Continued fractions and $\mathcal{N}=4$ BPS counting

Martí Rosselló

w/ Gabriel Cardoso and Suresh Nampuri, arXiv:2007.10302

Quantum Gravity and Modularity, HMI, Trinity College Dublin May 13, 2021

Introduction

Goal: Study the microscopic degeneracies of negative discriminant 1/4–BPS dyons, $d(m, n, \ell)_{\Delta < 0}$, in $\mathcal{N} = 4$ supersymmetric String Theory.

Result: $d(m, n, \ell)_{\Delta < 0}$ are encoded in the continued fraction of $\ell/2m$.

Motivation: ~ Modularity implies that $d(m,n,\ell)_{\Delta>0}$ can be obtained from $d(m,n,\ell)_{\Delta<0}$

$$S_{stat}(Q) = \ln d(Q)$$
 \leftrightarrow $S_{BH}(Q)$ Microscopic

Inspired by [Chowdhury, Kidambi, Murthy, Reys, Wrase '19]

Introduction

Dyonic degeneracies

Siegel modular forms

Mock Jacobi forms

Wall-crossing

Continued fractions

Setup

Heterotic string theory on T^6 S-duality group is $SL(2,\mathbb{Z})$ $\mathcal{N}=4$ supersymmetry and 28 U(1) gauge groups

1/4-BPS states carry electric \overrightarrow{Q} and magnetic \overrightarrow{P} charges: Dyons

States characterized by $m=P^2/2\in\mathbb{Z}, n=Q^2/2\in\mathbb{Z}, \ell=P\cdot Q\in\mathbb{Z}$ $d(\overrightarrow{P},\overrightarrow{Q})=d(m,n,\ell)$

Relevant S—duality invariant:

$$\Delta = Q^2 P^2 - (Q \cdot P)^2 = 4mn - \ell^2 \qquad \text{Area} \sim \sqrt{\Delta}$$

Dyon spectrum

Two types of 1/4-BPS dyons:

Single centered

Immortal

Two-centered bound states of 1/2-BPS constituents

Can decay

[Cheng, Verlinde '07]

Single centre 1/4-BPS black holes with finite horizon area have $\Delta > 0$.

We will focus on

$$\Delta = 4mn - \ell^2 < 0$$

which are always two-centred states

Siegel modular forms

The generating function for 1/4-BPS dyonic degeneracies is a modular form of the genus-2 modular group $Sp(2,\mathbb{Z})$

[Dijgkraaf, Verlinde, Verlinde '96]

$$\frac{1}{\Phi_{10}(\rho, \sigma, v)} = \sum_{\substack{m, n \ge -1 \\ m, n, \ell \in \mathbb{Z}}} (-1)^{\ell+1} d(m, n, \ell) e^{2\pi i (m\rho + n\sigma + \ell v)}$$

 Φ_{10} is the Igusa cusp form, invariant under $SL(2,\mathbb{Z})$.

Siegel modular forms

Extract the degeneracies

$$d(m, n, \ell) = (-1)^{\ell+1} \int_C d\rho d\sigma dv \, p^{-m} q^{-n} y^{-\ell} \frac{1}{\Phi_{10}(\rho, \sigma, v)}$$

$$C: 0 \le \rho_1, \sigma_1, v_1 \le 1$$

$$\rho_2, \sigma_2, v_2 \text{ fixed, } \rho_2 \sigma_2 - v_2^2 \gg 0$$

$$p = e^{2\pi i\rho}$$

$$q = e^{2\pi i\sigma}$$

$$y = e^{2\pi i\nu}$$

Problem: Meromorphic

Wall-crossing

Pole in the Siegel modular form

$$d(m,n,\ell) = (-1)^{\ell+1} \int_C d\rho d\sigma dv \, p^{-m} q^{-n} y^{-\ell} \Phi_{10}^{-1}$$

$$C: 0 \le \rho_1, \sigma_1, v_1 \le 1$$

$$\rho_2, \sigma_2, v_2 \text{ fixed, } \rho_2 \sigma_2 - v_2^2 \gg 0$$

Changing ρ_2, σ_2, v_2 in contour C $d(m, n, \ell)$ can jump

Wall of marginal stability

Two-centred bound state

[Sen, '07]
[Dabholkar, Gaiotto
Nampuri '07]

Poles and walls

 $\frac{1}{\Phi_{10}}$ has an infinite family of second order poles in the $(
ho,\sigma,v)$ space

$$pq\sigma_2 + rs\rho_2 + (ps + qr)v_2 = 0, \quad \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in PSL(2, \mathbb{Z})$$

Dyonic decay

From the limit

$$\frac{1}{\Phi_{10}(\rho,\sigma,\nu)} \xrightarrow{\nu \to 0} \frac{1}{\nu^2} \frac{1}{\eta^{24}(\rho)} \frac{1}{\eta^{24}(\sigma)}$$

the contribution at the pole
$$\gamma = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in SL(2,\mathbb{Z})$$
 is

$$\Delta_{\gamma} d(m, n, \ell) = (-1)^{\ell_{\gamma}+1} | \ell_{\gamma} | d(m_{\gamma}) d(n_{\gamma}).$$

where
$$\frac{1}{\eta^{24}(\rho)} = \sum_{n=-1}^{\infty} d(n) e^{2\pi i n \rho}$$

1

[Sen, '07]

Dyon counting problem

 $\Delta < 0 \Longrightarrow$ Two centred-states only

The solution must have the form

[Sen, '11] [Chowdhury, Kidambi, Murthy, Reys, Wrase '19]

$$d(m, n, \ell) = \sum_{i=1}^{k} \Delta_i = (-1)^{\ell+1} \sum_{\substack{i=1\\ \gamma_i \in W(m, n, \ell)}}^{k} |\ell_{\gamma_i}| d(m_{\gamma_i}) d(n_{\gamma_i})$$

Q: How can we characterize $W(m, n, \ell)$?

Solution

Downwards:

left-right choice associated to

$$U = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$W(m, n, \ell) = \{U, U^2, ..., U^{s_1}, U^{s_1}T, ..., U^{s_1}T^{s_2}, U^{s_1}T^{s_2}U, ..., U^{s_1}T^{s_2}U, ..., U^{s_1}T^{s_2}U^{s_3}, ..., \gamma_*\}$$

 γ_* determines all s_i : Only need to determine γ_*

The continued fraction of $\frac{\ell}{2m}=[a_0;a_1,...,a_r]=a_0+\frac{1}{a_1+\frac{1}{a_2+\frac{1}{1}}}$ yields

$$\gamma_* = \begin{pmatrix} \ell/g & q \\ 2m/g & s \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ a_1 & 1 \end{pmatrix} \begin{pmatrix} 1 & a_2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ a_3 & 1 \end{pmatrix} \cdots \begin{pmatrix} 1 & 0 \\ a_r & 1 \end{pmatrix}$$

and γ_* satisfies the conditions

$$\frac{\ell}{2m} - \frac{\sqrt{-\Delta}}{2m} < \frac{p}{r} < \frac{\ell}{2m} + \frac{\sqrt{-\Delta}}{2m} \qquad 0 \le \frac{\ell}{2m} - \frac{q}{s} \le \frac{1}{rs}$$

Result

Given
$$m, n, \ell$$
 with $\Delta = 4mn - \ell^2 < 0$ and $0 \le \ell \le m$,

$$\ell/2 m = [a_0, a_1, ..., a_r]$$
 defines $W(m, n, \ell)$

in the R-chamber,

$$d(m, n, \ell) = d_* + (-1)^{\ell+1} \sum_{i=1}^k |\ell_{\gamma_i}| d(m_{\gamma_i}) d(n_{\gamma_i})$$

$$\gamma_i \in W(m, n, \ell)$$

originally,
$$d(m, n, \ell) = (-1)^{\ell+1} \int_C d\rho d\sigma dv \, p^{-m} q^{-n} y^{-\ell} \frac{1}{\Phi_{10}(\rho, \sigma, v)}$$

Jacobi forms

 Φ_{10}^{-1} has a Fourier-Jacobi expansion

$$\frac{1}{\Phi_{10}(\rho,\sigma,v)} = \sum_{m \ge -1} \psi_m(\sigma,v) e^{2\pi i m \rho}$$

where $\psi_m(\sigma, v)$ are Jacobi forms of weight -10 and index m

$$\psi_m\left(\frac{a\sigma+b}{c\sigma+d},\frac{v}{c\sigma+d}\right) = (c\sigma+d)^{-10} e^{\frac{2\pi i m c v^2}{c\sigma+d}} \psi_m(\sigma,v) , \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PSL(2,\mathbb{Z})$$

$$\psi_m(\sigma, \nu + \lambda \sigma + \mu) = e^{-2\pi i m(\lambda^2 \sigma + 2\lambda \nu)} \psi_m(\sigma, \nu), \lambda, \mu \in \mathbb{Z}$$

Mock Jacobi forms

[Ramanujan '1920] [Zwegers '2001]

$$\psi_m(\sigma, \nu) = \psi_m^F(\sigma, \nu) + \psi_m^P(\sigma, \nu)$$

[Dabholkar, Murthy, Zagier '12]

split into mock Jacobi forms: a finite and a polar part.

$$\psi_m^F(\sigma, v) = \sum_{n,\ell} c_m^F(n,\ell) q^n y^\ell$$
 has no poles in (σ, v) Immortal

Modularity can be restored at the expense of holomorphicity.

In
$$\mathcal{R}$$
, for $0 \le \ell < 2m$,

$$d(m, n, \ell) = (-1)^{\ell+1} c_m^F(n, \ell)$$

Generalized Rademacher expansion

$$\begin{split} c_m^{\mathrm{F}}(n,\ell) &= 2\pi \sum_{k=1}^{\infty} \sum_{\widetilde{\ell} \in \mathbb{Z}/2m\mathbb{Z}} c_m^{\mathrm{F}}(\widetilde{n},\widetilde{\ell}) \frac{K l \left(\frac{\Delta}{4m},\frac{\widetilde{\Delta}}{4m};k,\psi\right)_{\ell\widetilde{\ell}}}{k} \left(\frac{|\widetilde{\Delta}|}{\Delta}\right)^{23/4} I_{23/2} \left(\frac{\pi}{mk} \sqrt{|\widetilde{\Delta}|\Delta}\right) \\ &+ \sqrt{2m} \sum_{k=1}^{\infty} \frac{K l \left(\frac{\Delta}{4m},-1;k,\psi\right)_{\ell 0}}{\sqrt{k}} \left(\frac{4m}{\Delta}\right)^6 I_{12} \left(\frac{2\pi}{k\sqrt{m}} \sqrt{\Delta}\right) \\ &- \frac{1}{2\pi} \sum_{k=1}^{\infty} \sum_{\substack{j \in \mathbb{Z}/2m\mathbb{Z}\\g \in \mathbb{Z}/2mk\mathbb{Z}\\g \equiv j (\bmod{2m})}} \frac{K l \left(\frac{\Delta}{4m},-1-\frac{g^2}{4m};k,\psi\right)_{\ell j}}{k^2} \left(\frac{4m}{\Delta}\right)^{25/4} \times \end{split}$$
 [Ferrari, Reys, '17]
$$\times \int_{-1/\sqrt{m}}^{+1/\sqrt{m}} f_{k,g,m}(u) \, I_{25/2} \left(\frac{2\pi}{k\sqrt{m}} \sqrt{\Delta(1-mu^2)}\right) (1-mu^2)^{25/4} \, \mathrm{d}u \,, \end{split}$$

computes the coefficients $c_m^F(n,\mathscr{E})$ with $\Delta>0$ in terms of $c_m^F(n',\mathscr{E}')$ with $\Delta<0$.

Extra: CHL models N > 1

Heterotic string theory on $T^5 \times S^1/\mathbb{Z}_N$ with N=2,3,5,7

Generating functions $\Phi_k(\rho, \sigma, v)^{-1}$. The poles

$$\begin{pmatrix} p & q \\ r & s \end{pmatrix} \in \Gamma_0(N)$$

The logic is the same, but the details more intricate.

Proceed as earlier, build set $W(m, n, \ell)$ from the continued fraction of $\ell/2m$ but now select the matrices in $\Gamma_0(N)$.

Thank you