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Eigenstate Thermalization Hypothesis (ETH)

What is the set conditions on probe observable O for it to look
thermal in a generic state ψ
ETH tells us that we should look at it’s matrix elements in the
energy eigenstate:

〈Ei |O|Ej〉 = δij fO(Ei ) + e
−S
2 gO(Ei − Ej)Rij

Then expectations values of O at late times t are given by the
canonical ensemble

〈ψ(t)|O|ψ(t)〉 = Z−1Tr O e−βH

[Srednicki ‘94, Deutsch ‘91]
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Generalized Eigenstate Thermalization Hypothesis (GETH)

We can ask the same question when the system has infinitely
many mutually commuting conserved charges Q2n−1

What are the conditions that O must satisfy to equlibrate to
GGE at late times?

〈ψ(t)|O|ψ(t)〉 = Z−1
G Tr

(
O e−

∑
n µ2n−1Q2n−1

)
Study matrix elements in mutual eigenstates of Q2n−1 which
we call |Ei 〉
Generalized ETH criterion

〈Ei |O|Ej〉 = δij fO

(
Q1(Ei ),Q3(Ei ), ...

)
[Cassidy, Clark, Rigol ‘11], [Dymarsky, Pavlenko ‘19], [Cardy, Calabrese ‘16]
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qKdV Hierarchy in 2d CFT’s

In any integrable 2d CFT, you can construct an infinite set of
mutually commuting conserved charges
classical kdV hierarchy

Qcl
1 =

∫
dφu (φ) , Qcl

3 =

∫
dφu (φ)2 ,

Quantum kdV hierarchy

Q1 =

∫
dφT , Q3 =

∫
dφ : T 2 :,
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qKdV Hierarchy in 2d CFT’s

These charges give us flows in phase space

u̇ = {Qcl
1 , u}, u̇ = {Qcl

3 , u} = 6u∂u − ∂3u

Quantum version

Ṫ = [Q1,T ],

Ṫ = {Q3,T} = −3∂(TT )− c − 1
6

∂3T

In a seminal work, the existence and relation to integrability
was shown

[Q2k−1,Q2l−1] = 0
[Bazhanov, Lukyanov, Zamalodchikov ‘96]
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Form of KdV charges

Expressions for these charges are not known.
They are known in terms of Virasoro generators only for Q3,
Q5 and Q7

They look like:

Q1 = L0 −
c

24

Q3 = L2
0 −

c + 2
12

L0 +
c(5c + 22)

2880
+ 2

∞∑
n=1

L−nLn
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Preferred basis

The states L−m1 ...L−mk
|∆〉 form a basis of the Verma module

Q2n−1 keep us within the Verma module
There is a particular basis in the Verma module which is
eigenbasis of qKdV charges

|ψ〉 = L−m1 ...Lmk
|∆〉+ ...

Q2n−1|ψ〉 = λ2n−1|ψ〉
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Lessons about quantum kdV spectrum

[AK, Dymarsky, Sugishita, to appear]

nk is defined in the free boson representation of the CFT:
nk count the number of times k appears in the set {mi}

|{nk},∆〉 = |{mi},∆〉

Example
L2
−2L−1 is n2 = 2, n1 = 1

Structure of quantum kdV spectrum:

Q2n−1 = ∆n + cn−1
∑
k

nk f1(k,∆)

+ cn−2

∑
k

n2
k f2(k ,∆) +

∑
k,p

nknp g1(k , p,∆)

+ O(cn−3)
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Explicit forms of quantum kdV spectrum

changed variables: ∆̃ = ∆− c−1
24 , ñk = k + 1

2

Q2n−1 = ∆̃n +
∑
k

n−1∑
j=0

(2n − 1) Γ (n + 1) Γ
(1

2

)
2Γ
(
j + 3

2

)
Γ (n − j)( c

24

)j
∆̃n−1−jk2j+1ñk

+ cn−2

∑
k

n2
k f2(k,∆) +

∑
k,p

nknpg1(k, p,∆)


+ O(cn−3)

Obtained closed form expressions for f2 and g1 as well.
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Broad strategy

We will first calculate the classical KdV charges Qcl
2n−1

Large c expansion in the quantum theory is equivalent to
expansion action variables Ik in the classical theory.

Qcl
2n−1 = hn +

∑
k

f1(k)Ik +
∑
k

f2(k)I 2k + ...

Semi-classical quantization rule::
Multiply Qcl

2n−1 by
(

c
24

)n and

Ik −→
24
c

(
nk +

1
2

)
, h −→ 24

c

(
∆ +

c

24

)
Constraint from Modular covariance

〈Q2n−1〉β = modular covariant with weight 2n
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How to understand the expansion of Qcl
2n−1? Integrability

and Lax Pairs

A pair of operators L,M such that

d

dt
L = [M, L]

is equivalent to equations of motion.
This is useful because they generate all the integrals of motion

Ik = TrLk

These quantities are then automatically conserved by cyclicity
of trace

d

dt
Ik = TrLk−1[M, L] = 0

Trace over spectrum of Lk gives us action variables
[Lax ‘68]
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An observation by Lax about the kdV equation
Defining

L = − d2

dx2 + u(x)

and

M = −4 d3

dx3 − 3
(
u
d

dx
+ u

d

dx
u

)

L̇ = [M, L]

is equivalent to kdV equation:

u̇ = 6uu′ − 4u′′′
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Novikovs method

Schrodinger type equation:

− d2

dx2ψ +
u

4
ψ = λψ

Iso-spectral deformations of u are generated by the kdV
generators Q2k−1

δu =
c

24
{Q2k−1, u}

Example
u̇ =

c

24
{Q3, u} = 6uu′ − 4u′′′
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Novikovs method

[Novikov ‘74]

To study solutions u(x) of

c

24
{Q2k−1, u} = 0

Study the spectral problem of

− d2

dx2ψ + uψ = λψ

Inverse scattering problem: Given spectrum of the
Schrodinger equation
Try and reconstruct the potential u(x)

This problem was solved by Novikov for periodic u(x).
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Turn Novikovs analysis Perturbative

[Novikov ‘74]

Perform the appropriate phase space integrals perturbatively

Ik =
i

π

∮
ai

dp log λ

The conserved quantities

Q2n−1 = − Γ(n + 1)(Γ(1/2))

(Γ(n + 1/2))(2πi)

∮
∞

dpλn−1/2

Our approach: Do it perturbatively in distance between λi
Reduces higher genus phase space integrals to torus ones
which are tractable.
It allows us to get the expansion

Qcl
2n−1 = hn +

∑
k

f1(k)Ik +
∑
k

f2(k)I 2k + ...
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Applications to thermalization: work in progress and future
directions

In the thermodynamic limit, at leading order in c: generalized
ETH was shown in [Dymarsky, Pavlenko ‘19]

What happens at higher order in c?
How can we use these results to make universal statements
about hydrodynamical degrees of freedom?
Thank You


