Spectrum of kdV charges and thermalization

Ashish Kakkar

Hamilton Mathematics Institute: Workshop on Quantum Gravity and Modularity

May 2021

Work done in collaboration with Anatoly Dymarsky and Sotaro Sugishita

Eigenstate Thermalization Hypothesis (ETH)

- \bullet What is the set conditions on probe observable ${\it O}$ for it to look thermal in a generic state ψ
- ETH tells us that we should look at it's matrix elements in the energy eigenstate:

$$\langle E_i|O|E_j\rangle = \delta_{ij}f_O(E_i) + e^{-\frac{S}{2}}g_O(E_i - E_j)R_{ij}$$

• Then expectations values of *O* at late times *t* are given by the canonical ensemble

$$\langle \psi(t)|O|\psi(t)\rangle = Z^{-1} Tr O e^{-\beta H}$$

[Srednicki '94, Deutsch '91]

Generalized Eigenstate Thermalization Hypothesis (GETH)

- We can ask the same question when the system has infinitely many mutually commuting conserved charges Q_{2n-1}
- What are the conditions that O must satisfy to equlibrate to GGE at late times?

$$\langle \psi(t)|O|\psi(t)
angle = Z_G^{-1} \ \textit{Tr} \left(O \ \mathrm{e}^{-\sum_n \mu_{2n-1} Q_{2n-1}}
ight)$$

Study matrix elements in **mutual eigenstates** of Q_{2n-1} which we call $|E_i\rangle$

Generalized ETH criterion

$$\langle E_i | O | E_j \rangle = \delta_{ij} f_O \left(Q_1(E_i), Q_3(E_i), \dots \right)$$

[Cassidy, Clark, Rigol '11], [Dymarsky, Pavlenko '19], [Cardy, Calabrese '16]

qKdV Hierarchy in 2d CFT's

- In any integrable 2d CFT, you can construct an infinite set of mutually commuting conserved charges
- classical kdV hierarchy

$$Q_1^{cl} = \int d\phi u(\phi), \quad Q_3^{cl} = \int d\phi u(\phi)^2,$$

Quantum kdV hierarchy

$$Q_1=\int d\phi T, \quad Q_3=\int d\phi: T^2:,$$

qKdV Hierarchy in 2d CFT's

• These charges give us flows in phase space

$$\dot{u} = \{Q_1^{cl}, u\}, \quad \dot{u} = \{Q_3^{cl}, u\} = 6u\partial u - \partial^3 u$$

Quantum version

$$\dot{T} = [Q_1, T],$$

$$\dot{T} = \{Q_3, T\} = -3\partial(TT) - \frac{c-1}{6}\partial^3T$$

 In a seminal work, the existence and relation to integrability was shown

$$[Q_{2k-1}, Q_{2l-1}] = 0$$

[Bazhanov, Lukyanov, Zamalodchikov '96]

Form of KdV charges

- Expressions for these charges are not known. They are known in terms of Virasoro generators only for Q_3 , Q_5 and Q_7
- They look like:

$$Q_1 = L_0 - \frac{c}{24}$$

$$Q_3 = L_0^2 - \frac{c+2}{12}L_0 + \frac{c(5c+22)}{2880} + 2\sum_{n=1}^{\infty} L_{-n}L_n$$

Preferred basis

- ullet The states $L_{-m_1}...L_{-m_k}|\Delta
 angle$ form a basis of the Verma module
- Q_{2n-1} keep us within the Verma module
- There is a particular basis in the Verma module which is eigenbasis of qKdV charges

$$|\psi\rangle = L_{-m_1}...L_{m_k}|\Delta\rangle + ...$$

 $Q_{2n-1}|\psi\rangle = \lambda_{2n-1}|\psi\rangle$

Lessons about quantum kdV spectrum

[AK, Dymarsky, Sugishita, to appear]

• n_k is defined in the free boson representation of the CFT: n_k count the number of times k appears in the set $\{m_i\}$

$$|\{n_k\},\Delta\rangle=|\{m_i\},\Delta\rangle$$

Example

$$L_{-2}^2L_{-1}$$
 is $n_2=2$, $n_1=1$

Structure of quantum kdV spectrum:

$$Q_{2n-1} = \Delta^{n} + c^{n-1} \sum_{k} n_{k} f_{1}(k, \Delta)$$

$$+ c^{n-2} \left(\sum_{k} n_{k}^{2} f_{2}(k, \Delta) + \sum_{k, p} n_{k} n_{p} g_{1}(k, p, \Delta) \right) + O(c^{n-3})$$

Explicit forms of quantum kdV spectrum

ullet changed variables: $ilde{\Delta} = \Delta - rac{c-1}{24}$, $ilde{n_k} = k + rac{1}{2}$

$$Q_{2n-1} = \tilde{\Delta}^{n} + \sum_{k} \sum_{j=0}^{n-1} \frac{(2n-1) \Gamma(n+1) \Gamma(\frac{1}{2})}{2\Gamma(j+\frac{3}{2}) \Gamma(n-j)}$$

$$\left(\frac{c}{24}\right)^{j} \tilde{\Delta}^{n-1-j} k^{2j+1} \tilde{n_{k}}$$

$$+ c^{n-2} \left(\sum_{k} n_{k}^{2} f_{2}(k, \Delta) + \sum_{k,p} n_{k} n_{p} g_{1}(k, p, \Delta)\right)$$

$$+ O(c^{n-3})$$

• Obtained closed form expressions for f_2 and g_1 as well.

Broad strategy

- ullet We will first calculate the classical KdV charges Q_{2n-1}^{cl}
- Large c expansion in the quantum theory is equivalent to expansion action variables I_k in the classical theory.

$$Q_{2n-1}^{cl} = h^n + \sum_k f_1(k)I_k + \sum_k f_2(k)I_k^2 + \dots$$

• Semi-classical quantization rule:: Multiply Q_{2n-1}^{cl} by $\left(\frac{c}{24}\right)^n$ and

$$I_k \longrightarrow \frac{24}{c} \left(n_k + \frac{1}{2} \right), \quad h \longrightarrow \frac{24}{c} \left(\Delta + \frac{c}{24} \right)$$

Constraint from Modular covariance

$$\langle Q_{2n-1} \rangle_{\beta} = \text{modular covariant with weight 2n}$$

How to understand the expansion of Q_{2n-1}^{cl} ? Integrability and Lax Pairs

• A pair of operators L, M such that

$$\frac{d}{dt}L = [M, L]$$

is equivalent to equations of motion.

This is useful because they generate all the integrals of motion

$$I_k = TrL^k$$

 These quantities are then automatically conserved by cyclicity of trace

$$\frac{d}{dt}I_k = TrL^{k-1}[M, L] = 0$$

• Trace over spectrum of L^k gives us action variables

[Lax '68]

 An observation by Lax about the kdV equation Defining

$$L=-\frac{d^2}{dx^2}+u(x)$$

and

•

$$M = -4\frac{d^3}{dx^3} - 3\left(u\frac{d}{dx} + u\frac{d}{dx}u\right)$$

$$\dot{L} = [M, L]$$

is equivalent to kdV equation:

$$\dot{u}=6uu'-4u'''$$

Novikovs method

Schrodinger type equation:

$$-\frac{d^2}{dx^2}\psi + \frac{u}{4}\psi = \lambda\psi$$

• Iso-spectral deformations of u are generated by the kdV generators Q_{2k-1}

$$\delta u = \frac{c}{24} \{ Q_{2k-1}, u \}$$

Example

$$\dot{u} = \frac{c}{24} \{ Q_3, u \} = 6uu' - 4u'''$$

Novikovs method

[Novikov '74]

• To study solutions u(x) of

$$\frac{c}{24}\{Q_{2k-1},u\}=0$$

Study the spectral problem of

$$-\frac{d^2}{dx^2}\psi + u\psi = \lambda\psi$$

- Inverse scattering problem: Given spectrum of the Schrodinger equation
- Try and reconstruct the potential u(x)
- This problem was solved by Novikov for periodic u(x).

Turn Novikovs analysis Perturbative

[Novikov '74]

Perform the appropriate phase space integrals perturbatively

$$I_k = \frac{i}{\pi} \oint_{a_i} dp \log \lambda$$

The conserved quantities

$$Q_{2n-1} = -\frac{\Gamma(n+1)(\Gamma(1/2))}{(\Gamma(n+1/2))(2\pi i)} \oint_{\infty} dp \lambda^{n-1/2}$$

- Our approach: Do it perturbatively in distance between λ_i
- Reduces higher genus phase space integrals to torus ones which are tractable.
- It allows us to get the expansion

$$Q_{2n-1}^{cl} = h^n + \sum_k f_1(k)I_k + \sum_k f_2(k)I_k^2 + \dots$$

Applications to thermalization: work in progress and future directions

- In the thermodynamic limit, at leading order in c: generalized ETH was shown in [Dymarsky, Pavlenko '19]
- What happens at higher order in c?
- How can we use these results to make universal statements about hydrodynamical degrees of freedom?
- Thank You