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School of Mathematics

Course 371 — Computability, logic, and set theory 2004–05
(JS & SS Mathematics )

Lecturer: Dr. C. Ó Dúnlaing

Requirements/prerequisites: None

Duration: 21 weeks (54 lectures + tutorials)

Number of lectures per week: 3

Assessment: Regular homeworks and final exam

End-of-year Examination: One 3-hour examination - end of year

Description: Peano Arithmetic — axioms for N. Resolution principle for propositional logic.
Complete axiom system for propositional logic. Predicate logic, models, and completeness.
Axioms for equality.

Turing machines and partial recursive functions. Peano arithmetic and Goedel numbering.
Goedel’s first incompleteness theorem. Goedel-Rosser theorem Hilbert-Bernays derivability
conditions. Goedel’s second incompleteness theorem. Further analysis of Goedel’s second
theorem. Goedel’s First theorem and partial recursive functions.

ZF set theory. Ordinals. Foundation axiom and its relative consistency. Cardinals, the
Axiom of choice, and the General Continuum Hypothesis. The constructible universe. Relative
consistency of V=L. V=L implies AC. V=L implies GCH.

Additional notes. A considerable advance in nineteenth-century mathematics was the
introduction of rigour to suspect areas of analysis. The notion of ‘real number,’ for example,
can now be defined in terms of Cauchy sequence or Dedekind cut. Both of these are generally
acceptable reductions of the intuitive continuum of real numbers to sets of sets or sequences of
rational numbers.

So, if one can formalise the notion of ‘set’ in logically unobjectionable terms, one can be
happy with much of advanced mathematics.

However, the development of set-theory uncovered paradoxes such as Russell’s: {x:x 6∈ x}
both belongs to itself and doesn’t. Mathematicians such as Hilbert aspired to formal axiom
systems which could be themselves formally proved free of paradox.

Their idea was as follows: since a formal system should be a precisely-defined combinatorial
object, the consistency of such a system should be expressible in precise combinatorial terms
and hopefully capable of a rigid demonstration — even though the system itself should speak
of shadowy notions of infinite cardinality, and so forth.

The most basic problem would have been the formalisation of number theory. Once that
was done properly, the consistency of other formal systems would hopefully be translated into
theorems about numbers, and hence settled by the theory. What was wanted, therefore, was a
mechanical procedure for establishing facts about the natural number system N. One required
(a) a complete system of axioms for N, so every fact about N would be a theorem of the
system; and (b) a demonstration within this system that the system was consistent, that is,
every theorem would hold true for N. The course is largely concerned with progress towards
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these goals for number theory and then for set theory.
The course begins with Peano’s axioms, an axiom system for the natural numbers. This is

an introduction to an important formal theory.
It then covers classical first-order logic, introducing a variant of the ‘Principia’ system, intro-

ducing semantics through Tarski’s definition of satisfaction, and going on to Gödel’s Complete-
ness Theorem, which says that every consistent first-order theory has a model (or conversely,
if a theory cannot be realised, then one can derive a contradiction in the theory).

The course will then deal with Gödel’s negative contributions to Hilbert’s program. His
first incompleteness theorem, which says that no recursive axiomatisation of number theory
covers all true facts about numbers. His second incompleteness theorem, which says that no
consistent recursive extension of Peano arithmetic allows a proof of its consistency.

The course then turns to set theory. The Zermelo-Fraenkel theory will be studied. Its
axioms are mostly common set-theory, such as extensionality, existence of set unions, and so
on.

The most interesting feature of set theory is the Axiom of Choice: one formulation of this
axiom is that every surjective function has a right inverse. (The proposition that every injective
function has a left inverse is much weaker.) It is used for (and is equivalent to) many other ‘big
existence’ theorems, such as the Hahn-Banach Theorem, the existence of (algebraic) bases for
vector spaces, comparability of set cardinalities, existence of ultrafilters, Tychonoff’s theorem,
and so on. A strange construction made possible by the choice axiom is a non-measurable set of
real numbers, by expressing the unit interval as a countable disjoint union of equi-measurable
sets.

The other problem of set theory was the Continuum problem: do there exist uncountable
sets of R whose cardinality is less than that of R? Although not as central as the axiom of
choice, this problem obviously begs a solution within set-theory.

Given that the Axiom of choice leads to important or sometimes strange results, one first
asks whether it can be deduced from the other axioms, or whether it is independent, and, in
the latter case, is it also consistent? We shall answer the second question, but not the first.

We will show the relative consistency of the axiom of choice. That is, although one does
not expect a proof of the consistency of set theory (ruled out by Gödel’s second theorem),
nonetheless one can show that assumption of the choice axiom cannot introduce contradictions
that were not already there. This makes the formidable choice axiom much easier to swallow.
This result is also due to Gödel. The details are complex, as in most areas of logic, whereas the
principle is quite simple, and similar to showing that if groups exist then commutative groups
exist. In Gödel’s method one would take a model of set theory (much harder to describe than
a group) and produce a submodel, ‘the constructible universe,’ in which the axiom of choice
holds. It will turn out also that the Continuum hypothesis holds within the constructible
universe, so it also is consistent with the other axioms of set theory.

Further developments. The material covered in the course was mostly developed in
the 30s. Since 1940 the outstanding development in set-theory was Cohen’s forcing method
(1963), which time does not allow us to cover. This led to full independence proofs for the
Continuum hypothesis and the axiom of choice. A very strange application of forcing showed
that the existence of nonmeasurable sets, which follows from the Axiom of Choice, is very close
to that axiom.

Another interesting development was in number theory, where a ‘definitely true and natural’
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fact about numbers was shown to be independent of Peano arithmetic. Put another way, a
certain sequence sn of numbers (strong Ramsey numbers) is obviously computable — indeed,
a Turing machine could be produced on demand, which computes any member of the sequence
— except that Peano arithmetic isn’t sufficiently comprehensive to demonstrate this ‘obvious’
fact.

Another area which the course cannot pursue is the development of mechanical proof-
procedures, such as (first-order) resolution, or decision procedures for specific theories, such as
Tarski’s theory of the real numbers. However, the course should stop just short of these, and
you would be able to continue with them if you so wished.
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