Recap: Limits

o We write
lim f(x) =L

if f approaches L close to a.

e The limit of f at a has nothing to do with the value of the function at a. The limit
can exists even if the function is not defined. For example:
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but the function 22:11 is not even defined at x = 1. (See example 3, section 2.1).

e Right and left limits mean (see example 2, section 2.1):

lim+ f(x) =L = fapproaches L close to a for values larger than a.
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lim f(x) =L = f approaches L close to a for values smaller than a.
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e A limit exists if and only if the right and left limits exists and are the same.
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e If a function is continous at a, then the limit at a is given by the value of the function
(Examples 4, 5 of section 2.1).

f(z) continous at a = lim f(z) = f(a).

e Polynomials and the trigonometric functions sin x, cos x are continous at every point.
The function /z is continous at > 0. The sum, difference and composition of con-
tinous functions is continous. The ratio of continous functions f(z)/g(x) is continous
if g(x) # 0. (Examples 1, 2, 3 of section 2.2).

e Computing limits.
1. If the function is continous, just evaluate the function. Example:

lim Va3 +12c+4=6.
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e If the function is not continous, is probably of the form lim, . f(x)/g(x) with
lim, 4 g(z) = 0. In this case
— If lim,_,, f(z) # 0 the limit does not exists (Example 7, section 2.2).

— If lim, 4 f(2) = 0 one needs to simplify the expression, assuming that x # a
(Example 4, section 2.2).
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