

Module Code CSU11022

Module Name Introduction to Computing II

ECTS Weighting1 5 ECTS

Semester taught Semester 2

Module Coordinator/s Jonathan Dukes

Module Learning

Outcomes

On successful completion of this module, students will be able to:

LO1. Describe the characteristics, structure and operation of a basic computer

system, including the execution of subroutines and the interface

between the processor and external devices;

LO2. Translate between high-level programming language constructs,

including fundamental data structures and subroutines, and their

assembly language equivalents;

LO3. Design, construct, document and test assembly language programs to

solve small-scale problems of moderate complexity by decomposing the

problems into smaller parts and implementing solutions consisting of

one or more assembly language subroutines;

LO4. Construct assembly language programs that can interact with simple
external devices.

Module Content This module continues directly from CSU11021 and examines the structure and
behaviour of computer systems in greater depth.

In particular, this module introduces students to the implementation of simple data
structures (stacks, multi-dimensional arrays, composite data types), subroutines
(including parameter passing conventions), exceptions, interrupts and basic I/O at
the machine level.

Students are given opportunities throughout the module to reinforce their problem
solving, programming and written communication skills by designing, implementing,
documenting and testing solutions to programming problems of increasing
complexity. Problem decomposition is strongly encouraged.

Teaching and Learning

Methods

Lectures are used to introduce key concepts and provide worked examples.

Every fortnight, each student participates in a tutorial to further explore each topic.
In the tutorials, students work in groups of up to six on a set of exercises, using
whiteboards to explore solutions, with guidance and feedback from teaching staff.

Students work in pairs on four sets of lab exercises and are given two weeks to work
on each set, beginning the exercise in the scheduled labs and completing them
outside scheduled hours. At the end of each two-week cycle, each pair of students
demonstrates their work to teaching staff and receives feedback during the lab.

Finally, a substantial mid-term assignment provides students with an opportunity to
work individually on a larger-scale problem.

1 TEP Glossary

https://www.tcd.ie/TEP/Council/assets/TEP%20Embedding%20Trinity%20Graduate%20Attributes%20in%20the%20Curriculum%202.pdf
https://www.tcd.ie/TEP/Council/assets/TEP%20Embedding%20Trinity%20Graduate%20Attributes%20in%20the%20Curriculum%202.pdf
https://www.tcd.ie/TEP/Council/assets/TEP%20Glossary%20Edition%201%20Decemeber%20circulation1.pdf

Assessment Details2 Assessment
Component

Brief Description Learning
Outcomes
Addressed

% of
total

Week
set

Week
due

Examination 2 hour examination LO1, LO2, LO3,
LO4

70% n/a n/a

Lab 1 Stacks and subroutines LO1, LO2 2.5% 3 4

Lab 2 Multi-dimensional arrays LO1, LO2 2.5% 5 6

Assignment Design, implement, test and
document a program of
moderate complexity

LO2, LO3 20% 5 8

Lab 3 Floating point representation LO1, LO2 2.5% 9 10

Lab 4 I/O, exceptions and
interrupts

LO4 2.5% 11 12

Reassessment Details Examination (2 hours, 100%)

Contact Hours and

Indicative Student

Workload

Contact Hours (scheduled hours per student over full module), broken down
by:

36 hours

 lecture 22 hours

 laboratory 10 hours

 tutorial or seminar 4 hours

 other 0 hours

Independent study (outside scheduled contact hours), broken down by: 78 hours

 preparation for classes and review of material
(including preparation for examination, if applicable)

50 hours

 completion of assessments (including examination, if applicable) 28 hours

Total Hours 114 hours

Recommended Reading

List

William Hohl, “ARM Assembly Language: Fundamentals and Techniques”, CRC Press,
2009.

Steve Furber, “ARM System-on-Chip Architecture”, 2nd edition, Addison-Wesley
Professional, 2000. [suggested further reading]

Andrew Sloss, Dominic Symes and Chris Wright, “ARM System Developer's Guide:
Designing and Optimizing System Software”, Morgan Kaufmann, 2004. [suggested
further reading]

Module Pre-requisites Prerequisite modules: CSU11021

Other/alternative non-module prerequisites: A basic working knowledge of the
ARM instruction set and some familiarity with at least one high level programming
language.

Module Co-requisites

Module Website Blackboard / mymodule.tcd.ie

Last Update 28/06/2019 by Jonathan Dukes

2 TEP Guidelines on Workload and Assessment

https://www.tcd.ie/TEP/Council/assets/TEP%20Instructions%20for%20Using%20the%20student%20workload%20mapping%20tool%201.pdf

