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Abstract

The aim of this experiment is to measure the gravitational constant G using
a torsion pendulum, which we found to be 11.5-107 m3N~—'s=2 which was
almost double the accepted value of 6.67-107*! m3®N~!s72. The experimental
result is unreliable due to the unreliable nature of the experiment when per-
formed in an environment from which vibrations can not be isolated, as the
apparatus is extremely sensitive to any outside disturbance. Therefore the ex-
perimental result cannot be taken to be accurate.

Introduction and Theory
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Figure 1: Overhead view of experiment

This experiment is fundamentally similar to that performed by Henry Cavendish
in 1798, where a torsion balance is set up and the gravitational attraction be-
tween a pair of large spheres and a pair of smaller spheres is measured in terms
of the torsion of the wire from which the smaller spheres are suspended from.

In our case, the torsion of the wire is measured by a method whereby a laser
beam is reflected from a fixed mirror, attached to the torsion balance, onto a



detector some distance (0.67 m) from the apparatus. Thus a small change in
the torsion translates to a large change in the position of the reflected beam on
the detector.

The apparatus is set up so that the pair of larger lead balls rotate freely
about the vertical axis. By rotating the spheres, we can change the direction
in which the gravitational attraction between the pairs of spheres causes the
wire to twist. The situation is described in Figure 1 (the difference in torsion
between the two positions is greatly exaggerated in the diagram).

Then by measuring the difference in torsion between two points, and knowing
the restoring force in the wire due to a torsion, and the masses of the larger
spheres, and the separations between the balls, it is possible to calculate the
gravitational constant, as the following discussion shows.

Derivation of the formula for G

In this experiment, aside from the various masses and distances between objects,
as described below, the main measurements to be made were on the period of
oscillation, T', of the torsion balance, and the positions of equilibrium, in terms
of the deflection angles oy andas, about which the balance oscillated. From these
then, can the gravitational constant G be measured. The argument proceeds
thus:

When the pendulum is equilibrium in position 1, the gravitational torque,
71 due to the attraction between the pairs of spheres is equal to the restoring
torque, ka, of the wire due to the torsion. Thus, ka; = 7. Similarly, kas = 7».

The gravitational attraction between a large sphere and the smaller one is,
by Newton’s law of gravitation, F' = GMm/b? where b is the separation between
the two spheres. Therefore the torque due to both pairs of spheres is

where d is the distance from the centre of each small sphere to the axis of
rotation.
Thus summing the expressions for ka; and kas, we have

mM

The general formula for the period of a harmonic oscillator is

T—or In.ertia
Restoring Force

thus, for our torsion pendulum we have

T? = 4n’—
k
now the moment of inertia for our pendulum can be modelled as two point
masses each a distance d from the axis of our rotation, I = 2d’*m, giving us
T? = 8n2d?*m, or
- 8m2d?m

k T3



Thus, we have

872d’*m mM
solving for G gives us
272b%d
G =z (ata2)

Finally, since the deflection angles are small, we can see that oy & tan(ay) =
S1/L, thus oy + ag = (S1 + S2)/L = S/L, giving us a final formula for G of

212b2dS
G= MT2L

Oscillation of the balance

When the lead sphere is in position 1, it performs oscillations, in the plane of
all the masses, about a particular equilibrium position a;. While in theory,
the experiment can be left long enough for the oscillations to effectively decay
completely, in reality this isn’t possible due to the eventuality of outside forces
affecting the experiment.

Any force affecting the motion of the masses will result in an unwanted
oscillation of the torsion balance, in any of several modes of oscillation, leading
to For this reason it was necessary to fit the relevant parts of the actual data
to a general damped harmonic oscillator function, y = Ae™"! cos (wt — «)

Experimental Method

The lead spheres were placed in position 1, so that the small lead balls oscillate
about equilibrium position «;. The data for the oscillations from the infrared
detector were recorded for several full periods of oscillations of the pendulum,
i.e. over a time frame from about half an hour to an hour.

Then, the lead spheres were rotated slowly to position 2, and again data
from the detector were recorded.

Finally, the equilibrium points and the period of oscillation were measured
from the data.

Results and Analysis
e b = Distance between the centres of mass = 0.047 m;
e d = Distance of the midpoints of the lead balls from the axis = 0.045 m
e M = Mass of large sphere = (1.500 £ 0.005) kg;

e [ = Distance between the mirror and the detector = 0.67 m

The two plots show the experimental data that was used, along with a curve
fitted to match the data. Because the experiment never settled to equilibrium,
it was necessary to use nonlinear regression to fit a decaying exponential curve
to the parts of data that were usable.
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Figure 2: Graph for Position 1
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Figure 3: Graph for Position 2

Graph 1 and 2 show the raw data points used along with the curve fitted to
the data for Positions 1 and 2 of the experiment respectively, while tables 1 and
2 show the corresponding values for T, S; and S; computed from the nonlinear
curve fit.



From the fit, we found 7" = 671 s and S = 0.024 m. Inserting these values
into the formula for G gave a final value of 11.5-107'* m3N~='s~2 which is
almost double the accepted value of 6.67-107!! m®N—1s~2.

Model
Equation
Reduced

Chi-Sqr
Adj. R-Square

GPend (User)
¥ + Afexpl(-((HOMau)Fcos(Z*Pirn™t + 1)
052364
0.99859
Walue Standard Error
¥ 2068891 0.03092
A 2243730 -
tau 120415324 47852
0 -847.6088 -
n 0.00153 4 4694E-7
f 222576 0.00357

Figure 4: Table 1

Model
Equation
Reduced

Chi-Sgr
Adj. R-Square

GPend (User) |
y0 + A*exp(-((HOMtau)Fcos(2*Pin*t + )

422478

0.99161

Value Standard Error
y0 44 52021 0.05428
A 129.9375 -
tau 1419.0921 1213521
10 2931.97988 -
0.00145 6.33176E-7

i 112.84786 0.01874

Figure 5: Table 2

Discussion and Conclusion

The general theme to the entire experiment was the difficulty in getting a set
of usable results without the apparatus being disturbed. The entire run for
the first week did not result in any usable results, while the results from the
second week were only usable thanks to the help from Prof. Stamenov with
using nonlinear regression to fit a curve to a subset of data which hadn’t been
contaminated (detected by looking for unexpected inflections in the curve).
After fitting the curve to the data, it appeared as if the actual data was
going to be quite accurate, however the final result was disappointingly far off

from the accepted value.



