

Another Proof of Cauchy's Group Theorem Author(s): James H. McKay
Source: The American Mathematical Monthly, Vol. 66, No. 2 (Feb., 1959), p. 119
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/2310010
Accessed: 04/03/2010 16:10

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=maa.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly.

MATHEMATICAL NOTES

Edited by Roy Dubisch, Fresno State College
Material for this department should be sent to Roy Dubisch, Department of Muthematics, Fresno State College, Fresno 26, California

ANOTHER PROOF OF CAUCHY'S GROUP THEOREM

James H. McKay, Seattle University
Since $a b=1$ implies $b a=b(a b) b^{-1}=1$, the identities are symmetrically placed in the group table of a finite group. Each row of a group table contains exactly one identity and thus if the group has even order, there are an even number of identities on the main diagonal. Therefore, $x^{2}=1$ has an even number of solutions.

Generalizing this observation, we obtain a simple proof of Cauchy's theorem. For another proof see [1].

Cauchy's Theorem. If the prime p divides the order of a finite group G, then G has $k p$ solutions to the equation $x^{p}=1$.

Let G have order n and denote the identity of G by 1 . The set

$$
S=\left\{\left(a_{1}, \cdots, a_{p}\right) \mid a_{i} \in G, a_{1} a_{2} \cdots a_{p}=1\right\}
$$

has n^{p-1} members. Define an equivalence relation on S by saying two p-tuples are equivalent if one is a cyclic permutation of the other.

If all components of a p-tuple are equal then its equivalence class contains only one member. Otherwise, if two components of a p-tuple are distinct, there are p members in the equivalence class.

Let r denote the number of solutions to the equation $x^{p}=1$. Then r equals the number of equivalence classes with only one member. Let s denote the number of equivalence classes with p members. Then $r+s p=n^{p-1}$ and thus $p \mid r$.

Reference

1. G. A. Miller, On an extension of Sylow's theorem, Bull. Amer. Math. Soc., vol. 4, 1898, pp. 323-327.

A REMARK ON BOUNDED FUNCTIONS

V. F. Cowling, University of Kentucky

Denote by E the class of functions regular and bounded by unity in $|z|<1$. Denote by E^{*} the subclass of functions of E which are in addition univalent in $|z|<1$. Analogies of various inequalities which are known to hold for functions in the class E have been obtained for functions of the class E^{*}. For example, it is known [3] that there exist functions in E for which the sequence $\left\{a_{0}+\cdots+a_{n}\right\}\left(f(z)=\sum a_{n} z^{n}\right)$ is unbounded. On the other hand, it is shown by Fejér in [1] that if $f \in E^{*}$ then $\left|a_{0}+\cdots+a_{n}\right|<1+(1 / \sqrt{ } 2)$ for all n.

