Speed of a falling object

• Galileo realized that the distance travelled by a falling object is very well approximated by the function

$$d(t) = 5t^2 (1)$$

• What is the average speed of an object around t = 1? Distance traveled over time

$$v_{\rm av}(t) = \frac{d(t) - d(1)}{t - 1} = \frac{5t^2 - 5}{t - 1} \tag{2}$$

d(1)	t	d(t)	$v_{\rm av}(t)$
5	1.2	7.2	11.
5	1.1	6.05	10.5
5	1.01	5.1005	10.05
5	1.001	5.010005	10.005
5	0.999	4.990005	9.995
5	0.99	4.9005	9.95
5	0.9	4.05	9.5
5	0.8	3.2	9.
5	0.7	2.45	8.5

• One might be tempted to just cancel the zero in the numerator/denominator, but this cannot be done in general!

$$f(x) = \frac{5x^2 - 5}{(x - 1)^2} \,. \tag{3}$$

- Similarities: Both functions f(x) and $v_{av}(x)$ are not defined at x=1 (i.e. x=1 is not in the domain).
- Difference between two situations: v_{av} approaches 10 close to 1, but f does not approach any reasonable number close to 1.
- Definition of limit: We say that

$$\lim_{x \to a} f(x) = L \tag{4}$$

if f approaches L close to a.

• Computing the limit: Since we have

$$v_{\rm av}(t) = \frac{5t^2 - 5}{t - 1} = \begin{cases} 5(t + 1) & t \neq 1\\ \text{Not defined} & t = 1 \end{cases}$$
 (5)

Obviously $v_{\rm av}$ approaches 10 close to 1!:

$$\lim_{t \to 1} \frac{5t^2 - 5}{t - 1} = \lim_{t \to 1} \frac{5(t + 1)(t - 1)}{t - 1} = \lim_{t \to 1} 5(t + 1) = 10.$$
 (6)

On the other hand

$$f(x) = \frac{5x^2 - 5}{(x - 1)^2} = \frac{5(x + 1)}{(x - 1)}.$$
 (7)

and close to x=1 the function grows/decrease without bound (i.e. does not approach any number). We write

$$\lim_{x \to 1} f(x) = \text{Does not exist}. \tag{8}$$