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Introduction

Goal: Study the degeneracies of negative discriminant 1/4—BPS dyons,
dim,n,¢)x.o, in N = 4 supersymmetric String Theory.

Result: d(m, n, ) , o are encoded in the continued fraction of £/2m.

Motivation: ~ Modularity implies that d(m, n, £) ., can be obtained from d(m, n, £)  _,

S¢a(Q) = Ind(Q) < Spu(Q)

Inspired by [Chowdhury, Kidambi, Murthy, Reys, Wrase ’19]
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Setup

Heterotic string theory on TO N = 4 supersymmetry and
S—duality group is SL(2,27) 28 U(1) gauge groups

1/4-BPS states carry electric 5 and magnetic F charges:

States characterized by m = P2 €7, n= Q2/2 e/, ¢=P-0€/

—

d(P, Q) = d(m,n,t)
Relevant S—duality invariant:

A =Q%P2—(Q-P)*=4mn—? Area ~ /A



Dyon spectrum

Two types of 1/4—BPS dyons:

Single centered Immortal

Two-centered bound states of 1/2-BPS constituents Can decay

Single centre 1/4-BPS black holes with finite horizon area have A > 0.

We will focus on

A=4mn—-7¢*<0

which are always two-centred states

[Cheng, Verlinde ’07]



Siegel modular forms

The generating function for 1/4—BPS dyonic degeneracies is a modular form
of the genus-2 modular group Sp(2,7)

[Dijgkraaf, Verlinde,
Verlinde ’96]

; 2 (_ 1)f+1d(m, n, f)eZni(mp+n0+fv)

Qiolp,ov) S

mn,t € 7

D, is the Igusa cusp form, invariant under SL(2,7).



Siegel modular forms

Extract the degeneracies

|
dim,n,?) = (— 1)f+1J' dpdodvp™"q ™"y —————
C D,y(p,0,V)

C:0<p,0,vi <1

Pos 0>y Vo ﬁxed, Pr0» — V22 =>> 0 .
Problem: Meromorphic
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Wall-crossing

Wall of marginal
Pole in the Siegel — Single centre stability

modular form
dim,n,t) = (- I)KHJ dpdodvp™q™"y _KCIDI‘O1
) ®.

CIOSpl,Gl,Vlﬁl ( :I
pz, 02, V2 fixed, p262 - V22 >> O \‘/
Changing p,, 0,, v, in contour C Two-centred bound state

d(m,n, ) can jump

[Sen, ’07]

[Dabholkar, Gaiotto
Nampuri '07]



| Poles and walls

q)— has an infinite family of second order poles in the (p, o, v) space
10

pqo, + rsp, + (ps + qr)v, = 0, (ﬁ z> € PSL(2,7)

Vo Pp 14 q

Represent walls inthe { —,— | plane by lines joining — and —
\02 03

ros
' A -chamber

[Sen, ’07]




Dyonic decay

I o1 1 I
AR 24
D1o(p, 0,v) ve n=(p) n=(o) o

From the limit

the contribution at the pole y = (p Q) e SL(2,7Z) is

r S
A, dm,n,¢) = (—=1)"* 2, |dim)d(n,) . T
where 77241(;0) = i d(n) e=™"? [Sen, '07]

n=—1



Dyon counting problem

A < 0 = Two centred-states only

The solution must have the form [Sen, *11]
[Chowdhury, Kidambi,

Murthy, Reys, Wrase ’19]

k

2

=1
v, € Wim,n,?)

k
dim,n,0) = ) A;=(=1)""! £, | d(m,)d(n,)
=1

Q: How can we characterize W(m, n, £)?



Solution

Downwards:

left-right choice associated to
1 0O 1 1
— T —

W(m,n,¢)={U,U? .., U U"T, .., UST>, U T2 U, ..., U T2 U%, ...,y }

Yy« determines all s;: Only need to determine y.



The continued fraction of > = |ay;ay, ...,a,] = ayg+ " yields
m
Cl1+ 1
aH+
: 1
a?‘
£lg g 1 0 1 a, 1 O 1 O
2mlg s a 1/\o 1/ \a; 1 a, 1
R
£2m = 2/7

and v satisfies the conditions




Result

Givenm,n,fwith A =4mn — 72 <0 and 0 <7 < m,
C12m = |ay,aq,...,a,] defines W(m,n,70)

In the

k
dm,n, ) =d+ (=D ) |£,|d(m,)d(n,)

=1
v, € Wim,n, )

|
D,y(p,0,V)

originally, d(m, n, /) = (—1)¢+! J dpdody p~"qg "y~
C



Jacobi forms

CDl_Ol has a Fourier-dacobi expansion

1

I — Wm( o, V) e27rimp
Dyo(p,0v) =

m

where (0, v) are Jacobi forms of weight —10 and index m

2

CZG-I- b 1% - —10 2ximcey a b
Yin (ca+d’ CG+d) = (co+d) " ewray (0,V), (c d) e PSL(2,7)

W, (0,V+ Ao+ u) = o~ 2mim(A°0+24v) v, (0,V), A,y €2



[Zwegers '2001]

, 0 ! Mock Jacobl fOrms  cemimsos
nﬂnnnﬂnﬂonnrlnnm nnnnnﬂnnonnf}nnnnn

_ F P
l/jm(aa V) T l/jm(69 V) + l/jm(69 V)
[Dabholkar, Murthy,
o . - Zagier '12]
split into mock Jacobi forms: a finite and a polar part.

1//,71;(0, V) = Z C,Z(n, £)q"y’ has no poles in (c,v) Immortal
n,t

can be restored at the expense of

In R, for0 < ¢ < 2m, dim,n,¢) = (=1) el (n, ¢)



Generalized Rademacher expansion

i~ ~ Kl ?na én 7k7¢ 23/4
cgz(n,é) = 2m Z cfn(nvg) (4 4]{5 )M (K) 123/2( \/IA‘A>
k=1 0eZ./2m7Z
‘4mn—f2>0‘ ‘4mﬁ—272<0 ‘
2\ Ki(f,—15k,1) 0 (4m)° om
2 dm? TR0 (7)) T A A.12
-I-\/mkz;1 NG (A) 12<km\/—) ( )
00 A 9> . 25/4 -
1 Kl(4m7 1 4m,k,¢)gj 4dm / [Ferrari, Reys, ’17]
o D 2 = (%)
k=1 jE€Z/2mZ
gEZL/2mkZ
g=j(mod 2m)
+1/4/m o
m(w) I A(1 — mu?) | (1 — mu?)?®/4d
X/_1/\/_ Je,g,m(w) 25/2(k\ﬁ\/ (1 —mu ))( mu®) U,

computes the coefficients cnli(n, £) with A > 0 in terms of C,Z(n’, ") with A < 0.



Extra: CHL models

Heterotic string theory on T X Sl/ZN with N = 2.,3.5,7

Generating functions (Dk(p, o v)_l. The poles

(p q) e 1'h(N)

r S

The logic is the same, but the details more intricate.

Proceed as earlier, build set W(m, n, ) from the B0 e AR e TN N =5

continued fraction of Z/2m but now select the L N=T
matrices in I 5(/V).



Thank you



