Linear functions

$$f(x) = mx + n \tag{1}$$

- m: slope. m > 0 "increasing" line. m < 0 "decreasing" line
- n: intercept. (Cut with the vertical axes)

Quadratic functions

$$f(x) = ax^2 + bx + c \tag{2}$$

Are parabolas

- a > 0 opens up
- a < 0 opens down
- Minima at $\frac{-b}{2a}$.

Polynomials

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
(3)

- n: degree of polynomial
- Always go to $\pm \infty$ as $x \to \infty$ or $x \to -\infty$. Depending on the sign of a_n and if the degree is even/odd.

Trigonometric

- \bullet Useful to describe periodic phenomena. Different from polynomials, that eventually go to $\pm\infty$
- Angles measured in radians:

$$angle = \frac{arc \ length \ of \ circunference}{radius \ of \ circunference} \tag{4}$$

- $\sin(x)$: In a circle of radius one, is the length of the opposite side.
- cos(x): In a circle of radius one, is the length of the adjacent side.
- By Pythagoras theorem $\sin^2 \alpha + \cos^2 \alpha = 1$
- $\bullet\,$ Some special values

α	$\sin \alpha$	$\cos \alpha$
$\pi/2$	1	0
π	0	-1
$3\pi/2$	-1	0