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Eigenstate Thermalization Hypothesis (ETH)

@ What is the set conditions on probe observable O for it to look
thermal in a generic state 1)

@ ETH tells us that we should look at it's matrix elements in the
energy eigenstate:

-5
(Ei|O|E;) = 0jfo(Ei) + e2 go(Ei — Ej)Ry

@ Then expectations values of O at late times t are given by the
canonical ensemble

(W(t)|Olp(t)) =2 Tr 0 e PH

[Srednicki ‘94, Deutsch ‘91]



Generalized Eigenstate Thermalization Hypothesis (GETH)

@ We can ask the same question when the system has infinitely
many mutually commuting conserved charges Q»,_1

@ What are the conditions that O must satisfy to equlibrate to
GGE at late times?

(W(t)|O)y(t)) = Zgl Tr <O e—znﬂ2n1Q2n1>

Study matrix elements in mutual eigenstates of Q>,_1 which
we call |E;)

o Generalized ETH criterion
(E|O|E) = 5Ufo(ol(5,-), & (E). )

[Cassidy, Clark, Rigol ‘11], [Dymarsky, Pavlenko ‘19], [Cardy, Calabrese ‘16]



qKdV Hierarchy in 2d CFT's

@ In any integrable 2d CFT, you can construct an infinite set of
mutually commuting conserved charges

o classical kdV hierarchy

qéjﬁwwx wé/ﬁwwﬂ

@ Quantum kdV hierarchy

@z/wt %Z/Mfﬂa



qKdV Hierarchy in 2d CFT's

@ These charges give us flows in phase space
0={Qf,u}, 0={Q, u}=06udu—du
@ Quantum version

T = [Qla T]a

T=1{Qs T} = —39(TT) - <=
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@ In a seminal work, the existence and relation to integrability
was shown

[Qok—1, @2i—1] =0

[Bazhanov, Lukyanov, Zamalodchikov ‘96]



Form of KdV charges

o Expressions for these charges are not known.
They are known in terms of Virasoro generators only for @3,

Qs and @7
@ They look like:
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Preferred basis

@ The states L_p,,...L_m, |A) form a basis of the Verma module
@ (Q,_1 keep us within the Verma module

@ There is a particular basis in the Verma module which is
eigenbasis of qKdV charges

|11Z)> = Lfm1~--Lmk|A> + ...
Q2"—1|w> = )\2n—1|7/)>



Lessons about quantum kdV spectrum

[AK, Dymarsky, Sugishita, to appear]

@ ny is defined in the free boson representation of the CFT:
ny count the number of times k appears in the set {m;}

{ne}, A) = {mi}, A)

e Example
[2L 1 is m=2 m=1

@ Structure of quantum kdV spectrum:

Q1 =A"4 "1 Z n, f(k,A)
K

+c" 2N 0 Bk, D)+ ninp g1k, p,A) | + O(c"3)
k k,p



Explicit forms of quantum kdV spectrum

o changed variables: A = A — 2_4 , i =k —1—%

— 1 (n —I— nr (%)
n_1 = A"
Qon-1 = + Ek JE o F(n—J)

n—1—j 2+1
T Rl g2 g

nkfz (k, )+ nenpgi(k, p, &)

k,p
e~ 3

@ Obtained closed form expressions for f; and gy as well.



Broad strategy

o We will first calculate the classical KdV charges Q5!

o Large ¢ expansion in the quantum theory is equivalent to
expansion action variables / in the classical theory.

Qs 1_h"+2f1 i+ Y h(k)Z+ ...
k

e Semi-classical quantization rule::
Multiply Q5/_; by (&)" and

24 1 24 c
B —s =2 2, h—>—(A 7)
k c<”k+2> c\5 Ty

@ Constraint from Modular covariance

(Q2n—1)p = modular covariant with weight 2n



How to understand the expansion of QS ;? Integrability
and Lax Pairs

@ A pair of operators L,M such that

d
—L=[M,L
dt [7]

is equivalent to equations of motion.
@ This is useful because they generate all the integrals of motion

I = TrLk

@ These quantities are then automatically conserved by cyclicity
of trace

d
— = Trl* M, 1]=0
dtk ri [ ’]

@ Trace over spectrum of L¥ gives us action variables
[Lax ‘68]



@ An observation by Lax about the kdV equation
Defining

d2
and e J J
M = —4$ — 3 <UdX + UdXU>
° .
i =M, 1]

is equivalent to kdV equation:

. ! mn
U=6uu —4u



Novikovs method

@ Schrodinger type equation:
d? u
_—— — = >\
TS+ U=

@ lIso-spectral deformations of u are generated by the kdV
generators Qox_1

c
ou= Q{sz—l, u}

e Example
. c
U= Q{Qg,, ul = 6ud —4d"



Novikovs method

[Novikov ‘74]

e To study solutions u(x) of
c
Q{Q2k—1> U} =0

Study the spectral problem of

d2
—@1/) + UT,Z) = )\1/}

@ Inverse scattering problem: Given spectrum of the
Schrodinger equation

e Try and reconstruct the potential u(x)

@ This problem was solved by Novikov for periodic u(x).



Turn Novikovs analysis Perturbative

[Novikov ‘74]
@ Perform the appropriate phase space integrals perturbatively

I = ’j{ dplog A
w /s

I

@ The conserved quantities

F(n+1)((1/2)) 12
p_t = — , dpA"Y/
Qa1 = ~r 1 1)2) i) P P
Our approach: Do it perturbatively in distance between \;

Reduces higher genus phase space integrals to torus ones
which are tractable.

It allows us to get the expansion

Qs 1_h”+2f1 i+ Y h(k)Z+ ..
k



Applications to thermalization: work in progress and future
directions

@ In the thermodynamic limit, at leading order in c: generalized
ETH was shown in [Dymarsky, Pavlenko ‘19]

@ What happens at higher order in c?

@ How can we use these results to make universal statements
about hydrodynamical degrees of freedom?

@ Thank You



