) is the discriminant and j = −1728(4A)3/∆ is the j-
invariant. �

So far, the procedure above has yielded the representatives Ri mentioned in Theorem
5.8. Next, we find the canonical height of each Ri. Let c be the maximum height of
these representatives. By Theorem 5.8, all that remains to do is to search for rational
points with height less than c. Using Theorem 5.10 above we find an upper bound
for h(P ), in turn leaving us with a finite number of possible integers for both the
numerator and denominator (see Lemma 5.4) which we can search through using a
computer. The representatives and the set of points found by the computer search can
then be combined to form a generating set for E(Q) by Theorem 5.8. However, it must
be duly noted that although the last step is a finite search, this “finite” search space
can be very large, which makes the method unfeasible at the worst and unattractive
at the best.

Assuming, however, that one has obtained a list of the generators, it is desirable—
although not necessary—to reduce it to a set of independent generators. The following
result enables us to test a set of points for independence:

Lemma 5.11. Let E be an elliptic curve over Q and suppose that P,Q ∈ E(Q). Then
the height pairing

〈P,Q〉 = ĥ(P +Q)− ĥ(P )− ĥ(Q)

is bilinear in each variable. Consequently, if P1, ..., Pr ∈ E(Q) and the r×r determinant
det (〈Pi, Pj〉) is non-zero for all i, j then P1, ..., Pr form an independent set of points.

Proof. We first demonstrate that the pairing is bilinear. Since 〈P,Q〉 = 〈Q,P 〉 it is
sufficient to demonstrate bilinearity in the first variable only. We have that

〈P +Q,R〉 = ĥ(P +Q+R)− ĥ(P +Q)− ĥ(R)

and

〈P,R〉+ 〈Q,R〉 = ĥ(P +R)− ĥ(P )− ĥ(R) + ĥ(Q+R)− ĥ(Q)− ĥ(R)

Using the parallelogram law (Proposition 5.7) we obtain the following four equations:

ĥ(P +Q+R) + ĥ(P +Q−R)− 2ĥ(P +Q)− 2ĥ(R) = 0

2ĥ(Q−R)− ĥ(P +Q−R)− ĥ(P −Q+R) = −2ĥ(P )

ĥ(P +R +Q) + ĥ(P +R−Q) = 2ĥ(P +R) + 2ĥ(Q)

−2ĥ(Q−R) = 2ĥ(Q+R)− 4ĥ(Q)− 4ĥ(R).

.
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Putting these all together yields

2(ĥ(P +Q+R)− ĥ(P +Q)− ĥ(R))

=2(ĥ(P +R)− ĥ(P )− ĥ(R) + ĥ(Q+R)− ĥ(Q)− ĥ(R))

which results in
2〈P +Q,R〉 = 2(〈P,R〉+ 〈Q,R〉)

by the equations first examined above and bilinearity follows.

For the second part, suppose that there exist integers ai such that a1P1+ ...+arPr =∞
with some ak 6= 0 so that akPk = −a1P1 + ...+−arPr. Then ak times the k-th row of
the matrix 〈Pi, Pj〉 yields a vector with entries ak〈Pk, Pj〉. Using the equation derived
above and bilinearity gives

ak〈Pk, Pj〉 = 〈akPk, Pj〉 = 〈−a1P1 + ...+−arPr, Pj〉
= −a1〈P1, Pj〉+ ...+−ar〈Pr, Pj〉

which demonstrates that ak times the k-th row of the matrix is a linear combination of
the other rows so that the determinant is zero. The contrapositive then provides the
result. �

Example 5.2. Let E be the elliptic curve given by y2 = x(x + 5)(x + 10). We want
to find the structure of E and its generators using the method just described above.

We first find the image of the obvious points in E(Q). We have ∞ ∈ E(Q) with

ϕ(∞) = (1, 1, 1)

If y = 0 then the images of the corresponding points are

ϕ(0, 0) = (2, 5, 10)

ϕ(−5, 0) = (−5,−1, 5)

ϕ(−10, 0) = (−10,−5, 2)

Our task at hand now is finding the remainder of the points contained in im(ϕ) , that
is, the non-obvious points of im(ϕ) which have y 6= 0. We do this by elimination.

The map ϕ for y 6= 0 is given by

(x, y) 7→ (x, x+ 5, x+ 10) = (au2, bv2, cw2).
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From the discussion at the beginning of Section 5.1 one may recall that a, b, c are square-
free integers. By Lemma 5.1 we have that a, b, c | (0 + 5)(−5 + 10)(−10 + 0) = −2 · 53

which implies that a, b, c ∈ {±1,±2,±5,±(2 · 5)}.
Before we begin eliminating possibilities, it is useful to notice one more thing: since abc
is a square and a, b, c are each individually square-free, then specifying a, b determines
c uniquely. As a result, we only need to focus on eliminating possibilities for a and b.
There are currently 8 possibilities for both a and b resulting in 64 total possibilities.
Since we know that T = ET (Q) ∼= Z2⊕Z2 we obtain T/2T ∼= Z2⊕Z2 which has order
22. We must have 22+r ≤ 26 = 64, therefore r ≤ 4 at the moment.

To begin the eliminations, notice that

x < x+ 5 < x+ 10

implies
au2 < bv2 < cw2.

If b < 0 then the above implies a < 0 also. On the other hand, if b > 0 the above implies
c > 0. Since abc is a square this means abc > 0 which then implies a > 0. Therefore
a and b must share the same sign, leaving us with 64/2 = 32 remaining possibilities.
Notice that in terms of our procedure above what we’ve just done is eliminated possible
triples (a, b, c) which do not belong to (Q×∞/Q×2∞ ) ⊕ (Q×∞/Q×2∞ ) ⊕ (Q×∞/Q×2∞ ). The
elimination lowers the bound on the rank by a power of two, which means that r ≤ 3
now.

Suppose (a, b) = (2, 1). Then we can combine

x = 2u2

x+ 5 = v2

x+ 10 = 2w2

to obtain
2u2 − v2 = −5 2w2 − 2u2 = 10.

A little algebra shows that v2(v2) < 0 if and only if v2(2u2) < 0. However, if this is
true, it’s obvious that v2(v2) cannot equal v2(2u2). As a result 2u2 − v2 cannot be
an integer. This is a contradiction, therefore we assume that the denominators are
not divisible by 2, allowing us to work modulo 2n. By the equation above v is odd,
therefore

v2 ≡ 1 (mod 8) =⇒ 2u2 ≡ −4 (mod 8) =⇒ u2 ≡ 2 (mod 4)
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which cannot be true, since u even implies u2 ≡ 0 (mod 4). Therefore (2, 1) /∈ im(ϕ).
Since there are now only 31 possible triples (a, b, c) and 22+r ≤ 31 < 25 we get that
r ≤ 2. Similar considerations for other relevant primes p will actually lower the bound
further so that r ≤ 1 in the end.

We now perform the computer search to try and find a point of infinite order if it exists.
It does not take long to find (−9, 6), which we know does not belong to ET (Q). As a
result we must have that r = 1 and therefore E(Q) ∼= Z⊕ Z2 ⊕ Z2. For completeness
we have that

ϕ(−9, 6) = (−1,−1, 1)

We currently have five of the 23 points of E(Q)/2E(Q). To obtain the other three we
just add our point of infinite order to the three torsion points

ϕ((−9, 6) + (0, 0)) = ϕ

(
−50

9
,−100

27

)
= (−1,−1, 1) · (2, 5, 10) = (−2,−5, 10)

ϕ((−9, 6) + (−5, 0)) = ϕ

(
5

4
,
75

8

)
= (−1,−1, 1) · (−5,−1, 5) = (5, 1, 5)

ϕ((−9, 6) + (−10, 0)) = ϕ(40,−300) = (−1,−1, 1) · (−10,−5, 2) = (10, 5, 2)

so that

im(ϕ) ={(1, 1, 1), (2, 5, 10), (−5,−1, 5), (−10,−5, 2), (−1,−1, 1), (−2,−5, 10),

(5, 1, 5), (10, 5, 2)}

and correspondingly

E(Q)/2E(Q) = {∞, (0, 0), (−5, 0), (−10, 0), (−9, 6),

(
−50

9
,
100

27

)
,

(
5

4
,
75

8

)
, (40,−300)}

where the points are coset representatives. We now determine a generating set for
E(Q). First we reduce the representatives to an independent set using Lemma 5.11 to
get {(0, 0), (−5, 0), (−10, 0), (−9, 6)}. We now take a look at the canonical heights of
the remaining representatives. The torsion points will have canonical height zero so we
don’t need to check them (see Proposition 5.7). We have ĥ(−4, 6) ≈ 1.9 which means
that 1.9 is the maximum canonical height of the representatives. To use Theorem
5.10, however, we first need to transform the curve into Weierstrass form so that
y2 = x3 − 25x. The canonical height is unaffected by this transformation. Using the
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theorem we obtain an upper bound for the logarithmic height

h(P ) < 2(
1

8
h(j) +

1

12
h(∆) + 0.973 + ĥ(P ))

< 2(
1

8
h(j) +

1

12
h(∆) + 0.973 + max{ĥ(P )})

= 2(
1

8
h(1728) +

1

12
h(62, 500) + 0.973 + 1.9}) = 9.45

The last step is to then search through all rational points a
b
for all −e9.45 ≤ a, b ≤ e9.45.

After this exhaustive search, one can verify that adding any of these newly found
points to the current independent set of representatives causes independence to fail.
As a result, the generating set is {(0, 0), (−5, 0), (−10, 0), (−9, 6)}. �

Although we’ve figured out how to determine the rank of E(Q) in general, there are
still a multitude of questions that can be asked with regards to its behaivour. We wrap
up with a currently unsolved problem.

Conjecture 5.12. There exist elliptic curves with E(Q) of arbitrarily large rank.

In other words, it is conjectured that the rank of elliptic curves cannot be bounded.
Despite extensive research the answer has proven to be elusive, with the problem still
under scrutiny today. The current record for the largest rank is held by Noam Elkies,
who in 2006 announced the discovery of an elliptic curve of rank at least 28 [E+06]
with the rank determined to be exact afterwards [KSW16]. Although lack of further
progress with pushing the bound appears to support the conjecture, it should be noted
that the methods which are employed for such purposes are computationally intensive
and require resources and much time to conduct, without considering the fact that
increasing the bound may not contribute towards any actual progress on the conjecture
itself.
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