Recap: Limits

- We write
 \[
 \lim_{x \to a} f(x) = L
 \]
 if \(f \) approaches \(L \) close to \(a \).

- The limit of \(f \) at \(a \) has nothing to do with the value of the function at \(a \). The limit can exist even if the function is not defined. For example:
 \[
 \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2,
 \]
 but the function \(\frac{x^2 - 1}{x - 1} \) is not even defined at \(x = 1 \). (See example 2, section 1.1).

- Right and left limits mean (see example 2, section 2.1):
 \[
 \lim_{x \to a^+} f(x) = L \implies f \text{ approaches } L \text{ close to } a \text{ for values larger than } a.
 \]
 \[
 \lim_{x \to a^-} f(x) = L \implies f \text{ approaches } L \text{ close to } a \text{ for values smaller than } a.
 \]

- A limit exists if and only if the right and left limits exist and are the same.

 \[
 \lim_{x \to a} f(x) = L \iff \begin{cases}
 \lim_{x \to a^+} f(x) = L \\
 \lim_{x \to a^-} f(x) = L
 \end{cases}
 \]

- If a function is continuous at \(a \), then the limit at \(a \) is given by the value of the function (Examples 1 of section 1.5).

 \[
 f(x) \text{ continuous at } a \implies \lim_{x \to a} f(x) = f(a).
 \]

- Polynomials and the trigonometric functions \(\sin x, \cos x \) are continuous at every point. The function \(\sqrt{x} \) is continuous at \(x > 0 \). The sum, difference and composition of continuous functions is continuous. The ratio of continuous functions \(f(x)/g(x) \) is continuous if \(g(x) \neq 0 \). (Examples 3, 4 of section 1.5).

- Computing limits.

 1. If the function is continuous, just evaluate the function. Example:

 \[
 \lim_{x \to 2} \sqrt{x^2 + 12x + 4} = 6.
 \]

- If the function is not continuous, is probably of the form \(\lim_{x \to a} f(x)/g(x) \) with \(\lim_{x \to a} g(x) = 0 \). In this case (see Example 9 section 1.2)
 - If \(\lim_{x \to a} f(x) \neq 0 \) the limit does not exists.
 - If \(\lim_{x \to a} f(x) = 0 \) one needs to simplify the expression, assuming that \(x \neq a \).

- \(\lim_{x \to 0} \frac{\sin x}{x} = 1 \)