

Module Code CSU34016

Module Name Introduction to Functional Programming

ECTS Weighting1 Choose an item.

Semester taught Choose an item.

Module Coordinator/s Dr Andrew Butterfield

Module Learning

Outcomes

On successful completion of this module, students will be able to:

LO1. Develop programs in a high level functional language
LO2. Analyse and structure program designs in terms of functional concepts
LO3. Understand the concept of higher-order programming inherent in

functional languages
LO4. Apply a number of functional programming techniques and tools to

develop effective functional systems
LO5. Use logical proof techniques to reason about functional programs.
LO6. Understand and use appropriate software development tools

Module Content Functional programming languages present a powerful, abstract, and important
direction in programming languages. The high level of abstraction and the
expressive syntax makes program decomposition and composition unusually easy,
while the close connections to the underlying semantics make formal reasoning
tractable. Systems such as Google’s “Map/Reduce” framework demonstrate the
influence of this approach, and the importance to a computer scientist of
understanding it.

This modules uses the functional programming language called "Haskell" to
introduce key concepts such as how to compute using functions, and how these
languages can easily support powerful features such as pattern-matching, recursion,
strong typing, type polymorphism, higher-order functions, laziness, and type
classes. Practical exercises are based around the use of software development tools
(Haskell "stack") that support test automation. We also study the theoretical and
formal underpinnings of such languages (lambda calculus), and how much easier it
is to do formal reasoning regarding program proprties using logical proofs.

Teaching and Learning

Methods

The course is delivered mainly through a mix of lectures and tutorials, with regular
short graded exercises being given to assess learning outcomes. There are a few
laboratory slots early in the course, whose sole purpose is to ensure that all
students can work effectively with the software development tools.

1 TEP Glossary

https://www.tcd.ie/TEP/Council/assets/TEP%20Embedding%20Trinity%20Graduate%20Attributes%20in%20the%20Curriculum%202.pdf
https://www.tcd.ie/TEP/Council/assets/TEP%20Embedding%20Trinity%20Graduate%20Attributes%20in%20the%20Curriculum%202.pdf
https://www.tcd.ie/TEP/Council/assets/TEP%20Glossary%20Edition%201%20Decemeber%20circulation1.pdf

Assessment Details2 Assessment
Component

Brief Description Learning
Outcomes
Addressed

% of
total

Week
set

Week
due

Examination 2 hour written examination LO1, LO2, LO3,
LO4, LO5

80% n/a n/a

Exercise0 Tool Usage LO6, LO1 2% 1 2

Exercise1 Basic Programming LO1, LO2, LO6 4% 2 4

Exercise2 Higher Order Programming LO3, LO2, LO1,
LO6

4% 4 6

Exercise3 Application Program and
Proof (part 1)

LO4, LO5, LO3,
LO2, LO6

5% 6 8

Exercise4 Application program and
Proof (part 2)

LO4, LO5, LO3,
LO2, LO6

5% 9 11

Reassessment Details Examination (2 hours, 100%)

Contact Hours and

Indicative Student

Workload

Contact Hours (scheduled hours per student over full module), broken down
by:

34 hours

 lecture 22 hours

 laboratory 2 hours

 tutorial or seminar 11 hours

 other 0 hours

Independent study (outside scheduled contact hours), broken down by: 72 hours

 preparation for classes and review of material
(including preparation for examination, if applicable)

36 hours

 completion of assessments (including examination, if applicable) 36 hours

Total Hours 106 hours

Recommended Reading

List

Module Pre-requisites Prerequisite modules: none

Other/alternative non-module prerequisites: familiarity with a main-stream
(imperative) programming language, such as Java, C, python, or similar, and some
experience in programming with that language. No prior experience with functional
programming languages such as Haskell, ML, OCaml, Scheme, LISP, etc., is required.

Module Co-requisites

Module Website

Last Update 11/07/2019 by Your Name

2 TEP Guidelines on Workload and Assessment

https://www.tcd.ie/TEP/Council/assets/TEP%20Instructions%20for%20Using%20the%20student%20workload%20mapping%20tool%201.pdf

